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Foreword

These lecture notes give an introduction into the theory of stochastic processes for undergrad-
uate math students with a background knowledge of basic probability. They originated from a
one-term course on random functions held at Ulm University in the years 2007-2017.

The choice of material is canonical and reflects the scope of facts that, in my opinion, is a
must for every student interested in advanced probability. I would like to thank my colleagues
at the Institute of Stochastics for their valuable help during the creation process of the course.
In particular, I am grateful to Prof. V. Schmidt, Dr. J. Kampf, Dr. V. Makogin, Dr. P. Alonso-
Ruiz, S. Roth, J. Olszewski, R. Jäger, who contributed both to the concept and the LaTeX
setup as well as drew my attention to numerous errors and typos in the preliminary version of
the text.
Evgeny Spodarev
Ulm, 15.08.2017
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1 General theory of random functions

1.1 Random functions
Let (Ω,A,P) be a probability space and (S,B) a measurable space, Ω,S 6= ∅.
Definition 1.1.1
A random element X : Ω→ S is a A|B-measurable mapping (Notation: X ∈ A|B), i.e.,

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ A, B ∈ B.

If X is a random element, then X(ω) is a realization of X for arbitrary ω ∈ Ω.
We say that the σ-algebra B of subsets of S is induced by the set system M (Elements of M

are hence subsets of S), if
B =

⋂
F⊃M

F-σ-algebra on S

F

(Notation: B = σ(M)).
If S is a topological or metric space then M is often chosen as a class of all open sets of S

and σ(M) is called the Borel σ-algebra (Notation: B = B(S)).
Example 1.1.1 1. If S = R, B = B(R) then a random element X is called a random

variable.

2. If S = Rm, B = B(Rm), m > 1, then X is called a random vector. Random variables and
random vectors are considered in the lectures „Elementary Probability and Statistics“
and „Stochastics I“.

3. Let S be the class of all closed sets of Rm. Let

M = {{A ∈ S : A ∩B 6= ∅} , B – arbitrary compactum of Rm} .

Then X : Ω→ S is a random closed set.
As an example we consider n independent uniformly distributed points Y1, . . . , Yn ∈ [0, 1]m

and R1, . . . , Rn > 0 (almost surely) independent random variables, which are defined on the
same probability space (Ω,A,P) as Y1, . . . , Yn. Consider X = ∪ni=1BRi(Yi), where Br(x) = {y ∈
Rm : ‖y − x‖ ≤ r}. Obviously, this is a random set. An example of a realization is provided in
Figure 1.1.
Exercise 1.1.1
Let (Ω,A) and (S,B) be measurable spaces, B = σ(M), where M is a class of subsets of S.
Prove that X : Ω→ S is A|B-measurable if and only if X−1(C) ∈ A, C ∈M.
Definition 1.1.2
Let T be an arbitrary index set and (St,Bt)t∈T a family of measurable spaces. A family
X = {X(t), t ∈ T} of random elementsX(t) : Ω→ St defined on (Ω,A,P) and A|Bt-measurable
for all t ∈ T is called a random function (associated with (St,Bt)t∈T ).

2



1 General theory of random functions 3

Fig. 1.1: Example of a random set X = ∪6
i=1BRi(Yi)

Therefore it holds X : Ω × T → (St, t ∈ T ), i.e. X(ω, t) ∈ St for all ω ∈ Ω, t ∈ T and
X(·, t) ∈ A|Bt, t ∈ T . We often omit ω in the notation and write X(t) instead of X(ω, t).
Sometimes (St,Bt) does not depend on t ∈ T as well: (St,Bt) = (S,B) for all t ∈ T .

Special cases of random functions:

1. T ⊆ Z : X is called a random sequence or stochastic process in discrete time.
Example: T = Z, N.

2. T ⊆ R : X is called a stochastic process in continuous time.
Example: T = R+, [a, b], −∞ < a < b <∞, R.

3. T ⊆ Rd, d ≥ 2 : X is called a random field.
Example: T = Zd, Rd+, Rd, [a, b]d.

4. T ⊆ B(Rd) : X is called set-indexed process.
If X(·) is almost surely non-negative and σ-additive on the σ-algebra T , then X is called
a random measure.

The tradition of denoting the index set with T comes from the interpretation of t ∈ T for
the cases 1 and 2 as time parameter.
For every ω ∈ Ω, {X(ω, t), t ∈ T} is called a trajectory or path of the random function X.
We would like to prove that the random function X = {X(t), t ∈ T} is a random element

within the corresponding function space, which is equipped with a σ-algebra that is now to be
specified.
Let ST =

∏
t∈T St be the Cartesian product of St, t ∈ T , i.e., X ∈ ST if X(t) ∈ St, t ∈ T .

The elementary cylindric set in ST is defined as

CT (Bt) = {X ∈ ST : X(t) ∈ Bt} ,

where t ∈ T is a selected point from T and Bt ∈ Bt a subset of St. CT (Bt) therefore contains
all trajectories X, which go through the „gate“ Bt, see Figure 1.2.
Definition 1.1.3
The cylindric σ-algebra BT is introduced as a σ-algebra induced in ST by the family of all
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Fig. 1.2: Trajectories which pass a „gate“ Bt.

elementary cylinders. It is denoted by BT = ⊗t∈TBt. If Bt = B for all t ∈ T , then BT is written
instead of BT .
Lemma 1.1.1
The family X = {X(t), t ∈ T} is a random function on (Ω,A,P) with phase spaces (St,Bt)t∈T
if and only if for ω ∈ Ω the mapping ω 7→ X(ω, ·) is A|BT -measurable.
Exercise 1.1.2
Prove Lemma 1.1.1.
Definition 1.1.4
Let X be a random element X : Ω → S, i.e. X be A|B-measurable. The distribution of X is
the probability measure PX on (S,B) such that PX(B) = P(X−1(B)), B ∈ B.
Lemma 1.1.2
An arbitrary probability measure µ on (S,B) can be considered as the distribution of a random
element X.

Proof Take Ω = S, A = B, P = µ and X(ω) = ω, ω ∈ Ω.

When does a random function with given properties exist? A random function which consists
of independent random elements always exists. This assertion is known as
Theorem 1.1.1 (Lomnicki, Ulam):
Let (St,Bt, µt)t∈T be a sequence of probability spaces. It exists a random sequence X =
{X(t), t ∈ T} on a probability space (Ω,A,P) (associated with (St,Bt)t∈T ) such that

1. X(t), t ∈ T are independent random elements.

2. PX(t) = µt on (St,Bt), t ∈ T .

A lot of important classes of random processes is built on the basis of independent random
elements; cf. examples in Section 1.2.
Definition 1.1.5
Let X = {X(t), t ∈ T} be a random function on (Ω,A,P) with phase space (St,Bt)t∈T . The
finite-dimensional distributions of X are defined as the distribution law Pt1,...,tn of
(X(t1), . . . , X(tn))T on (St1,...,tn ,Bt1,...,tn), for arbitrary n ∈ N, t1, . . . , tn ∈ T , where St1,...,tn =
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St1 × . . . × Stn and Bt1,...,tn = Bt1 ⊗ . . . ⊗ Btn is the σ-algebra in St1,...,tn , which is induced by
all sets Bt1 × . . .×Btn , Bti ∈ Bti , i = 1, . . . , n, i.e., Pt1,...,tn(C) = P((X(t1), . . . , X(tn))T ∈ C),
C ∈ Bt1,...,tn . In particular, for C = B1 × . . .×Bn, Bk ∈ Btk one has

Pt1,...,tn(B1 × . . .×Bn) = P(X(t1) ∈ B1, . . . , X(tn) ∈ Bn).

Exercise 1.1.3
Prove that Xt1,...,tn = (X(t1), . . . , X(tn))T is an A|Bt1,...,tn-measurable random element.
Definition 1.1.6
Let St = R for all t ∈ T . The random function X = {X(t), t ∈ T} is called symmetric, if all
of its finite-dimensional distributions are symmetric probability measures, i.e., Pt1,...,tn(A) =
Pt1,...,tn(−A) for A ∈ Bt1,...,tn and all n ∈ N, t1, . . . , tn ∈ T , whereby

Pt1,...,tn(−A) = P((−X(t1), . . . ,−X(tn))T ∈ A).

Exercise 1.1.4
Prove that the finite-dimensional distributions of a random function X have the following
properties: for arbitrary n ∈ N, n ≥ 2, {t1, . . . , tn} ⊂ T , Bk ∈ Stk , k = 1, . . . , n and an
arbitrary permutation (i1, . . . , in) of (1, . . . , n) it holds:

1. Symmetry: Pt1,...,tn(B1 × . . .×Bn) = Pti1 ,...,tin (Bi1 × . . .×Bin)

2. Consistency: Pt1,...,tn(B1 × . . .×Bn−1 × Stn) = Pt1,...,tn−1(B1 × . . .×Bn−1)

The following theorem evidences that these properties are sufficient to prove the existence of
a random function X with given finite-dimensional distributions.
Theorem 1.1.2 (Kolmogorov):
Let {Pt1,...,tn , n ∈ N, {t1, . . . , tn} ⊂ T} be a family of probability measures on

(Rm × . . .× Rm,B(Rm)⊗ . . .⊗ B(Rm)),

which fulfill conditions 1 and 2 of Exercise 1.1.4. Then there exists a random function X =
{X(t), t ∈ T} defined on a probability space (Ω,A,P) with finite-dimensional distributions
Pt1,...,tn .

Proof See [19], Section II.9.

This theorem also holds on more general (however not arbitrary!) spaces than Rm, on so-
called Borel spaces, which are in a sense isomorphic to ([0, 1] ,B [0, 1]) or a subspace of that.
Definition 1.1.7
Let X = {X(t), t ∈ T} be a random function with values in (S,B), i.e., X(t) ∈ S almost
surely for arbitrary t ∈ T . Let (T,C) be itself a measurable space. X is called measurable if
the mapping X : (ω, t) 7→ X(ω, t) ∈ S, (ω, t) ∈ Ω× T , is A⊗ C|B-measurable.
Thus, Definition 1.1.7 not only provides the measurability of X with respect to ω ∈ Ω:

X(·, t) ∈ A|B for all t ∈ T , but X(·, ·) ∈ A⊗ C|B as a function of (ω, t). The measurability of
X is of significance if X(ω, t) is considered at random moments τ : Ω → T , i.e., X(ω, τ(ω)).
This is in particular the case in the theory of martingales if τ is a so-called stopping time for
X. The distribution of X(ω, τ(ω)) might differ considerably from the distribution of X(ω, t),
t ∈ T .
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1.2 Elementary examples
The theorem of Kolmogorov can be used directly for the explicit construction of random pro-
cesses only in few cases, since for a lot of random functions their finite-dimensional distributions
are not given explicitly. In these cases a new random function X = {X(t), t ∈ T} is built as
X(t) = g(t, Y1, Y2, . . .), t ∈ T , where g is a measurable function and {Yn} a sequence of random
elements (also random functions), whose existence has already been ensured. For that we give
several examples.
Let X = {X(t), t ∈ T} be a real-valued random function on a probability space (Ω,A,P).

1. White noise:
Definition 1.2.1
The random function X = {X(t), t ∈ T} is called white noise, if all X(t), t ∈ T , are
independent and identically distributed (i.i.d.) random variables.

White noise exists according to the Theorem 1.1.1. It is used to model the noise in
(electromagnetic or acoustical) signals. If X(t) ∼ Ber(p), p ∈ (0, 1), t ∈ T , one means
Salt-and-pepper noise, the binary noise, which occurs at the transfer of binary data in
computer networks. If X(t) ∼ N (0, σ2), σ2 > 0, t ∈ T , then X is called Gaussian white
noise. It occurs e.g. in acoustical signals.

2. Gaussian random function:
Definition 1.2.2
The random function X = {X(t), t ∈ T} is called Gaussian, if all of its finite-dimensional
distributions are Gaussian, i.e. for all n ∈ N, t1, . . . , tn ⊂ T it holds

Xt1,...,tn = ((X(t1), . . . , X(tn))> ∼ N (µt1,...,tn ,
∑

t1,...,tn

),

where the mean is given by µt1,...,tn = (EX(t1), . . . ,EX(tn))> and the covariance matrix
is given by

∑
t1,...,tn = ((cov(X(ti), X(tj))ni,j=1.

Exercise 1.2.1
Prove that the distribution of a Gaussian random functionX is uniquely determined by its
mean value function µ(t) = EX(t), t ∈ T , and covariance function C(s, t) = E[X(s)X(t)],
s, t ∈ T , respectively.

An example for a Gaussian process is the so-called Wiener process (or Brownian motion)
X = {X(t), t ≥ 0}, which has the expected value zero (µ(t) ≡ 0, t ≥ 0) and the covariance
function C(s, t) = min {s, t}, s, t ≥ 0. Usually it is additionally required that the paths
of X are continuous functions.
We shall investigate the regularity properties of the paths of random functions in more
detail in Section 1.3. Now we can say that such a process exists with probability one
(with almost surely continuous trajectories).
Exercise 1.2.2
Prove that the Gaussian white noise is a Gaussian random function.

3. Lognormal- and χ2-functions:
The random function X = {X(t), t ∈ T} is called lognormal, if X(t) = eY (t), where Y =
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{Y (t), t ∈ T} is a Gaussian random function. X is called χ2-function, if X(t) = ‖Y (t)‖2,
where Y = {Y (t), t ∈ T} is a Gaussian random function with values in Rn, for which
Y (t) ∼ N (0, I), t ∈ T ; here I is the (n × n)-unit matrix. Then it holds that X(t) ∼ χ2

n,
t ∈ T .

4. Cosine wave:
X = {X(t), t ∈ R} is defined by X(t) =

√
2 cos(2πY + tZ), where Y ∼ U([0, 1]) and Z is

a random variable, which is independent of Y .
Exercise 1.2.3
Let X1, X2, . . . be i.i.d. cosine waves. Determine the weak limit of the finite-dimensional
distributions of the random function

{
1√
n

∑n
k=1Xk(t), t ∈ R

}
for n→∞.

5. Poisson process:
Let {Yn}n∈N be a sequence of i.i.d. random variables Yn ∼ Exp(λ), λ > 0. The stochastic
process X = {X(t), t ≥ 0} defined as X(t) = max {n ∈ N :

∑n
k=1 Yk ≤ t} is called Poisson

process with intensity λ > 0. X(t) counts the number of certain events until the time
t > 0, where the typical interval between two of these events is Exp(λ)-distributed. These
events can be claim arrivals of an insurance portfolio, the records of elementary particles
in the Geiger counter, etc. Then X(t) represents the number of claims or particles within
the time interval [0, t].

1.3 Regularity properties of trajectories

The theorem of Kolmogorov provides the existence of the distribution of a random function
with given finite-dimensional distributions. However, it does not provide a statement about
the properties of the paths of X. This is understandable since all random objects are defined
in the almost surely sense (a.s.) in probability theory, with the exception of a set A ⊂ Ω with
P(A) = 0.

Example 1.3.1
Let (Ω,A,P) = ([0, 1] ,B([0, 1]), ν1), where ν1 is the Lebesgue measure on [0, 1]. We define
X = {X(t), t ∈ [0, 1]} by X(t) ≡ 0, t ∈ [0, 1] and Y = {Y (t), t ∈ [0, 1]} by

Y (t) =
{

1, t = U,
0, otherwise,

where U(ω) = ω, ω ∈ [0, 1], is a U([0, 1])-distributed random variable defined on (Ω,A,P). Since
P(Y (t) = 0) = 1, t ∈ T because of P(U = t) = 0, t ∈ T , it is clear that X d= Y . Nevertheless,
X and Y have different path properties since X has continuous and Y has discontinuous
trajectories, and P(X(t) = 0, ∀t ∈ T ) = 1, where P(Y (t) = 0, ∀t ∈ T ) = 0.

It may well be that the „set of exceptions“ A (see above) is very different for X(t) for every
t ∈ T . Therefore, we require that all X(t), t ∈ T , are defined simultaneously on a subset Ω0 ⊆ Ω
with P(Ω0) = 1. The so defined random function X̃ : Ω0 × T → R is called modification of
X : Ω×T → R. X and X̃ differ on a set Ω/Ω0 with probability zero. Therefore we indicate later
when stating that „random function X possesses a property C“ that it exists a modification
of X with this property C. Let us hold it in the following definition:
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Definition 1.3.1
The random functions X = {X(t), t ∈ T} and Y = {Y (t), t ∈ T} defined on the same prob-
ability space (Ω,A,P) associated with (St,Bt)t∈T have equivalent trajectories (or are called
stochastically indistinguishable) if

A = {ω ∈ Ω : X(ω, t) 6= Y (ω, t) for a t ∈ T} ∈ A

and P(A) = 0.

This term implies that X and Y have paths, which coincide with probability one.

Definition 1.3.2
The random functions X = {X(t), t ∈ T} and Y = {Y (t), t ∈ T} defined on the same proba-
bility space (Ω,A,P) are called (stochastically) equivalent, if

Bt = {ω ∈ Ω : X(ω, t) 6= Y (ω, t)} ∈ A, t ∈ T,

and P(Bt) = 0, t ∈ T . We can also say that X and Y are versions or modifications of one
and the same random function. If the space (Ω,A,P) is complete (i.e. the implication of
A ∈ A : P(A) = 0 is for all B ⊂ A: B ∈ A (and then P(B) = 0)), then the indistinguishable
processes are stochastically equivalent, but vice versa is not always true (it is true for so-called
separable processes. This is the case if T is countable).

Exercise 1.3.1
Prove that the random functions X and Y in Example 1.3.1 are stochastically equivalent.

Definition 1.3.3
The random functions X = {X(t), t ∈ T} and Y = {Y (t), t ∈ T} (not necessarily defined on
the same probability space) are called equivalent in distribution, if PX = PY on (St,Bt)t∈T .
Notation: X d= Y .

According to Theorem 1.1.2 it is sufficient for the equivalence in distribution of X and Y that
they possess the same finite-dimensional distributions. It is clear that stochastic equivalence
implies equivalence in distribution, but not the other way around.
Now, let T and S be Banach spaces with norms | · |T and | · |S , respectively. The random

function X = {X(t), t ∈ T} is now defined on (Ω,A,P) with values in (S,B).

Definition 1.3.4
The random function X = {X(t), t ∈ T} is called

a) stochastically continuous on T , if X(s) P−−→
s→t

X(t), for arbitrary t ∈ T , i.e.

P(|X(s)−X(t)|S > ε) −−→
s→t

0, for all ε > 0.

b) Lp-continuous on T , p ≥ 1, if X(s) Lp−−→
s→t

X(t), t ∈ T , i.e. E|X(s) −X(t)|pS −−→s→t 0. For
p = 2 the specific notation „continuity in the square mean “is used.

c) a.s. continuous on T , if X(s) f.s.−−→
s→t

X(t), t ∈ T , i.e., P(X(s) −−→
s→t

X(t)) = 1, t ∈ T .

d) continuous, if all trajectories of X are continuous functions.
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In applications one is interested in the cases c) and d), although the weakest form of continuity
is the stochastic continuity.

Lp-continuity =⇒ stochastic continuity ⇐= a.s. continuity ⇐= continuity of all paths

Why are cases c) and d) important? Let us consider an example.
Example 1.3.2
Let T = [0, 1] and (Ω,A,P) be the canonical probability space with Ω = R[0,1], i.e. Ω =∏
t∈[0,1] R. Let X = {X(t), t ∈ [0, 1]} be a stochastic process on (Ω,A,P). Not all events are

elements of A, like e.g. A = {ω ∈ Ω : X(ω, t) = 0 for all t ∈ [0, 1]} = ∩t∈[0,1] {X(ω, t) = 0},
since this is an intersection of measurable events from A in uncountable number. If how-
ever X is continuous, then all of its paths are continuous functions and one can write A =
∩t∈D {X(ω, t) = 0}, where D is a dense countable subset of [0, 1], e.g., D = Q ∩ [0, 1]. Then it
holds that A ∈ A.
However, in many applications (like e.g. in financial mathematics) it is not realistic to

consider stochastic processes with continuous paths as models for real phenomena. Therefore,
a bigger class of possible trajectories of X is allowed: the so-called càdlàg-class (càdlàg =
continue à droite, limitée à gauche (fr.)).
Definition 1.3.5
A stochastic process X = {X(t), t ∈ R} is called càdlàg, if all of its trajectories are right-side
continuous functions, which have left-side limits.
Now, we would like to consider the properties of the notion of continuity (introduced above)

in more detail. One can note e.g. that the stochastic continuity is a property of the two-
dimensional distribution Ps,t of X. This is shown by the following lemma.
Lemma 1.3.1
Let X = {X(t), t ∈ T} be a random function associated with (R,B(R)), where T is a Banach
space. The following statements are equivalent:

a) X(s) P−−−→
s→t0

Y ,

b) Ps,t
d−−−−→

s,t→t0
P(Y,Y ),

where t0 ∈ T and Y is a random variable. For the stochastic continuity of X, one should choose
t0 ∈ T arbitrarily and Y = X(t0).

Proof a)⇒ b)
X(s) P−−−→

s→t0
Y means (X(s), X(t))> P−−−−→

s,t→t0
(Y, Y )>.

P(|(X(s), X(t))− (Y, Y )|2︸ ︷︷ ︸
(|X(s)−Y |2+|X(t)−Y |2)1/2

> ε) 6 P(|X(s)− Y | > ε/
√

2) + P(|X(t)− Y | > ε/
√

2) −−−−→
s,t→t0

0

This results in Ps,t
d→ P(Y,Y ), since

P→-convergence is stronger than d→-convergence.
b)⇒ a)

For arbitrary ε > 0 we consider a continuous function gε : R→ [0, 1] with gε(0) = 0, gε(x) = 1,
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x /∈ Bε(0). It holds for all s, t ∈ T that

Egε(|X(s)−X(t)|) = P(|X(s)−X(t)| > ε) + E(gε(|X(s)−X(t)|)1(|X(s)−X(t)| ≤ ε)),

hence

P(|X(s)−X(t)| > ε) ≤ Egε(|X(s)−X(t)|) =
∫
R

∫
R
gε(|x− y|)Ps,t(d(x, y))

−−−→
s→t0
t→t0

∫
R

∫
R
gε(|x− y|)P(Y,Y )(d(x, y)) = 0,

since P(Y,Y ) is concentrated on
{
(x, y) ∈ R2 : x = y

}
and gε(0) = 0. Thus {X(s)}s→t0 is a

fundamental sequence (in probability), therefore X(s) P−−−→
s→t0

Y.

It may be that X is stochastically continuous, although all of the paths of X have jumps,
i.e. X cannot possess any a.s. continuous modification. The descriptive explanation for that
is that such X may have a jump at concrete t ∈ T with probability zero. Therefore jumps of
the paths of X always occur at different locations.
Exercise 1.3.2
Prove that the Poisson process is stochastically continuous, although it does not possess any
a.s. continuous modification.
Exercise 1.3.3
Let T be compact. Prove that if X is stochastically continuous on T , then it also is uniformly
stochastically continuous, i.e., for all ε, η > 0 ∃δ > 0, such that for all s, t ∈ T with |s− t|T < δ
it holds that P(|X(s)−X(t)|S > ε) < η.

Now let S = R, EX2(t) < ∞, t ∈ T , EX(t) = 0, t ∈ T . Let C(s, t) = E [X(s)X(t)] be the
covariance function of X.
Lemma 1.3.2
For all t0 ∈ T and a random variable Y with EY 2 <∞ the following assertions are equivalent:

a) X(s) L2
−−−→
s→t0

Y

b) C(s, t) −−−−→
s,t→t0

EY 2

Proof a)⇒ b)
The assertion results from the Cauchy-Schwarz inequality:

|C(s, t)− EY 2| = |E(X(s)X(t))− EY 2| = |E [(X(s)− Y + Y )(X(t)− Y + Y )]− EY 2|
≤ E|(X(s)− Y )(X(t)− Y )|+ E|(X(s)− Y )Y |+ E|(X(t)− Y )Y |

≤
√

E(X(s)− Y )2 E(X(t)− Y )2︸ ︷︷ ︸
||X(s)−Y ||2

L2 ·||X(t)−Y ||2
L2

+
√

EY 2E(X(s)− Y )2︸ ︷︷ ︸
||X(s)−Y ||2

L2

+
√

EY 2E(X(t)− Y )2︸ ︷︷ ︸
||X(t)−Y ||2

L2

−−−−→
s,t→t0

0

with assumption a).
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b)⇒ a)

E(X(s)−X(t))2 = E(X(s))2 − 2E[X(s)X(t)] + E(X(t))2

= C(s, s) + C(t, t)− 2C(s, t) −−−−→
s,t→t0

2EY 2 − 2EY 2 = 0.

Thus, {X(s), s→ t0} is a fundamental sequence in the L2-sense, and we get X(s) L2
−−−→
s→t0

Y .

Corollary 1.3.1
The centered random function X, which satisfies the conditions of Lemma 1.3.2, is continuous
on T in the mean-square sense if and only if its covariance function C : T 2 → R is continuous
on the diagonal diag T 2 =

{
(s, t) ∈ T 2 : s = t

}
, i.e., lims,t→t0 C(s, t) = C(t0, t0) = VarX(t0) for

all t0 ∈ T.

Proof Choose Y = X(t0) in Lemma 1.3.2.

Remark 1.3.1
If X is not centered, then the continuity of µ(t) = EX(t), t ∈ T together with the continuity of
C on diag T 2 is required to ensure the L2-continuity of X on T .

A random function X, which is continuous in the mean-square sense, may still have discon-
tinuous trajectories. In most of the cases which are practically relevant, X however has an a.s.
continuous modification. Later on this will become more precise by stating a corresponding
theorem.
Exercise 1.3.4
Give an example of a stochastic process with a.s. discontinuous trajectories, which is L2-
continuous.
Now we consider the property of (a.s.) continuity in more detail. As mentioned before, we

can merely talk about a continuous modification (or a version) of a process. The possibility to
possess such a version also depends on the properties of the two-dimensional distributions of
the process. This is stated in the following theorem (originally proven by A. Kolmogorov).
Theorem 1.3.1
Let X = {X(t), t ∈ [a, b]}, −∞ < a < b < +∞ be a real-valued stochastic process. X has a
continuous version if there exist constants α, c, δ > 0 such that

E|X(t+ h)−X(t)|α < c|h|1+δ, t ∈ (a, b), (1.3.1)

for sufficiently small |h|. This modification is a.s. Hölder-continuous with Hölder exponent
γ ∈ (0, δ/α).

Proof See e.g. [11], Theorem 2.23.

Now we turn to processes with càdlàg-trajectories. Let (Ω,A,P) be a complete probability
space.
Theorem 1.3.2
Let X = {X(t), t ≥ 0} be a real-valued stochastic process and D be a countable dense subset
of [0,∞). If

a) X is stochastically right-hand side continuous, i.e., X(t+ h) P−−−−→
h→+0

X(t), t ∈ [0,+∞),
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b) the trajectories of X at every t ∈ D have finite right- and left-hand side limits, i.e.,
| limh→±0X(t+ h)| <∞, t ∈ D a.s.,

then X has a version with a.s. càdlàg-paths.
Without proof.

Lemma 1.3.3
Let X = {X(t), t ≥ 0} and Y = {Y (t), t ≥ 0} be two versions of a random function, both
defined on the probability space (Ω,A,P), with property that X and Y have a.s. right-hand
side continuous trajectories. Then X and Y are indistinguishable.

Proof Let ΩX ,ΩY be „sets of exception“, for which the trajectories of X and Y , respec-
tively are not right-sided continuous. It holds that P(ΩX) = P(ΩY ) = 0. Consider At =
{ω ∈ Ω : X(ω, t) 6= Y (ω, t)}, t ∈ [0,+∞) and A = ∪t∈Q+At, where Q+ = Q∩ [0,+∞). Since X
and Y are stochastically equivalent, it holds that P(A) = 0 and therefore

P (Ã) ≤ P(A) + P(ΩX) + P(ΩY ) = 0,

where Ã = A∪ΩX ∪ΩY . Therefore X(ω, t) = Y (ω, t) holds for t ∈ Q+ and ω ∈ Ω\ Ã. Now, we
prove this for all t ≥ 0. For arbitrary t ≥ 0 a sequence {tn} ⊂ Q+ exists, such that tn ↓ t. Since
X(ω, tn) = Y (ω, tn) for all n ∈ N and ω ∈ Ω \ Ã, it holds that X(ω, t) = limn→∞X(ω, tn) =
limn→∞ Y (ω, tn) = Y (ω, t) for t ≥ 0 and ω ∈ Ω \ Ã. Therefore X and Y are indistinguishable.

Corollary 1.3.2
If càdlàg-processes X = {X(t), t ≥ 0} and Y = {Y (t), t ≥ 0} are versions of the same random
function then they are indistinguishable.

1.4 Differentiability of trajectories
Let T be a linear normed space.
Definition 1.4.1
A real-valued random function X = {X(t), t ∈ T} is differentiable on T in direction h ∈ T
stochastically, in the Lp-sense, p ≥ 1, or a.s., if

lim
l→0

X(t+ hl)−X(t)
l

= X
′
h(t), t ∈ T

exists in the corresponding sense, namely stochastically, in the Lp-space or a.s..

The Lemmas 1.3.1 - 1.3.2 show that the stochastic differentiability is a property that is deter-
mined by three-dimensional distributions ofX (because the common distribution of X(t+hl)−X(t)

l

and X(t+hl′ )−X(t)
l′

should converge weakly), whereas the differentiability in the mean-square
sense is determined by the smoothness of the covariance function C(s, t).
Exercise 1.4.1
Show that

1. the Wiener process is not stochastically differentiable on [0,∞).
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2. the Poisson process is stochastically differentiable on [0,∞), however not in the Lp-sense,
p > 1.

Lemma 1.4.1
A centered random function X = {X(t), t ∈ T} (i.e., EX(t) ≡ 0, t ∈ T ) with E[X2(t)] <∞, t ∈
T is L2-differentiable in t ∈ T in direction h ∈ T if its covariance function C is differentiable
twice in (t, t) in direction h, i.e., if ∃ C ′′hh(t, t) = ∂2C(s,t)

∂sh∂th

∣∣∣
s=t

. X
′
h(t) is L2-continuous in t ∈ T

if C ′′hh(s, t) = ∂2C(s,t)
∂sh∂th

is continuous in s = t. Moreover, C ′′hh(s, t) is the covariance function of
X
′
h = {X ′h(t), t ∈ T}.

Proof According to Lemma 1.3.2 it is enough to show that

I = lim
l,l′→0

E
(
X(t+ lh)−X(t)

l
· X(s+ l

′
h)−X(s)
l′

)

exists for s = t. Indeed we get

I = 1
ll′
(
C(t+ lh, s+ l

′
h)− C(t+ lh, s)− C(t, s+ l

′
h) + C(t, s)

)
= 1

l

(
C(t+ lh, s+ l

′
h)− C(t+ lh, s)
l′

− C(t, s+ l
′
h)− C(t, s)
l′

)
−−−−→
l,l′→0

C
′′
hh (s, t) .

All other statements of the lemma result from this relation.

Remark 1.4.1
The properties of the Lp-differentiability, p ≥ 1 and a.s. differentiability of random functions
are disjoint in the following sense: there are stochastic processes that have L2-differentiable
paths, although they are a.s. discontinuous, and vice versa, processes with a.s. differentiable
paths are not always L1-differentiable, since e.g. the first derivative of their covariance function
is not continuous.

1.5 Moments and covariance
Let X = {X(t), t ∈ T} be a random function that is real-valued, and let T be an arbitrary
index space.
Definition 1.5.1
The mixed moment µ(j1,...,jn)(t1, . . . , tn) of X of order (j1, . . . , jn) ∈ Nn, t1, . . . , tn ∈ T is given
by µ(j1,...,jn)(t1, . . . , tn) = E

[
Xj1(t1) · . . . ·Xjn(tn)

]
, where it is required that the expected value

exists and is finite. Then it is sufficient to assume that E|X(t)|j < ∞ for all t ∈ T and
j = j1 + . . .+ jn.
Important special cases:

1. µ (t) = µ(1)(t) = EX(t), t ∈ T is the mean value function of X.

2. µ(1,1) (s, t) = E [X(s)X(t)] = C(s, t) is the (non-centered) covariance function of X.
Whereas the centered covariance function is: K(s, t) = cov((X(s), X(t)) = µ(1,1)(s, t) −
µ(s)µ(t), s, t ∈ T .
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Exercise 1.5.1
Show that the centered covariance function of a real-valued random function X

1. is symmetric, i.e., K(s, t) = K(t, s), s, t ∈ T .

2. is positive semidefinite, i.e., for n ∈ N, t1, . . . , tn ∈ T , z1, . . . , zn ∈ R it holds that
n∑

i,j=1
K(ti, tj)zizj ≥ 0.

3. satisfies K(t, t) = VarX(t), t ∈ T .

Properties 1)-2) also hold for the non-centered covariance function C(s, t).
The mean value function µ(t) shows a (non-random) trend. If µ(t) is known, the random

function X can be centered by considering a random function Y = {Y (t), t ∈ T} with Y (t) =
X(t)− µ(t), t ∈ T .
The covariance function K(s, t) (C(s, t), respectively) contains information about the depen-

dence structure of X. Sometimes the correlation function R(s, t) = K(s,t)√
K(s,s)K(t,t)

for all s, t ∈ T :
K(s, s) = VarX(s) > 0, K(t, t) = VarX(t) > 0 is used instead of K and C, respectively. Be-
cause of the Cauchy-Schwarz inequality it holds that |R(s, t)| ≤ 1, s, t ∈ T . The set of all mixed
moments in general does not (uniquely) determine the distribution of a random function.
Exercise 1.5.2
Give an example of different random functions X = {X(t), t ∈ T} and Y = {Y (t), t ∈ T}, for
which it holds that EX(t) = EY (t), t ∈ T and E(X(s)X(t)) = E(Y (s)Y (t)), s, t ∈ T .
Exercise 1.5.3
Let µ : T → R be a measurable function andK : T×T → R be a positive semidefinite symmetric
function. Prove that there exists a random function X = {X(t), t ∈ T} with EX(t) = µ(t),
cov(X(s), X(t)) = K(s, t), s, t ∈ T .
Let now X = {X(t), t ∈ T} be a real-valued random function with E |X(t)|k < ∞, t ∈ T ,

for a k ∈ N.
Definition 1.5.2
The mean increment of order k of X is given by γk(s, t) = E(X(s)−X(t))k, s, t ∈ T .

Special attention is paid to the function γ(s, t) = 1
2γ2(s, t) = 1

2E(X(s) − X(t))2, s, t ∈ T ,
which is called variogram of X. In geostatistics the variogram is often used instead of the
covariance function. Sometimes we discard the condition EX2(t) < ∞, t ∈ T , instead we
assume that γ(s, t) <∞ for all s, t ∈ T .
Exercise 1.5.4
Prove that there exist random functions without finite second moments with γ(s, t) < ∞,
s, t ∈ T .
Exercise 1.5.5
Show that for a random functionX = {X(t), t ∈ T} with mean value function µ and covariance
function K it holds that:

γ(s, t) = K(s, s) +K(t, t)
2 −K(s, t) + 1

2(µ(s)− µ(t))2, s, t ∈ T.
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If the random function X is complex-valued, i.e., X : Ω× T → C, with E |X(t)|2 <∞, t ∈ T ,
then the covariance function of X is introduced as K(s, t) = E(X(s)− EX(s))(X(t)− EX(t)),
s, t ∈ T , where z is the complex conjugate of z ∈ C. Then it holds that K(s, t) = K(t, s),
s, t ∈ T , and K is positive semidefinite, i.e, for all n ∈ N, t1, . . . , tn ∈ T , z1, . . . , zn ∈ C it holds
that

∑n
i,j=1K(ti, tj)zizj ≥ 0.

1.6 Stationarity and Independence
Let T be a subset of the linear vector space with operations +, − over space R.
Definition 1.6.1
The random function X = {X(t), t ∈ T} is called stationary (strict sense stationary) if for all
n ∈ N, h, t1, . . . , tn ∈ T with t1 + h, . . . , tn + h ∈ T it holds that:

P(X(t1),...,X(tn)) = P(X(t1+h),...,X(tn+h)),

i.e., all finite-dimensional distributions of X are invariant with respect to translations in T .
Definition 1.6.2
A (complex-valued) random function X = {X(t), t ∈ T} is called second-order stationary (or
wide sense stationary) if E|X(t)|2 < ∞, t ∈ T , and µ(t) ≡ EX(t) ≡ µ, t ∈ T , K(s, t) =
cov(X(s), X(t)) = K(s+ h, t+ h) for all h, s, t ∈ T : s+ h, t+ h ∈ T .
If X is second-order stationary, it is convenient to introduce a function K(t) := K(0, t), t ∈ T

whereby 0 ∈ T .
Strict sense stationarity and wide sense stationarity do not result from each other. However

it is clear that if a complex-valued random function is strict sense stationary and possesses
finite second-order moments, then the function is also second-order stationary.
Definition 1.6.3
A real-valued random function X = {X(t), t ∈ T} is intrinsic second-order stationary if
γk(s, t), s, t ∈ T exist for k ≤ 2, and for all s, t, h ∈ T , s+h, t+h ∈ T it holds that γ1(s, t) = 0,
γ2(s, t) = γ2(s+ h, t+ h).

For real-valued random functions, intrinsic second-order stationarity is more general than
second-order stationarity since the existence of E|X(t)|2, t ∈ T is not required.

The analogue of the stationarity of increments of X also exists in strict sense.
Definition 1.6.4
Let X = {X(t), t ∈ T} be a real-valued stochastic process, T ⊂ R. It is said that X

1. possesses stationary increments if for all n ∈ N, h, t0, t1, t2, . . . , tn ∈ T , with
t0 < t1 < t2 < . . . < tn, ti + h ∈ T , i = 0, . . . , n the distribution of
(X(t1 + h)−X(t0 + h), . . . , X(tn + h)−X(tn−1 + h))>
does not depend on h.

2. possesses independent increments if for all n ∈ N, t0, t1, . . . , tn ∈ T with t0 < t1 < . . . < tn
the random variables X(t0), X(t1)−X(t0), . . . , X(tn)−X(tn−1) are pairwise independent.

Let (S1,B1) and (S2,B2) be measurable spaces. In general it is said that two random elements
X : Ω → S1 and Y : Ω → S2 are independent on the same probability space (Ω,A,P) if
P(X ∈ A1, Y ∈ A2) = P(X ∈ A1)P(Y ∈ A2) for all A1 ∈ B1, A2 ∈ B2.
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This definition can be applied to the independence of random functions X and Y with phase
space (ST ,BT ), since they can be considered as random elements with S1 = S2 = ST , B1 = B2 =
BT (cf. Lemma 1.1.1). The same holds for the independence of a random element (or a random
function) X and of a sub-σ-algebra G ⊆ A: this is the case if P({X ∈ A}∩G) = P(X ∈ A)P(G),
for all A ∈ B1, G ∈ G (or A ∈ BT , G ∈ G).

1.7 Processes with independent increments

In this section we concentrate on the properties and existence of processes with independent
increments.
Let {ϕs,t, s, t ≥ 0} be a family of characteristic functions of probability measuresQs,t, s, t ≥ 0

on B(R), i.e., for z ∈ R, s, t ≥ 0 it holds that ϕs,t(z) =
∫
R e

izxQs,t(dx).

Theorem 1.7.1
There exists a stochastic process X = {X(t), t ≥ 0} with independent increments with the
property that for all s, t ≥ 0 the characteristic function of X(t) −X(s) is equal to ϕs,t if and
only if

ϕs,t = ϕs,uϕu,t (1.7.1)

for all 0 ≤ s < u < t <∞. Thereby the distribution of X(0) can be chosen arbitrarily.

Proof The necessity of the condition (1.7.1) is clear since for all s, u, t ∈ (0,∞) : s < u < t
it holds X(t) − X(s) = X(t)−X(u)︸ ︷︷ ︸

Y1

+X(u)−X(s)︸ ︷︷ ︸
Y2

, and X(t) − X(u) and X(u) − X(s) are

independent. Then it holds ϕs,t = ϕY1+Y2 = ϕY1ϕY2 = ϕs,uϕu,t.
Now we prove the sufficiency.
If the existence of a process X with independent increments and property ϕX(t)−X(s) = ϕs,t
on a probability space (Ω,A,P) had already been proven, one could define the characteristic
functions of its finite-dimensional distributions with the help of {ϕs,t} as follows.
Let n ∈ N, 0 = t0 < t1 < . . . < tn <∞ and Y = (X(t0), X(t1)−X(t0), . . . , X(tn)−X(tn−1))>.
The independence of increments results in

ϕY (z0, z1, . . . , zn︸ ︷︷ ︸
z

) = Eei〈z,Y 〉 = ϕX(t0)(z0)ϕt0,t1(z1) . . . ϕtn−1,tn(zn), z ∈ Rn+1,

where the distribution of X(t0) is an arbitrary probability measure Q0 on B(R). For Xt0,...,tn =
(X(t0), X(t1), . . . , X(tn))> however it holds that Xt0,...,tn = AY , where

A =


1 0 0 . . . 0
1 1 0 . . . 0
1 1 1 . . . 0
. . . . . . . . . . . . . . .
1 1 1 . . . 1

 .

Then ϕXt0,...,tn (z) = ϕAY (z) = Eei〈z,AY 〉 = Eei〈A>z,Y 〉 = ϕY (A>z) holds. Therefore the distri-
bution ofXt0,...,tn possesses the characteristic function ϕXt0,...,tn (z) = ϕQ0(l0)ϕt0,t1(l1) . . . ϕtn−1,tn(ln),
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where l = (l0, l1, . . . , ln)> = A>z, thus
l0 = z0 + . . .+ zn
l1 = z1 + . . .+ zn

...
ln = zn

Thereby ϕX(t0) = ϕQ0 and ϕXt1,...,tn (z1, . . . , zn) = ϕXt0,...,tn (0, z1, . . . , zn) holds for all zi ∈ R.
Now we prove the existence of such a process X.
For that we construct the family of characteristic functions

{ϕt0 , ϕt0,t1,...,tn , ϕt1,...,tn , 0 = t0 < t1 < . . . < tn <∞, n ∈ N}

from ϕQ0 and {ϕs,t, 0 ≤ s < t} as above, thus

ϕt0 = ϕQ0 , ϕt1,...,tn(z1, . . . , zn) = ϕt0,t1,...,tn(0, z1, . . . , zn), zi ∈ R,

ϕt0,...,tn(z) = ϕt0(z0 + . . .+ zn)ϕt0,t1(z1 + . . .+ zn) . . . ϕtn−1,tn(zn).

Now we have to check whether the corresponding probability measures of these characteristic
functions fulfill the conditions of Theorem 1.1.2. We will do that in equivalent form since by
Exercise 1.8.1 the conditions of symmetry and consistency in Theorem 1.1.2 are equivalent to:

a) ϕti0 ,...,tin (zi0 , . . . , zin) = ϕt0,...,tn(z0, . . . , zn) for an arbitrary permutation (0, 1, . . . , n) 7→
(i0, i1, . . . , in),

b) ϕt0,...,tm−1,tm+1,...,tn(z0, . . . , zm−1, zm+1, . . . , zn) = ϕt0,...,tn(z0, . . . , 0, . . . , zn), for all
z0, . . . , zn ∈ R, m ∈ {1, . . . , n}.

Condition a) is obvious. Condition b) holds since

ϕtm−1,tm(0 + zm+1 + . . .+ zn)ϕtm,tm+1(zm+1 + . . .+ zn) by (1.7.1)= ϕtm−1,tm+1(zm+1 + · · ·+ zn)

for all m ∈ {1, . . . , n}. Thus, the existence of X is proven.

Example 1.7.1 1. If T = N0 = N ∪ {0}, then X = {X(t), t ∈ N0} has independent incre-
ments if and only if X(n) d=

∑n
i=0 Yi, where {Yi} are independent random variables and

Yn
d= X(n) −X(n − 1), n ∈ N. Such a process X is called random walk. It may also be

defined for Yi with values in Rm.

2. The Poisson process with intensity λ has independent increments.

3. The Wiener process possesses independent increments.
Exercise 1.7.1
Prove that!
Exercise 1.7.2
Let X = {X(t), t ≥ 0} be a process with independent increments and g : [0,∞) → R an
arbitrary (deterministic) function. Show that the process Y = {Y (t), t ≥ 0} with Y (t) =
X(t) + g(t), t ≥ 0, also possesses independent increments.
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1.8 Additional exercises
Exercise 1.8.1
Prove the following assertion: The family of probability measures Pt1,...,tn on (Rn,B(Rn)),
n ≥ 1, t = (t1, . . . , tn)> ∈ Tn fulfills the conditions of the theorem of Kolmogorov if and only
if for n ≥ 2 and for all s = (s1, . . . , sn)> ∈ Rn the following conditions are fulfilled:

a) ϕPt1,...,tn ((s1, . . . , sn)>) = ϕPtπ(1),...,tπ(n)
((sπ(1), . . . , sπ(n))>) for all π ∈ Sn.

b) ϕPt1,...,tn−1
((s1, . . . , sn−1)>) = ϕPt1,...,tn ((s1, . . . , sn−1, 0)>).

Remark: ϕ(·) denotes the characteristic function of the corresponding measure. Sn denotes the
group of all permutations π : {1, . . . , n} → {1, . . . , n}.
Exercise 1.8.2
Show the existence of a random function whose finite-dimensional distributions are multivariate-
normally distributed and explicitly give the measurable spaces (Et1,...,tn , Et1,...,tn).
Exercise 1.8.3
Give an example of a family of probability measures Pt1,...,tn , which do not fulfill the conditions
of the theorem of Kolmogorov.
Exercise 1.8.4
Let X = {X(t), t ∈ T} and Y = {Y (t), t ∈ T} be two stochastic processes which are defined on
the same complete probability space (Ω,F ,P) and which take values in the measurable space
(S,B).

a) Prove that: X and Y are stochastically equivalent =⇒ PX = PY .

b) Give an example of two processes X and Y for which holds: PX = PY , but X and Y are
not stochastically equivalent.

c) Prove that: X and Y are stochastically indistinguishable =⇒ X and Y are stochastically
equivalent.

d) Prove in the case of countability of T : X and Y are stochastically equivalent =⇒ X and
Y are stochastically indistinguishable.

e) Give in the case of countable T an example of two processes X and Y for which holds:
X and Y are stochastically equivalent but not stochastically indistinguishable.

Exercise 1.8.5
Let W = {W (t), t ∈ R} be a Wiener Process. Which of the following processes are Wiener
processes as well?

a) W1 = {W1(t) :=
√
tW (1), t ∈ R},

b) W2 = {W2(t) := W (2t)−W (t), t ∈ R}.

Exercise 1.8.6
Let a stochastic process X = {X(t), t ∈ [0, 1]} be given which consists of independent and
identically distributed random variables with density f(x), x ∈ R. Show that such a process
can not be continuous in t ∈ [0, 1].
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Exercise 1.8.7
Let X = {X(t), t ∈ [a, b]} be a real-valued stochastic process in Theorem 1.3.1 (criterion of
Kolmogorov). Show that:

a) If you fix the variable δ = 0 in condition (1.3.1), then in general the condition is not
sufficient for the existence of a continuous modification. Hint: Consider the Poisson
process.

b) The Wiener process W = {W (t), t ∈ [0,∞)} possesses a continuous modification. Hint:
Consider the case α = 4.

Exercise 1.8.8
Give an example of a stochastic process X = {X(t), t ∈ T} whose paths are simultaneously
L2-differentiable but not almost surely differentiable.
Exercise 1.8.9
Give an example of a stochastic process X = {X(t), t ∈ T} whose paths are simultaneously
almost surely differentiable but not L1-differentiable,.
Exercise 1.8.10
Prove that a (real-valued) stochastic process X = {X(t), t ∈ [0,∞)} with independent incre-
ments already has stationary increments if the distribution of the random variable X(t+ h)−
X(h) is independent of h.



2 Counting processes

In this chapter we consider several examples of stochastic processes which model the counting
of events and thus possess piecewise constant paths.
Let (Ω,A,P) be a probability space and {Sn}n∈N a non-decreasing sequence of a.s. non-

negative random variables, i.e. 0 ≤ S1 ≤ S2 ≤ . . . ≤ Sn ≤ . . ..
Definition 2.0.1
The stochastic process N = {N(t), t ≥ 0} is called counting process if

N(t) =
∞∑
n=1

1(Sn ≤ t),

where 1(A) is the indicator function of the event A ∈ A.
N(t) counts the events which occur at Sn until time t. Sn e.g. may be the time of occurrence

of

1. the n-th elementary particle in the Geiger counter, or

2. a damage claim in the non-life insurance, or

3. a data package at a server within a computer network, etc.

A special case of the counting processes are the so-called renewal processes.

2.1 Renewal processes
Definition 2.1.1
Let {Tn}n∈N be a sequence of i.i.d. non-negative random variables with P(T1 > 0) > 0. A
counting process N = {N(t), t ≥ 0} with N(0) = 0 a.s., Sn =

∑n
k=1 Tk, n ∈ N, is called

renewal process. Thereby Sn is called the time of the n-th renewal, n ∈ N.
The name „renewal process“ is given by the following interpretation. The „interarrival times“

Tn are interpreted as the lifetime of a technical spare part or mechanism within a system, thus
Sn is the time of the n-th break down of the system. The defective part is immediately replaced
by a new part (comparable with the exchange of a light bulb). Thus, N(t) is the number of
repairs (the so-called „renewals“) of the system until time t.
Remark 2.1.1 1. It is N(t) =∞ if Sn ≤ t for all n ∈ N.

2. Often it is assumed that only T2, T3, . . . are identically distributed with ETn < ∞. The
distribution of T1 is freely selectable. Such a process N = {N(t), t ≥ 0} is called delayed
renewal process (with delay T1).

3. Sometimes the requirement Tn ≥ 0 is omitted.

20
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Fig. 2.1: Construction and trajectories of a random process

4. It is clear that {Sn}n∈N0 with S0 = 0 a.s., Sn =
∑n
k=1 Tk, n ∈ N is a random walk.

5. If one requires that the n-th exchange of a defective part in the system takes a time T ′n,
then by T̃n = Tn+T ′n, n ∈ N a different renewal process is given. Its stochastic properties
do not differ from the process which is given in Definition 2.1.1.

In the following we assume that µ = ETn ∈ (0,∞), n ∈ N.

Theorem 2.1.1 (Individual ergodic theorem):
Let N = {N(t), t ≥ 0} be a renewal process. Then it holds that:

lim
t→∞

N(t)
t

= 1
µ

a.s.

Proof For all t ≥ 0 and n ∈ N it holds that {N(t) = n} = {Sn ≤ t < Sn+1}, therefore
SN(t) ≤ t < SN(t)+1 and

SN(t)
N(t) ≤

t

N(t) ≤
SN(t)+1
N(t) + 1 ·

N(t) + 1
N(t) .

If we can show that SN(t)
N(t)

a.s−−−→
t→∞

µ and N(t) a.s.−−−→
t→∞

∞, then t
N(t)

a.s−−−→
t→∞

µ holds and therefore
the assertion of the theorem.
According to the strong law of large numbers of Kolmogorov (cf. lecture notes „Wahrschein-
lichkeitsrechnung“ (WR), Theorem 7.1.4) it holds that Snn

a.s.−−−→
n→∞

µ, thus Sn
a.s.−−−→
n→∞

∞ and there-
fore P(N(t) <∞) = 1 since P(N(t) =∞) = P( Sn ≤ t,∀n) = 1−P(∃n : ∀m ∈ N0 Sn+m > t)︸ ︷︷ ︸

=1, if Sn
a.s−−−→
n→∞

∞

=

1− 1 = 0. Then N(t), t ≥ 0, is a real random variable.
We show that N(t) a.s.−−−→

t→∞
∞. All trajectories of N(t) are monotonously non-decreasing in
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t ≥ 0, thus ∃ limt→∞N(ω, t) for all ω ∈ Ω. Moreover it holds that

P( lim
t→∞

N(t) <∞) = lim
n→∞

P( lim
t→∞

N(t) < n) (∗)= lim
n→∞

lim
t→∞

P(N(t) < n)

= lim
n→∞

lim
t→∞

P(Sn > t) = lim
n→∞

lim
t→∞

P(
n∑
k=1

Tk > t)

≤ lim
n→∞

lim
t→∞

n∑
k=1

P(Tk >
t

n
)︸ ︷︷ ︸

−−−→
t→∞

0

= 0.

The equality (∗) holds since {limt→∞N(t) < n} = {∃t0 ∈ Q+ : ∀t ≥ t0 N(t) < n} =
∪t0∈Q+ ∩t∈Q+

t≥t0
{N(t) < n} = lim inft∈Q+

t→∞
{N(t) < n}, then the continuity of the probability

measure is used, where Q+ = Q ∩ R+ = {q ∈ Q : q ≥ 0}. Since for every ω ∈ Ω it holds
that limn→∞

Sn
n = limt→∞

SN(t)
N(t) (a realization of N(·) is a subsequence of N), it holds that

limt→∞
SN(t)
N(t)

a.s= µ.

Remark 2.1.2
One can generalize the ergodic theorem to the case of non-identically distributed Tn. Thereby
we require that µn = ETn, {Tn − µn}n∈N are uniformly integrable and 1

n

∑n
k=1 µk −−−→n→∞

µ > 0.

Then we can prove that N(t)
t

P−−−→
t→∞

1
µ (cf. [2], page 276).

Theorem 2.1.2 (Central limit theorem):
If µ ∈ (0,∞), σ2 = Var T1 ∈ (0,∞), it holds that

µ
3
2 ·

N(t)− t
µ

σ
√
t

d−−−→
t→∞

Y,

where Y ∼ N (0, 1).

Proof According to the central limit theorem for sums of i.i.d. random variables (cf. Theorem
7.2.1, WR) it holds that

Sn − nµ√
nσ2

d−−−→
n→∞

Y. (2.1.1)

Let [x] be the integer part of x ∈ R. It holds for a = σ2

µ3 that

P
(
N(t)− t

µ√
at

≤ x
)

= P
(
N(t) ≤ x

√
at+ t

µ

)
= P

(
Sm(t) > t

)
,

where m(t) =
[
x
√
at+ t

µ

]
+ 1, t ≥ 0, and limt→∞m(t) =∞. Therefore we get that

∣∣∣∣∣P
(
N(t)− t

µ√
at

≤ x
)
− ϕ(x)

∣∣∣∣∣ =
∣∣∣P (Sm(t) > t

)
− ϕ(x)

∣∣∣
=

∣∣∣∣∣P
(
Sm(t) − µm(t)
σ
√
m(t)

>
t− µm(t)
σ
√
m(t)

)
− ϕ(x)

∣∣∣∣∣ := It(x)
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for arbitrary t ≥ 0 and x ∈ R, where ϕ is the distribution function of the N (0, 1)-distribution.
For fixed x ∈ R we introduce Zt = − t−µm(t)

σ
√
m(t)
− x, t ≥ 0. Then it holds that

It(x) =
∣∣∣∣∣P
(
Sm(t) − µm(t)
σ
√
m(t)

+ Zt > −x
)
− ϕ(x)

∣∣∣∣∣ .
If we can prove that Zt −−−→

t→∞
0, then applying (2.1.1) and the theorem of Slutsky (Theorem

6.4.1, WR) would result in Sm(t)−µm(t)
σ
√
m(t)

+ Zt
d−−−→

t→∞
Y ∼ N (0, 1) since Zt −−−→

t→∞
0 a.s. results in

Zt
d−−−→

t→∞
0. Therefore we could write It(x) −−−→

t→∞
|ϕ̄(−x)− ϕ(x)| = |ϕ(x)− ϕ(x)| = 0, where

ϕ̄(x) = 1− ϕ(x) is the tail function of the N (0, 1)-distribution, and the property of symmetry
of N (0, 1) : ϕ̄(−x) = ϕ(x), x ∈ R was used.
Now we show that Zt −−−→

t→∞
0, or t−µm(t)

σ
√
m(t)

−−−→
t→∞

−x. It holds that m(t) = x
√
at + t

µ + ε(t),
where ε(t) ∈ [0, 1). Then it holds that

t− µm(t)
σ
√
m(t)

= t− µx
√
at− t− µε(t)
σ
√
m(t)

= −x
√
atµ

σ
√
x
√
at+ t

µ + ε(t)
− µε(t)
σ
√
m(t)

= − xµ

σ

√
x√
at

+ 1
µa + ε(t)

at

− µε(t)
σ
√
m(t)

= −
xµσ√

µ2

σ2 + x√
at

+ ε(t)
at︸ ︷︷ ︸

−−−→
t→∞

−x

− µε(t)
σ
√
m(t)︸ ︷︷ ︸

−−−→
t→∞

0

−−−→
t→∞

−x.

Remark 2.1.3
In Lindeberg form, the central limit theorem can also be proven for non-identically distributed
Tn, cf. [2, pages 276 - 277].
Definition 2.1.2
The functionH(t) = EN(t), t ≥ 0 is called renewal function of the process N (or of the sequence
{Sn}n∈N).

Let FT (x) = P(T1 ≤ x), x ∈ R be the distribution function of T1. For arbitrary distribution
functions F,G : R→ [0, 1] the convolution F ∗G is defined as F ∗G(x) =

∫+∞
−∞ F (x− y)dG(y).

The k-fold convolution F ∗k of the distribution F with itself, k ∈ N0, is defined inductively:

F ∗0(x) = 1(x ∈ [0,∞)), x ∈ R,
F ∗1(x) = F (x), x ∈ R,

F ∗(k+1)(x) = F ∗k ∗ F (x), x ∈ R.

Lemma 2.1.1
The renewal function H of a renewal process N is monotonously non-decreasing and right-sided
continuous on R+. Moreover it holds that

H(t) =
∞∑
n=1

P(Sn ≤ t) =
∞∑
n=1

F ∗nT (t), t ≥ 0. (2.1.2)
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Proof The monotonicity and right-sided continuity of H are consequences from the almost
surely monotonicity and right-sided continuity of the trajectories of N . Now we prove (2.1.2):

H(t) = EN(t) = E
∞∑
n=1

1(Sn ≤ t)
(∗)=

∞∑
n=1

E1(Sn ≤ t) =
∞∑
n=1

P(Sn ≤ t) =
∞∑
n=1

F ∗nT (t),

since P(Sn ≤ t) = P(T1 + . . . + Tn ≤ t) = F ∗nT (t), t ≥ 0. The equality (∗) holds for all partial
sums on both sides, therefore in the limit as well.

Except for few cases it is impossible to calculate the renewal function H by the formula
(2.1.2) analytically. Therefore the Laplace transform of H is often used in calculations. For a
monotone (e.g. monotonously non-decreasing) right-sided continuous function G : [0,∞)→ R
the Laplace transform is defined as l̂G(s) =

∫∞
0 e−sxdG(x), s ≥ 0. Here the integral is to be

understood as the Lebesgue-Stieltjes integral, thus as a Lebesgue integral with respect to the
measure µG on BR+ defined by µG((x, y]) = G(y)−G(x), 0 ≤ x < y <∞, if G is monotonously
non-decreasing.
Just to remind you: the Laplace transform l̂X of a random variable X ≥ 0 is defined by
l̂X(s) =

∫∞
0 e−sxdFX(x), s ≥ 0.

Lemma 2.1.2
For s > 0 it holds that:

l̂H(s) = l̂T1(s)
1− l̂T1(s)

.

Proof It holds that:

l̂H(s) =
∫ ∞

0
e−sxdH(x) (2.1.2)=

∫ ∞
0

e−sxd

( ∞∑
n=1

F ∗nT (x)
)

=
∞∑
n=1

∫ ∞
0

e−sxdF ∗nT (x)

=
∞∑
n=1

l̂T1+...+Tn(s) =
∞∑
n=1

(
l̂T1(s)

)n
= l̂T1(s)

1− l̂T1(s)
,

where for s > 0 it holds that l̂T1(s) < 1 and thus the geometric series
∑∞
n=1

(
l̂T1(s)

)n
converges.

Indeed, if l̂T1(s) = 1 for some s > 0 then 0 =
∫∞

0 (1 − e−sx) dFT (x) = E(1 − e−sT1) because of
P(T1 ≥ 0) = 1. Since 1 − e−sT1 ≥ 0 a.s. we have 1 − e−sT1 = 0 a.s. and so T1 = 0 a.s. which
contradicts our assumption P(T1 > 0) > 0.

Remark 2.1.4
If N = {N(t), t ≥ 0} is a delayed renewal process (with delay T1), the statements of Lemmas
2.1.1 - 2.1.2 hold in the following form:

1.
H(t) =

∞∑
n=0

(FT1 ∗ F ∗nT2 )(t), t ≥ 0,

where FT1 and FT2 , respectively are the distribution functions of T1 and Tn, n ≥ 2,
respectively.

2.
l̂H(s) = l̂T1(s)

1− l̂T2(s)
, s ≥ 0, (2.1.3)

where l̂T1 and l̂T2 are the Laplace transforms of the distribution of T1 and Tn, n ≥ 2.
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For further observations we need a theorem (of Wald) about the expected value of a sum
(with random number) of independent random variables.
Definition 2.1.3
Let ν be a N-valued random variable and be {Xn}n∈N a sequence of random variables defined
on the same probability space. ν is called independent of the future, if for all n ∈ N the event
{ν ≤ n} does not depend on the σ-algebra σ({Xk, k > n}).
Theorem 2.1.3 (Wald’s identity):
Let {Xn}n∈N be a sequence of random variables with sup E|Xn| <∞, EXn = a, n ∈ N, and let
ν be a N-valued random variable which is independent of the future, with Eν < ∞. Then it
holds that

E(
ν∑

n=1
Xn) = a · Eν.

Proof Introduce the notation Sn =
∑n
k=1Xk, n ∈ N. Since Eν =

∑∞
n=1 P(ν ≥ n), the theorem

follows from Lemma 2.1.3.

Lemma 2.1.3 (Kolmogorov-Prokhorov):
Let ν be a N-valued random variable which is independent of the future and it holds that

∞∑
n=1

P(ν ≥ n)E|Xn| <∞. (2.1.4)

Then ESν =
∑∞
n=1 P(ν ≥ n)EXn holds. If Xn ≥ 0 a.s., then condition (2.1.4) is not required.

Proof It holds that Sν =
∑ν
n=1Xn =

∑∞
n=1Xn1(ν ≥ n). We introduce the notation Sν,n =∑n

k=1Xk1(ν ≥ k), n ∈ N. First, we prove the lemma for Xn ≥ 0 a.s., n ∈ N. It holds Sν,n ↑ Sν ,
n → ∞ for every ω ∈ Ω, and thus according to the monotone convergence theorem it holds
that: ESν = limn→∞ ESν,n = limn→∞

∑n
k=1 E(Xk1(ν ≥ k)). Since {ν ≥ k} = {ν ≤ k − 1}c

does not depend on σ(Xk) ⊂ σ({Xn, n ≥ k}) it holds that E(Xk1(ν ≥ k)) = EXkP(ν ≥ k),
k ∈ N, and thus ESν =

∑∞
n=1 P(ν ≥ n)EXn.

Now, let Xn be arbitrary. Take Yn = |Xn|, Zn =
∑n
k=1 Yk, Zν,n =

∑n
k=1 Yk1(ν ≥ k), n ∈ N.

Since Yn ≥ 0, n ∈ N, it holds that EZν =
∑∞
n=1 E(|Xn|)P(ν ≥ n) < ∞ from (2.1.4). Since

|Sν,n| ≤ Zν,n ≤ Zν , n ∈ N, according to the dominated convergence theorem of Lebesgue it
holds that ESν = limn→∞ ESν,n =

∑∞
n=1 EXnP(ν ≥ n), where this series converges absolutely.

Corollary 2.1.1 1. For an arbitrary Borel measurable function g : R+ → R+ and the
renewal process N = {N(t), t ≥ 0} with interarrival times {Tn}, Tn i.i.d., µ = ETn ∈
(0,∞) it holds that

E

N(t)+1∑
k=1

g(Tn)

 = (1 +H(t))Eg(T1), t ≥ 0.

2. H(t) <∞, t ≥ 0.

Proof 1. For every t ≥ 0 it is obvious that ν = 1 +N(t) does not depend on the future of
{Tn}n∈N, the rest follows from Theorem 2.1.3 with Xn = g(Tn), n ∈ N.
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2. For s > 0 consider T (s)
n = min{Tn, s}, n ∈ N. Choose s > 0 such that for freely selected

(but fixed) small ε > 0 : µ(s) = ET (s)
1 ≥ µ− ε > 0. Let N (s) be the renewal process which

is based on the sequence {T (s)
n }n∈N of interarrival times: N (s)(t) =

∑∞
n=1 1(S(s)

n ≤ t),
t ≥ 0, where S(s)

n = T
(s)
1 + . . .+T

(s)
n , n ∈ N. It holds N(t) ≤ N (s)(t), t ≥ 0, a.s., according

to Corollary 2.1.1 1):

(µ− ε)(EN (s)(t) + 1) ≤ µ(s)(EN (s)(t) + 1) = ES(s)
N(s)(t)+1 = E(S(s)

N(s)(t)︸ ︷︷ ︸
≤t

+T
(s)
N(s)(t)+1︸ ︷︷ ︸
≤s

) ≤ t+ s,

t ≥ 0. Thus H(t) = EN(t) ≤ EN (s)(t) ≤ t+s
µ−ε , t ≥ 0. Since ε > 0 is arbitrary, it holds

that lim supt→∞
H(t)
t ≤

1
µ , and also our assertion H(t) <∞, t ≥ 0.

Corollary 2.1.2 (Elementary renewal theorem):
For a renewal process N as defined in Corollary 2.1.1, 1) it holds:

lim
t→∞

H(t)
t

= 1
µ
.

Proof In Corollary 2.1.1, part 2) we already proved that lim supt→∞
H(t)
t ≤ 1

µ . If we show
lim inft→∞ H(t)

t ≥
1
µ , our assertion would be proven. According to Theorem 2.1.1 it holds that

N(t)
t −−−→t→∞

1
µ a.s., therefore according to Fatou’s lemma

1
µ

= E lim inf
t→∞

N(t)
t
≤ lim inf

t→∞

EN(t)
t

= lim inf
t→∞

H(t)
t

.

Remark 2.1.5
1. If µ2 = ET 2

1 <∞ we can derive a more exact asymptotic for H(t), t→∞:

H(t)
t

= 1
µ

+ µ2
2µ2t

+ o(1/t), t→∞.

2. The elementary renewal theorem also holds for delayed renewal processes, where µ = ET2.
We define the renewal measure H on B(R+) by H(B) =

∑∞
n=1

∫
B dF

∗n
T (x), B ∈ B(R+), where

F ∗nT (x) = FT1 ∗ F
∗(n−1)
T2

(x). It holds H([0, t]) = H(t), H((s, t]) = H(t)−H(s), s, t ≥ 0, if H is
the renewal function as well as the renewal measure.
Theorem 2.1.4 (Fundamental theorem of the renewal theory):
Let N = {N(t), t ≥ 0} be a (delayed) renewal process associated with the sequence {Tn}n∈N,
where Tn, n ∈ N are independent, {Tn, n ≥ 2} identically distributed, and the distribution
of T2 is not arithmetic, i.e., not concentrated on a regular lattice with probability 1. The
distribution of T1 is arbitrary. Let ET2 = µ ∈ (0,∞). Then it holds that∫ t

0
g(t− x)dH(x) −−−→

t→∞

1
µ

∫ ∞
0

g(x)dx,

where g : R+ → R is Riemann integrable on [0, n] for all n ∈ N, and
∑∞
n=0 max

n≤x≤n+1
|g(x)| <∞.
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Without proof.

In particular H((t − u, t]) −−−→
t→∞

u
µ holds for an arbitrary u ∈ R+, thus H asymptotically

(for t→∞) behaves as the Lebesgue measure.

Fig. 2.2: Excess of N

Definition 2.1.4
The random variable χ(t) = SN(t)+1 − t is called excess of N at time t ≥ 0.

Obviously χ(0) = T1 holds. We now give an example of a renewal process with stationary
increments.
Let N = {N(t), t ≥ 0} be a delayed renewal process associated with the sequence of interarrival
times {Tn}n∈N. Let FT1 and FT2 be the distribution functions of the delay T1 and Tn, n ≥ 2.
We assume that µ = ET2 ∈ (0,∞), FT2(0) = 0, thus T2 > 0 a.s. and

FT1(x) = 1
µ

∫ x

0
F̄T2(y)dy, x ≥ 0. (2.1.5)

In this case FT1 is called the integrated tail distribution function of T2
1.

Theorem 2.1.5
Under the conditions we mentioned above, N is a process with stationary increments.

Fig. 2.3: Illustration of the proof of Theorem 2.1.5

Proof Let n ∈ N, 0 ≤ t0 < t1 < . . . < tn < ∞. Because {Tn, n ∈ N} are independent, the
common distribution of (N(t1 + t)−N(t0 + t), . . . , N(tn + t)−N(tn−1 + t))> does not depend
on t, if the distribution of χ(t) does not depend on t, thus χ(t0 + t) d= χ(ti + t) d= χ(0) = T1,
t ≥ 0, see Figure 2.3.

1Show that the formula (2.1.5) yields a valid cumulative distribution function.
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We show that FT1 = Fχ(t), t ≥ 0.

Fχ(t)(x) = P(χ(t) ≤ x) =
∞∑
n=0

P(Sn ≤ t, t < Sn+1 ≤ t+ x)

= P(S0 = 0 ≤ t, t < S1 = T1 ≤ t+ x)

+
∞∑
n=1

E(E(1(Sn ≤ t, t < Sn + Tn+1 ≤ t+ x) | Sn))

= FT1(t+ x)− FT1(t) +
∞∑
n=1

∫ t

0
P(t− y < Tn+1 ≤ t+ x− y) dFSn(y)

= FT1(t+ x)− FT1(t) +
∫ t

0
P(t− y < T2 ≤ t+ x− y) d(

∞∑
n=1

FSn(y)︸ ︷︷ ︸
H(y)

).

If we can prove that H(y) = y
µ , y ≥ 0, then we would get

Fχ(t)(x) z=t−y= FT1(t+ x)− FT1(t) + 1
µ

∫ 0

t
(FT2(z + x)− 1 + 1− FT2(z))d(−z)

= FT1(t+ x)− FT1(t) + 1
µ

∫ t

0
(F̄T2(z)− F̄T2(z + x))dz

= FT1(t+ x)− FT1(t) + FT1(t)− 1
µ

∫ t+x

x
F̄T2(y)dy

= FT1(t+ x)− FT1(t+ x) + FT1(x) = FT1(x), x ≥ 0,

according to the form (2.1.5) of the distribution of T1.
Now we would like to show that H(t) = t

µ , t ≥ 0. For that we use the formula (2.1.5): it holds
that

l̂T1(s) = 1
µ

∫ ∞
0

e−st(1− FT2(t))dt = 1
µ

∫ ∞
0

e−stdt︸ ︷︷ ︸
1
s

− 1
µ

∫ ∞
0

e−stFT2(t)dt

= 1
µs

(
1 +

∫ ∞
0

FT2(t)de−st
)

= 1
µs

(1 + e−stFT2(t)︸ ︷︷ ︸
−FT2 (0)=0

∣∣∞
0 −

∫ ∞
0

e−stdFT2(t))︸ ︷︷ ︸
l̂T2 (s)

= 1
µs

(1− l̂T2(s)), s ≥ 0.

Using the formula (2.1.3) we get

l̂H(s) = l̂T1(s)
1− l̂T2(s)

= 1
µs

= 1
µ

∫ ∞
0

e−stdt = l̂ t
µ

(s), s ≥ 0.

Since the Laplace transform of a function uniquely determines this function, it holds that
H(t) = t

µ , t ≥ 0.

Remark 2.1.6
In the proof of Theorem 2.1.5 we showed that for the renewal process with delay which possesses
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the distribution (2.1.5), H(t) ∼ t
µ not only asymptotically for t → ∞ (as in the elementary

renewal theorem) but it holds H(t) = t
µ for all t ≥ 0. This means, we get on average 1

µ renewals
per unit time interval. For that reason such a process N is called homogeneous renewal process.

One can also prove the following result.

Theorem 2.1.6
If N = {N(t), t ≥ 0} is a delayed renewal process with arbitrary delay T1 and non-arithmetic
distribution of Tn, n ≥ 2, µ = ET2 ∈ (0,∞), then it holds that

lim
t→∞

Fχ(t)(x) = 1
µ

∫ x

0
F̄T2(y)dy, x ≥ 0.

This means, the limiting distribution of excess χ(t), t → ∞ is taken as the distribution of T1
when defining a homogeneous renewal process.

2.2 Poisson processes

2.2.1 Poisson processes

In this section we generalize the definition of a homogeneous Poisson process (see Section 1.2,
Example 5)

Definition 2.2.1
The counting process N = {N(t), t ≥ 0} is called Poisson process with intensity measure Λ if

1. N(0) = 0 a.s.

2. Λ is a locally finite measure on R+, i.e., the measure Λ : B(R+) → R+ possesses the
property Λ(B) <∞ for every bounded set B ∈ B(R+).

3. N possesses independent increments.

4. N(t)−N(s) ∼ Pois(Λ((s, t])) for all 0 ≤ s < t <∞.

Sometimes the Poisson process N = {N(t), t ≥ 0} is defined by the corresponding random
Poisson counting measure N = {N(B), B ∈ B(R+)} via N = N([0, t]), t ≥ 0, where a counting
measure is a locally finite measure with values in N0.

Definition 2.2.2
A random counting measure N = {N(B), B ∈ B(R+)} is called Poisson with locally finite
intensity measure Λ if

1. For arbitrary n ∈ N and for arbitrary pairwise disjoint bounded sets B1, B2, . . . , Bn ∈
B(R+) the random variables N(B1), N(B2), . . . , N(Bn) are independent.

2. N(B) ∼ Pois(Λ(B)), B ∈ B(R+), B-bounded.

It is obvious that properties 3 and 4 of Definition 2.2.1 follow from properties 1 and 2 of
Definition 2.2.2. Property 1 of Definition 2.2.1 however is an autonomous assumption. N(B),
B ∈ B(R+) is interpreted as the number of points of N within the set B.
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Remark 2.2.1
Similarly to Definition 2.2.2, a Poisson counting measure can also be defined on an arbitrary
metric space E equipped with the Borel-σ-algebra B(E). Very often E = Rd, d ≥ 1 is chosen
in applications.

Lemma 2.2.1
For every locally finite measure Λ on R+ there exists a Poisson process with intensity measure
Λ.

Proof If such a Poisson process had existed, the characteristic function ϕN(t)−N(s)(·) of the
increment N(t) −N(s), 0 ≤ s < t < ∞ would have been equal to ϕs,t(z) = ϕPois(Λ((s,t]))(z) =
eΛ((s,t])(eiz−1), z ∈ R according to property 4 of Definition 2.2.1. We show that the family
of characteristic functions {ϕs,t, 0 ≤ s < t < ∞} possesses property (1.7.1): for all u such
that 0 ≤ s < u < t, ϕs,u(z)ϕu,t(z) = eΛ((s,u])(eiz−1)eΛ((u,t])(eiz−1) = e(Λ((s,u])+Λ((u,t]))(eiz−1) =
eΛ((s,t])(eiz−1) = ϕs,t(z), z ∈ R since the measure Λ is additive. Thus, the existence of the
Poisson process N follows from Theorem 1.7.1.

Remark 2.2.2
The existence of a Poisson counting measure can be proven with the help of the theorem of
Kolmogorov, yet in a more general form than in Theorem 1.1.2.

From the properties of the Poisson distribution it follows that EN(B) = VarN(B) = Λ(B),
B ∈ B(R+). Thus Λ(B) is interpreted as the mean number of points of N within the set B,
B ∈ B(R+).
We get an important special case if Λ(dx) = λdx for λ ∈ (0,∞), i.e., Λ is proportional to the
Lebesgue measure ν1 on R+. Then we call λ = EN(1) the intensity of N .
Soon we will prove that in this case N is a homogeneous Poisson process with intensity λ. To
remind you: In Section 1.2 the homogeneous Poisson process was defined as a renewal process
with i.i.d. interarrival times TN ∼ Exp(λ): N(t) = sup{n ∈ N Sn ≤ t}, Sn = T1 + . . . + Tn,
n ∈ N, t ≥ 0.

Exercise 2.2.1
Show that the homogeneous Poisson process is a homogeneous renewal process with T1

d= T2 ∼
Exp(λ). Hint: you have to show that for an arbitrary exponential distributed random variable
X the integrated tail distribution function of X is equal to FX .

Theorem 2.2.1
Let N = {N(t), t ≥ 0} be a counting process. The following statements are equivalent.

1. N is a homogeneous Poisson process with intensity λ > 0.

2. a) N(t) ∼ Pois(λt), t ≥ 0
b) for an arbitrary n ∈ N, t ≥ 0, it holds that the random vector (S1, . . . , Sn) under

condition {N(t) = n} possesses the same distribution as the order statistics of i.i.d.
random variables Ui ∈ U([0, t]), i = 1, . . . , n.

3. a) N has independent increments,
b) EN(1) = λ, and
c) property 2b) holds.
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4. a) N has stationary and independent increments, and

b) P(N(t) = 0) = 1− λt+ o(t), P(N(t) = 1) = λt+ o(t), t ↓ 0 holds.

5. a) N has stationary and independent increments,

b) property 2a) holds.

Remark 2.2.3 1. It is obvious that Definition 2.2.1 with Λ(dx) = λdx, λ ∈ (0,∞) is an
equivalent definition of the homogeneous Poisson process according to Lemma 2.2.1 and
Theorem 2.2.1.

2. The homogeneous Poisson process was introduced in the beginning of the 20th century by
the physicists A. Einstein and M. Smoluchowski to be able to model the counting process
of elementary particles in the Geiger counter.

3. From 4b) it follows P(N(t) > 1) = o(t), t ↓ 0.

4. The intensity of N has the following interpretation: λ = EN(1) = 1
ETn , thus the mean

number of renewals of N within a time interval with length 1.

5. The renewal function of the homogeneous Poisson process is H(t) = λt, t ≥ 0. Thereby
H(t) = Λ([0, t]), t > 0 holds for the non-homogeneous Poisson process.

Proof Structure of the proof: 1)⇒ 2)⇒ 3)⇒ 4)⇒ 5)⇒ 1)
1)⇒ 2):
From 1) follows Sn =

∑n
k=1 Tk ∼ Erl(n, λ) since Tk ∼ Exp(λ), n ∈ N, thus P(N(t) = 0) =

P(T1 > t) = e−λt, t ≥ 0, and for n ∈ N

P(N(t) = n) = P({N(t) ≥ n} \ {N(t) ≥ n+ 1}) = P(N(t) ≥ n)− P(N(t) ≥ n+ 1)

= P(Sn ≤ t)− P(Sn+1 ≤ t) =
∫ t

0

λnxn−1

(n− 1)!e
−λxdx−

∫ t

0

λn+1xn

n! e−λxdx

=
∫ t

0

d

dx

((λx)n

n! e−λx
)
dx = (λt)n

n! e−λt, t ≥ 0.

Thus 2a) is proven.
Now let us prove 2b). According to the transformation theorem for random variables (cf.
Theorem 3.6.1, WR), it follows from

S1 = T1
S2 = T1 + T2

...
Sn+1 = T1 + . . .+ Tn+1

that the density f(S1,...,Sn+1) of (S1, . . . , Sn+1)> can be expressed by the density of (T1, . . . , Tn+1)>,
Ti ∼ Exp(λ), i.i.d.:

f(S1,...,Sn+1)(t1, . . . , tn+1) =
n+1∏
k=1

fTk(tk − tk−1) =
n+1∏
k=1

λe−λ(tk−tk−1) = λn+1e−λtn+1
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for arbitrary 0 ≤ t1 ≤ . . . ≤ tn+1, t0 = 0. For all other t1, . . . , tn+1 it holds f(S1,...,Sn+1)(t1, . . . , tn+1) =
0.
Therefore

f(S1,...,Sn)(t1, . . . , tn|N(t) = n) = f(S1,...,Sn)(t1, . . . , tn|Sk ≤ t, k ≤ n, Sn+1 > t)

=
∫∞
t f(S1,...,Sn+1)(t1, . . . , tn+1)dtn+1I(0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ t)∫ t

0
∫ t

0 . . .
∫ t

0
∫∞
t f(S1,...,Sn+1)(t1, . . . , tn+1)dsn+1dsn . . . ds1

=
∫∞
t λn+1e−λtn+1dtn+1∫ t

0
∫ t

0 . . .
∫ t

0
∫∞
t λn+1e−λsn+1I(0 ≤ s1 ≤ s2 ≤ . . . ≤ sn ≤ t)dsn+1dsn . . . ds1

×

×I(0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ t)

= n!
tn
I(0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ t),

since one can show by induction that
∫ t

0
∫ t

0 . . .
∫ t
0 I(0 ≤ s1 ≤ . . . ≤ sn ≤ t)ds1 . . . dsn = tn

n! . This
is exactly the density of order statistics of n i.i.d. U([0, t])-random variables.

Exercise 2.2.2
Prove this.

2)⇒ 3)
From 2a) obviously follows 3b). Now we just have to prove the independence of the increments
of N . For an arbitrary n ∈ N, x1, . . . , xn ∈ N, t0 = 0 < t1 < . . . < tn for x = x1 + . . . + xn it
holds that

P(∩nk=1{N(tk)−N(tk−1) = xk}) = P(∩nk=1{N(tk)−N(tk−1) = xk}|N(tn) = x)︸ ︷︷ ︸
x!

x1!...xn!
∏n

k=1

(
tk−tk−1

tn

)xk according to 2b)

×

× P(N(tn) = x)︸ ︷︷ ︸
e−λtn

(λtn)x
x! according to 2a)

(2.2.1)

=
n∏
k=1

(λ(tk − tk−1))xk
xk!

e−λ(tk−tk−1), (2.2.2)

where the probability of (2.2.1) belongs to the polynomial distribution with parameters n,{
tk−tk−1

tn

}n
k=1

. The event (2.2.1) means x independent uniformly distributed points on [0, t],
are spread over n baskets such that exactly xk points fall into the basket of length tk − tk−1,
k = 1, . . . , n, see Fig. 2.4. Thus 3a) is proven since P(∩nk=1{N(tk) − N(tk−1) = xk}) =∏n
k=1 P({N(tk)−N(tk−1) = xk}).
3)⇒ 4)

We prove that N possesses stationary increments. For an arbitrary n ∈ N0, x1, . . . , xn ∈ N,
t0 = 0 < t1 < . . . < tn and h > 0 we consider I(h) = P(∩nk=1{N(tk + h)−N(tk−1 + h) = xk})
and show that I(h) does not depend on h ∈ R. According to the formula (2.2.2) it holds that

I(h) =
n∏
k=1

(λ(tk + h− tk−1 − h))xk
xk!

e−λ(tk+h−tk−1−h) = I(0)
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Fig. 2.4: Proof of Theorem 2.2.1, case 2)⇒ 3).

for all h > 0. We now show property 4b) for h ∈ (0, 1):

P(N(h) = 0) =
∞∑
k=0

P(N(h) = 0, N(1) = k) =
∞∑
k=0

P(N(h) = 0, N(1)−N(h) = k)

=
∞∑
k=0

P(N(1)−N(h) = k,N(1) = k)

=
∞∑
k=0

P(N(1) = k)P(N(1)−N(h) = k | N(1) = k)

=
∞∑
k=0

P(N(1) = k)(1− h)k.

We have to show that P(N(h) = 0) = 1 − λh + o(h), i.e., limh→0
1
h(1 − P(N(h) = 0)) = λ.

Indeed it holds that

1
h

(1− P(N(h) = 0)) = 1
h

(
1−

∞∑
k=0

P(N(1) = k)(1− h)k
)

=
∞∑
k=1

P(N(1) = k) · 1− (1− h)k

h

−−−→
h→0

∞∑
k=1

P(N(1) = k) lim
h→0

1− (1− h)k

h︸ ︷︷ ︸
k

=
∞∑
k=0

P(N(1) = k)k = EN(1) = λ,

since the series uniformly converges in h because it is dominated by
∑∞
k=0 P(N(1) = k)k = λ <

∞ due to the inequality (1− h)k ≥ 1− kh, h ∈ (0, 1), k ∈ N.
Similarly one can show that limh→0

P(N(h)=1)
h = limh→0

∑∞
k=1 P(N(1) = k)k(1 − h)k−1 = λ.

P(N(h) = 1) =
∑∞
k=1 P(N(1) = k)P(N(1)−N(h) = k − 1|N(1) = k)

=
∑∞
k=1 P(N(1) = k)kh(1− h)k−1.

4)⇒ 5) We have to show that for an arbitrary n ∈ N and t ≥ 0

pn(t) = P(N(t) = n) = e−λt
(λt)n

n! (2.2.3)

holds. We will prove that by induction with respect to n. First we show that p0(t) = e−λt,
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n = 0. For that we consider
p0(t+ h) = P(N(t+ h) = 0) = P(N(t) = 0, N(t+ h)−N(t) = 0)

= p0(t)p0(h) = p0(t)(1− λh+ o(h)), h→ +0.
Similarly one can show that

p0(t) = p0(t− h)(1− λh+ o(h)), h→ +0.

Thus p′0(t) = limh→0
p0(t+h)−p0(t)

h = −λp0(t), t > 0 holds. Since p0(0) = P(N(0) = 0) = 1, it
follows from {

p′0(t) = −λp0(t)
p0(0) = 1,

that it exists an unique solution p0(t) = e−λt, t ≥ 0. Now let the formula (2.2.3) be proved for
n. Prove it for n+ 1.
pn+1(t+ h) = P(N(t+ h) = n+ 1)

= P(N(t) = n,N(t+ h)−N(t) = 1) + P(N(t) = n+ 1, N(t+ h)−N(t) = 0)

+
n−1∑
k=0

P(N(t) = k,N(t+ h)−N(t) = n+ 1− k)

= pn(t) · p1(h) + pn+1(t) · p0(h) + o(h) (by Remark 2.2.3, 3))
= pn(t)(λh+ o(h)) + pn+1(t)(1− λh+ o(h)) + o(h), h→ +0.

Thus {
p′n+1(t) = −λpn+1(t) + λpn(t), t > 0
pn+1(0) = 0 (2.2.4)

Since pn(t) = e−λt (λt)n
n! , we obtain pn+1(t) = e−λt (λt)n+1

(n+1)! as a solution of (2.2.4). (Indeed
pn+1(t) = C(t)e−λt ⇒ C ′(t)e−λt = λC(t)e−λt − λC(t)e−λt + λpn(t), C ′(t) = λn+1tn

n! ⇒
C(t) = λn+1tn+1

(n+1)! , C(0) = 0)
5)⇒ 1)
Let N be a counting process N(t) = max{n : Sn ≤ t}, t ≥ 0, which fulfills conditions 5a)
and 5b). We show that Sn =

∑n
k=1 Tk, where Tk i.i.d. with Tk ∼ Exp(λ), k ∈ N. Since

Tk = Sk − Sk−1, k ∈ N, S0 = 0, we consider for b0 = 0 ≤ a1 < b1 ≤ . . . ≤ an < bn

P(∩nk=1{ak < Sk ≤ bk})
= P(∩n−1

k=1{N(ak)−N(bk−1) = 0, N(bk)−N(ak) = 1}
∩{N(an)−N(bn−1) = 0, N(bn)−N(an) ≥ 1})

=
n−1∏
k=1

(P(N(ak − bk−1) = 0)︸ ︷︷ ︸
e−λ(ak−bk−1)

P(N(bk − ak) = 1)︸ ︷︷ ︸
λ(bk−ak)e−λ(bk−ak)

)×

P(N(an − bn−1) = 0)︸ ︷︷ ︸
e−λ(an−bn−1)

P(N(bn − an) ≥ 1)︸ ︷︷ ︸
(1−e−λ(bn−an))

= e−λ(an−bn−1)(1− e−λ(bn−an))
n−1∏
k=1

λ(bk − ak)e−λ(bk−bk−1)

= λn−1(e−λan − e−λbn)
n−1∏
k=1

(bk − ak) =
∫ b1

a1
. . .

∫ bn

an
λne−λyndyn . . . y1.
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The common density of (S1, . . . , Sn)> therefore is given by λne−λyn1(0 ≤ y1 ≤ y2 ≤ . . . ≤ yn).
Then one can show that (T1, . . . , Tn)T has a density

∏n
k=1 λe

−λtk as in 1)⇒ 2), part 2,b) by
density transformation formula.

2.2.2 Compound Poisson process

Definition 2.2.3
Let N = {N(t), t ≥ 0} be a homogeneous Poisson process with intensity λ > 0, built by means
of the sequence {Tn}n∈N of interarrival times. Let {Un}n∈N be a sequence of i.i.d. random
variables, independent of {Tn}n∈N. Let FU be the distribution function of U1. For an arbitrary
t ≥ 0 let X(t) = 1(N(t) > 0)

∑N(t)
k=1 Uk. The stochastic process X = {X(t), t ≥ 0} is called

compound Poisson process with parameters λ, FU . The distribution of X(t) thereby is called
compound Poisson distribution with parameters λt, FU .
The compound Poisson process X(t), t ≥ 0 can be interpreted as the sum of „marks“ Un of

a homogeneous marked Poisson process (N,U) until time t.
In queuing theory X(t) is interpreted as the overall workload of a server until time t if the
requests of service occur at times Sn =

∑n
k=1 Tk, n ∈ N and represent the amount of work Un,

n ∈ N.
In actuarial mathematics X(t), t ≥ 0 is the total claim amount in a portfolio until time t ≥ 0
with number of claims N(t) and amount of loss Un, n ∈ N.
Theorem 2.2.2
Let X = {X(t), t ≥ 0} be a compound Poisson process with parameters λ, FU . The following
properties hold:

1. X has independent and stationary increments.

2. If m̂U (s) = EesU1 , s ∈ R, is the moment generating function of U1, such that m̂U (s) <∞,
s ∈ R, then it holds that

m̂X(t)(s) = eλt(m̂U (s)−1), s ∈ R, t ≥ 0, EX(t) = λtEU1, VarX(t) = λtEU2
1 , t ≥ 0.

Proof 1. We have to show that for arbitrary n ∈ N, 0 ≤ t0 < t1 < . . . < tn and h

P

 N(t1+h)∑
i1=N(t0+h)+1

Ui1 ≤ x1, . . . ,

N(tn+h)∑
in=N(tn−1+h)+1

Uin ≤ xn

 =
n∏
k=1

P

 N(tk)∑
ik=N(tk−1)+1

Uik ≤ xk


for arbitrary x1, . . . , xn ∈ R. Indeed it holds that

P

 N(t1+h)∑
i1=N(t0+h)+1

Ui1 ≤ x1, . . . ,

N(tn+h)∑
in=N(tn−1+h)+1

Uin ≤ xn


=

∞∑
k1,...,kn=0

 n∏
j=1

F
∗kj
n (xj)

P (∩nm=1 {N(tm + h)−N(tm−1 + h) = km})

=
∞∑

k1,...,kn=0

 n∏
j=1

F
∗kj
n (xj)

( n∏
m=1

P(N(tm)−N(tm−1) = km)
)
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=
n∏

m=1

∞∑
km=0

F ∗kmn (xm)P(N(tm)−N(tm−1) = km) =
n∏

m=1
P

 N(tm)∑
km=N(tm−1)+1

Ukm ≤ xm


2. Exercise 2.2.3

2.2.3 Cox process
A Cox process is a (in general inhomogeneous) Poisson process with intensity measure Λ which
as such is a random measure. This intuitive idea is made formal in the following definition.
Definition 2.2.4
Let Λ = {Λ(B), B ∈ B(R+)} be a random a.s. locally finite measure. The random counting
measure N = {N(B), B ∈ B(R+)} is called Cox counting measure (or doubly stochastic
Poisson measure) with random intensity measure Λ if for arbitrary n ∈ N, k1, . . . , kn ∈ N0
and 0 ≤ a1 < b1 ≤ a2 < b2 ≤ . . . ≤ an < bn it holds that P(∩ni=1{N((ai, bi]) = ki}) =
E
(∏n

i=1 e
−Λ((ai,bi]) Λki ((ai,bi])

ki!

)
. The process {N(t), t ≥ 0} with N(t) = N((0, t]) is called Cox

process (or doubly stochastic Poisson process) with random intensity measure Λ.
Example 2.2.1 1. If the random measure Λ is a.s. absolutely continuous with respect

to the Lebesgue measure, i.e., Λ(B) =
∫
B λ(t)dt, B - bounded, B ∈ B(R+), where

{λ(t), t ≥ 0} is a stochastic process with a.s. Borel-measurable Lebesgue-integrable tra-
jectories, λ(t) ≥ 0 a.s. for all t ≥ 0, then {λ(t), t ≥ 0} is called the intensity process of N .

2. In particular, it can be that λ(t) ≡ Y where Y is a non-negative random variable. Then
it holds that Λ(B) = Y ν1(B), thus N has a random intensity Y . Such Cox processes are
called mixed Poisson processes.

A Cox process N = {N(t), t ≥ 0} with intensity process {λ(t), t ≥ 0} can be built explicitly
as follows. Let Ñ = {Ñ(t), t ≥ 0} be a homogeneous Poisson process with intensity 1, which
is independent of {λ(t), t ≥ 0}. Then N d= N1, where the process N1 = {N1(t), t ≥ 0} is given
by N1(t) = Ñ(

∫ t
0 λ(y)dy), t ≥ 0. The assertion N d= N1 of course has to be proven. However,

we shall assume it without proof. It is also the basis for the simulation of the Cox process N .

2.3 Additional exercises
Exercise 2.3.1
Prove that a (real-valued) stochastic process X = {X(t), t ∈ [0,∞)} with independent incre-
ments already has stationary increments if the distribution of the random variable X(t+ h)−
X(h) does not depend on h.
Exercise 2.3.2
Let N = {N(t), t ∈ [0,∞)} be a Poisson process with intensity λ. Calculate the probabilities
that within the interval [0, s] exactly i events occur under the condition that within the interval
[0, t] exactly n events occur, i.e. P(N(s) = i | N(t) = n) for s < t, i = 0, 1, . . . , n.
Exercise 2.3.3
Let N (1) = {N (1)(t), t ∈ [0,∞)} and N (2) = {N (2)(t), t ∈ [0,∞)} be independent Poisson
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processes with intensities λ1 and λ2. In this case the independence indicates that the sequences
T

(1)
1 , T

(1)
2 , . . . and T (2)

1 , T
(2)
2 , . . . are independent.

Show that N = {N(t) := N (1)(t) + N (2)(t), t ∈ [0,∞)} is a Poisson process with intensity
λ1 + λ2.
Exercise 2.3.4 (Queuing paradox):
Let N = {N(t), t ∈ [0,∞)} be a renewal process. Then C(t) = t − SN(t) is called the current
lifetime and D(t) = χ(t) + C(t) the lifetime at time t > 0. Now let N = {N(t), t ∈ [0,∞)} be
a Poisson process with intensity λ.

a) Show that the distribution of the current lifetime is given by P(C(t) = t) = e−λt and the
density is given by fC(t)|N(t)>0(s) = λe−λs1{s ≤ t}.

b) Show that P(D(t) ≤ x) = (1− (1 + λmin{t, x})e−λx)1{x ≥ 0}.

c) To determine the mean excess time Eχ(t), one could argue like this: On average t
lies in the middle of the surrounding interval of interarrival time (SN(t), SN(t)+1), i.e.
Eχ(t) = 1

2E(SN(t)+1 − SN(t)) = 1
2ETN(t)+1 = 1

2λ . Considering the proof of Theorem 2.1.5
and Exercise 2.2.1 this reasoning is false. Where is the mistake in the reasoning?

Exercise 2.3.5
Let X = {X(t) :=

∑N(t)
i=1 Ui, t ≥ 0} be a compound Poisson process. Let MN(t)(s) = EsN(t),

s ∈ (0, 1), be the generating function of the Poisson processes N(t), l̂U (s) = E exp{−sU} the
Laplace Transform of Ui, i ∈ N, and l̂X(t)(s) the Laplace Transform of X(t). Prove that

l̂X(t)(s) = MN(t)(l̂U (s)), s ≥ 0.

Exercise 2.3.6
Let X = {X(t), t ∈ [0,∞)} be a compound Poisson process with Ui i.i.d., U1 ∼ Exp(γ), where
the intensity of N(t) is given by λ. Show that for the Laplace transform l̂X(t)(s) of X(t) it
holds:

l̂X(t)(s) = exp
{
− λts

γ + s

}
.

Exercise 2.3.7
Let the stochastic process N = {N(t), t ∈ [0,∞)} be a Cox process with intensity function
λ(t) = Z, where Z is a discrete random variable which takes values λ1 and λ2 with probabilities
1/2. Determine the moment generating function as well as the expected value and the variance
of N(t).
Exercise 2.3.8
Let N (1) = {N (1)(t), t ∈ [0,∞)} and N (2) = {N (2)(t), t ≥ 0} be two independent homogeneous
Poisson processes with intensities λ1 and λ2. Moreover, let X ≥ 0 be an arbitrary non-negative
random variable which is independent of N (1) and N (2). Show that the process N = {N(t), t ≥
0} with

N(t) =
{
N (1)(t), t ≤ X,
N (1)(X) +N (2)(t−X), t > X

is a Cox process whose intensity process λ = {λ(t), t ≥ 0} is given by λ(t) =
{
λ1, t ≤ X,
λ2, t > X.
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The correct explanation of the nature of chaotic movement of tiny particles in liquids or gases
by the atomic structure of matter was already given by the Roman philosopher Lucretius 60
B.C. in his book “On the nature of things”:
“Observe what happens when sunbeams are admitted into a building and shed light on its

shadowy places. You will see a multitude of tiny particles mingling in a multitude of ways...
their dancing is an actual indication of underlying movements of matter that are hidden from
our sight... It originates with the atoms which move of themselves [i.e., spontaneously]. Then
those small compound bodies that are least removed from the impetus of the atoms are set
in motion by the impact of their invisible blows and in turn cannon against slightly larger
bodies. So the movement mounts up from the atoms and gradually emerges to the level of
our senses, so that those bodies are in motion that we see in sunbeams, moved by blows that
remain invisible.”
The botanist Robert Brown observed similar movement on grains suspended in water. He

attributed its origins, however, to a special “life force” within the pollen. Due to his contribu-
tion, the name “Brownian motion” was coined. The systematic mathematical study began in
20 c. with Louis Bachelier (1900), Marian Smoluchowski and Albert Einstein (1905). Einstein
showed that if u(x, t) is due density (number of particles per unit volume) at a spot x and time
t, it satisfies the heat equation u′t(x, t) = 1

2u
′′
x(x, t), whose solution is u(x, t) = 1√

2πt exp
(
−x2

2t

)
,

x ∈ R, t > 0. It corresponds to the density of N(0, t)-law. Einstein’s explanation was confirmed
by experiments in 1908 giving an evidence of the atomic structure of nature.
French physicist Perrin considered the paths of the Brownian motion as natural functions

which are continuous but not differentiable anywhere, which brought the American mathemati-
cian Norbert Wiener (1928) to the idea to consider trajectories of one single Brownian particle,
instead of the study of the whole particle ensemble as it was done before. It was Wiener who
has put the Brownian motion onto a firm mathematical basis. In particular, he defined it as a
random function and proved its existence. Now this process bears his name in recognition of
his outstanding work.

3.1 Elementary properties
In Example 2) of Section 1.2 we defined the Brownian motion (or Wiener process) W =
{W (t), t ≥ 0} as a Gaussian process with EW (t) = 0 and cov(W (s),W (t)) = min{s, t},
s, t ≥ 0. Why does the Brownian motion exist? According to Theorem 1.1.2 there exists a
real-valued Gaussian process X = {X(t), t ≥ 0} with mean value EX(t) = µ(t), t ≥ 0, and
covariance function cov(X(s), X(t)) = C(s, t), s, t ≥ 0 for every function µ : R+ → R and every
positive semidefinite function C : R+×R+ → R. We just have to show that C(s, t) = min{s, t},
s, t ≥ 0 is positive semidefinite.
Exercise 3.1.1
Prove this!

38
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We now give a new (equivalent) definition.
Definition 3.1.1
A stochastic process W = {W (t), t ≥ 0} is called Wiener process (or Brownian motion) if

1. W (0) = 0 a.s.

2. W possesses independent increments

3. W (t)−W (s) ∼ N (0, t− s), 0 ≤ s < t.

The existence of W according to Definition 3.1.1 follows from Theorem 1.7.1 since ϕs,t(z) =

Eeiz(W (t)−W (s)) = e−
(t−s)z2

2 , z ∈ R, and e−
(t−u)z2

2 e−
(u−s)z2

2 = e−
(t−s)z2

2 for 0 ≤ s < u < t, thus
ϕs,u(z)ϕu,t(z) = ϕs,t(z), z ∈ R. From Theorem 1.3.1 the existence of a version with continuous
trajectories follows.
Exercise 3.1.2
Show that Theorem 1.3.1 holds for α = 3, δ = 1

2 .
Therefore, it is often assumed that the Wiener process possesses continuous paths (just take

its corresponding version).
Theorem 3.1.1
Both definitions of the Wiener process are equivalent.

Proof 1. From definition in Section 1.2 follows Definition 3.1.1.
W (0) = 0 a.s. follows from Var(W (0)) = min{0, 0} = 0. Now we prove that the incre-
ments ofW are independent. If Y ∼ N (µ,K) is a n-dimensional Gaussian random vector
and A a (n× n)-matrix, then AY ∼ N (Aµ,AKA>) holds, this follows from the explicit
form of the characteristic function of Y . Now let n ∈ N, 0 = t0 ≤ t1 < . . . < tn, Y =
(W (t0),W (t1), . . . ,W (tn))>. For Z = (W (t0),W (t1)−W (t0), . . . ,W (tn)−W (tn−1))> it
holds that Z = AY , where

A =


1 0 0 . . . . . . 0
−1 1 0 . . . . . . 0

0 −1 1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . −1 1

 .

Thus Z is also Gaussian with a covariance matrix which is diagonal. Indeed, it holds
cov(W (ti+1)−W (ti),W (tj+1)−W (tj)) = min{ti+1, tj+1}−min{ti+1, tj}−min{ti, tj+1}+
min{ti, tj} = 0 for i 6= j. Thus the coordinates of Z are uncorrelated, which means
independence in case of a multivariate Gaussian distribution. Thus the increments of
W are independent. Moreover, for arbitrary 0 ≤ s < t it holds that W (t) − W (s) ∼
N (0, t−s). The normal distribution follows since Z = AY is Gaussian, obviously it holds
that EW (t) − EW (s) = 0 and Var(W (t) − W (s)) = Var(W (t)) − 2 cov(W (s),W (t)) +
Var(W (s)) = t− 2 min{s, t}+ s = t− s.

2. From Definition 3.1.1 the definition in Section 1.2 follows.
Since W (t)−W (s) ∼ N (0, t− s) for 0 ≤ s < t, it holds

cov(W (s),W (t)) = E[W (s)(W (t)−W (s)+W (s))] = EW (s)E(W (t)−W (s))+VarW (s) = s,



40 3 Wiener Process

thus it holds cov(W (s),W (t)) = min{s, t}. FromW (t)−W (s) ∼ N (0, t−s) andW (0) = 0
it also follows that EW (t) = 0, t ≥ 0. The fact that W is a Gaussian process, follows
from point 1) of the proof, relation Y = A−1Z.

Definition 3.1.2
The process {W (t), t ≥ 0}, W (t) = (W1(t), . . . ,Wd(t))>, t ≥ 0, is called d-dimensional Brow-
nian motion if Wi = {Wi(t), t ≥ 0} are independent Wiener processes, i = 1, . . . , d.
The definitions above and Exercise 3.1.2 ensure the existence of a Wiener process with

continuous paths. How do we find an explicit way of building these paths? We will show that
in the next section.

3.2 Explicit construction of the Wiener process
First we construct the Wiener process on the interval [0, 1]. The main idea of the construction
is to introduce a stochastic process X = {X(t), t ∈ [0, 1]} which is defined on a probability
subspace of (Ω,A,P) with X

d= W , where X(t) =
∑∞
n=1 cn(t)Yn, t ∈ [0, 1], {Yn}n∈N is a

sequence of i.i.d. N (0, 1)-random variables and cn(t) =
∫ t

0 Hn(s)ds, t ∈ [0, 1], n ∈ N. Here,
{Hn}n∈N is the orthonormal Haar basis in L2([0, 1]) which will be briefly introduced now.

3.2.1 Haar and Schauder functions
Definition 3.2.1
The functions Hn : [0, 1] → R, n ∈ N, are called Haar functions if H1(t) = 1, t ∈ [0, 1],
H2(t) = 1[0, 1

2 ](t) − 1( 1
2 ,1](t), Hk(t) = 2

n
2 (1In,k(t) − 1Jn,k(t)), t ∈ [0, 1], 2n < k ≤ 2n+1, where

In,k = [an,k, an,k + 2−n−1], Jn,k = (an,k + 2−n−1, an,k + 2−n], an,k = 2−n(k − 2n − 1), n ∈ N.

Fig. 3.1: Haar functions

Lemma 3.2.1
The function system {Hn}n∈N is an orthonormal basis in L2([0, 1]) with scalar product
< f, g >=

∫ 1
0 f(t)g(t)dt, f, g ∈ L2([0, 1]).

Proof The orthonormality of the system 〈Hk, Hn〉 = δkn, k, n ∈ N directly follows from Def-
inition 3.2.1. Now we prove the completeness of {Hn}n∈N. It is sufficient to show that for
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arbitrary function g ∈ L2([0, 1]) with 〈g,Hn〉 = 0, n ∈ N, it holds g = 0 almost everywhere on
[0, 1]. In fact, we always can write the indicator function of an interval 1[an,k,an,k+2−n−1] as a
linear combination of Hn, n ∈ N:

1[0, 1
2 ] = (H1 +H2)

2 ,

1( 1
2 ,1] = (H1 −H2)

2 ,

1[0, 1
4 ] =

(1[0, 1
2 ] + 1√

2H3)
2 , n = 1, k = 3

1( 1
4 ,

1
2 ] =

(1[0, 1
2 ] −

1√
2H3)

2 , n = 1, k = 3
...

1[an,k,an,k+2−n−1] =
(1[an,k,an,k+2−n] + 2−

n
2Hk)

2 , 2n < k ≤ 2n+1.

Therefore it holds
∫ (k+1)

2n
k

2n
g(t)dt = 0, n ∈ N0, k = 0, . . . , 2n − 1, and thus G(t) =

∫ t
0 g(s)ds = 0

for t = k
2n , n ∈ N0, k = 0, . . . , 2n − 1. Since G is continuous on [0, 1], it follows G(t) = 0,

t ∈ [0, 1], and thus g(s) = G′(s) = 0 for almost every s ∈ [0, 1].

From Lemma 3.2.1 it follows that two arbitrary functions f, g ∈ L2([0, 1]) have expan-
sions f =

∑∞
n=1〈f,Hn〉Hn and g =

∑∞
n=1〈g,Hn〉Hn (these series converge in L2([0, 1])) and

〈f, g〉 =
∑∞
n=1〈f,Hn〉〈g,Hn〉 (Parseval’s identity).

Definition 3.2.2
The functions Sn(t) =

∫ t
0 Hn(s)ds = 〈1[0,t], Hn〉, t ∈ [0, 1], n ∈ N are called Schauder functions.

Fig. 3.2: Schauder functions

Lemma 3.2.2
It holds:

1. Sn(t) ≥ 0, t ∈ [0, 1], n ∈ N,

2.
∑2n
k=1 S2n+k(t) ≤ 1

22−
n
2 , t ∈ [0, 1], n ∈ N,
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3. Let {an}n∈N be a sequence of real numbers with an = O(nε), ε < 1
2 , n → ∞. Then the

series
∑∞
n=1 anSn(t) converges absolutely and uniformly in t ∈ [0, 1] and therefore is a

continuous function on [0, 1].

Proof 1. follows directly from Definition 3.2.2.

2. follows since functions S2n+k for k = 1, . . . , 2n have disjoint supports and
S2n+k(t) ≤ S2n+k(an,k + 2−n−1) = 2−

n
2−1, t ∈ [0, 1].

3. It suffices to show that Rn = supt∈[0,1]
∑
k>2n |ak|Sk(t) −−−→n→∞

0. For every k ∈ N and
c > 0 it holds |ak| ≤ ckε. Therefore it holds for all t ∈ [0, 1], n ∈ N∑

2n<k≤2n+1

|ak|Sk(t) ≤ c · 2(n+1)ε ·
∑

2n<k≤2n+1

Sk(t) ≤ c · 2(n+1)ε · 2−
n
2−1 ≤ c · 2ε−n( 1

2−ε).

Since ε < 1
2 , it holds Rm ≤ c · 2

ε∑
n≥m 2−n( 1

2−ε) −−−−→
m→∞

0.

Lemma 3.2.3
Let {Yn}n∈N be a sequence of (not necessarily independent) random variables defined on
(Ω,A,P), Yn ∼ N (0, 1), n ∈ N. Then it holds |Yn| = O((logn)

1
2 ), n→∞, a.s.

Proof We have to show that for c >
√

2 and almost all ω ∈ Ω it exists a n0 = n0(ω, c) ∈ N
such that |Yn| ≤ c(logn)

1
2 for n ≥ n0. If Y ∼ N (0, 1), x > 0, it holds

Φ(x) := P(Y > x) = 1√
2π

∫ ∞
x

e−
y2
2 dy = 1√

2π

∫ ∞
x

(
−1
y

)
d

(
e−

y2
2

)
= 1√

2π

(1
x
e−

x2
2 −

∫ ∞
x

e−
y2
2

1
y2dy

)
≤ 1√

2π
1
x
e−

x2
2 .

(We can also show that Φ̄(x) ∼ 1√
2π

1
xe
−x

2
2 , x→∞.) Thus for c >

√
2 it holds

∑
n≥2

P(|Yn| > c(logn)
1
2 ) ≤ c−1 2√

2π
∑
n≥2

(logn)−
1
2 e−

c2
2 logn = c−1√2√

π

∑
n≥2

(logn)−
1
2n−

c2
2 <∞.

According to the Lemma of Borel-Cantelli (cf. WR, Lemma 2.2.1) it holds P(∩n ∪k≥n Ak) = 0
if
∑
k P(Ak) < ∞ with Ak = {|Yk| > c · (log k)

1
2 }, k ∈ N. Thus Ak occurs in infinite number

only with probability 0, which means |Yn| ≤ c(logn)
1
2 for n ≥ n0.

3.2.2 Wiener process with a.s. continuous paths

Lemma 3.2.4
Let {Yn}n∈N be a sequence of independent N (0, 1)-distributed random variables. Let {an}n∈N
and {bn}n∈N be sequences of numbers with

∑2m
k=1 |a2m+k| ≤ 2−

m
2 ,
∑2m
k=1 |b2m+k| ≤ 2−

m
2 , m ∈ N.

Then the limits U =
∑∞
n=1 anYn and V =

∑∞
n=1 bnYn, U ∼ N (0,

∑∞
n=1 a

2
n), V ∼ N (0,

∑∞
n=1 b

2
n)

exist a.s., where cov(U, V ) =
∑∞
n=1 anbn. U and V are independent if and only if cov(U, V ) = 0.
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Proof Lemma 3.2.2 and 3.2.3 reveal the a.s. existence of the limits U and V (replace an by
Yn and Sn by e.g. bn in Lemma 3.2.2). From the stability under convolution of the normal
distribution it follows for U (m) =

∑m
n=1 anYn, V (m) =

∑m
n=1 bnYn, that U (m) ∼ N (0,

∑m
n=1 a

2
n),

V (m) ∼ N (0,
∑m
n=1 b

2
n). Since U (m) d−→ U , V (m) d−→ V it follows U ∼ N (0,

∑∞
n=1 a

2
n), V ∼

N (0,
∑∞
n=1 b

2
n). Moreover, it holds

cov(U, V ) = E

 ∞∑
n,m=1

anbmYnYm

 =
∞∑

n,m=1
anbm E(YnYm)︸ ︷︷ ︸

δnm

=
∞∑
n=1

anbn,

according to the dominated convergence theorem of Lebesgue, since by Lemma 3.2.3 it holds
|Yn| ≤ c (logn)

1
2︸ ︷︷ ︸

≤cnε, ε< 1
2

, for n ≥ N0, and the dominated series converges according to Lemma 3.2.2:

2m+1∑
n,k=2m

anbkYnYk
a.s.
≤

2m+1∑
n,k=2m

anbkc
2nεkε ≤ c222ε(m+1) · 2−

m
2 · 2−

m
2 ≤ 2c22−(1−2ε)m, 1− 2ε > 0.

For sufficient large m it holds
∑∞
n,k=2m anbkYnYk ≤ 2c2∑∞

j=m 2−(1−2ε)j < ∞, and this series
converges a.s. Now we show

cov(U, V ) = 0 ⇐⇒ U and V are independent.

Independence always results in the uncorrelation of random variables. We prove the other
direction. From (U (m), V (m)) d−−−−→

m→∞
(U, V ) it follows ϕ(U(m),V (m)) −−−−→m→∞

ϕ(U,V ), thus

ϕ(U(m),V (m))(s, t) = lim
m→∞

E exp{i(t
m∑
k=1

akYk + s
m∑
n=1

bnYn)}

= lim
m→∞

E exp{i
m∑
k=1

(tak + sbk)Yk} = lim
m→∞

m∏
k=1

E exp{i(tak + sbk)Yk}

= lim
m→∞

m∏
k=1

exp{−(tak + sbk)2

2 } = exp{−
∞∑
k=1

(tak + sbk)2

2 }

= exp
{
− t

2

2

∞∑
k=1

a2
k

}
exp


ts

∞∑
k=1

akbk︸ ︷︷ ︸
cov(U,V )=0


exp

{
−s

2

2

∞∑
k=1

b2k

}
= ϕU (t)ϕV (s),

s, t ∈ R. Thus, U and V are independent if cov(U, V ) = 0.

Remark 3.2.1
Lemma 3.2.4 is a special case of the theory of Gaussian linear random functions indexed by
elements of a Hilbert space L. Here we choose L = l2, the space of sequences of real numbers
b = {bn}∞n=1 with the property ‖b‖2 :=

√∑∞
n=1 b

2
n <∞ eqipped by the scalar product 〈a, b〉2 :=∑∞

n=1 anbn, a, b ∈ l2. Let X = {X(a), a ∈ l2} be defined as X(a) = 〈a, Y 〉2 where Y =
{Yn}∞n=1 is introduced in Lemma 3.2.4. Then it follows easily that X(a) ∼ N(0, ‖a‖22) and
cov(X(a), X(b)) = 〈a, b〉2. It can be checked immediately that X is a Gaussian random function
which is called linear. Gaussian linear random functions play an important role in the theory
of L-valued Gaussian random elements, cf. [10, Chap. I, Sect. 4].
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Theorem 3.2.1
Let {Yn, n ∈ N} be a sequence of i.i.d. random variables that areN (0, 1)-distributed, defined on
a probability space (Ω,A,P). Then there exists a probability subspace (Ω0,A0,P) of (Ω,A,P)
and a stochastic process X = {X(t), t ∈ [0, 1]} on it such that X(t, ω) =

∑∞
n=1 Yn(ω)Sn(t),

t ∈ [0, 1], ω ∈ Ω0 and X d= W . Here, {Sn}n∈N is the family of Schauder functions.

Proof According to Lemma 3.2.2, 2) the coefficients Sn(t) fulfill the conditions of Lemma 3.2.4
for every t ∈ [0, 1]. In addition to that it exists according to Lemma 3.2.3 a subset Ω0 ⊂ Ω,
Ω0 ∈ A with P(Ω0) = 1, such that for every ω ∈ Ω0 the relation |Yn(ω)| = O(

√
logn), n→∞,

holds. Let A0 = A ∩ Ω0. We restrict the probability space to (Ω0,A0,P). Then condition
an = Yn(ω) = O(nε), ε < 1

2 , is fulfilled since
√

logn < nε for sufficient large n, and according
to Lemma 3.2.2, 3) the series

∑∞
n=1 Yn(ω)Sn(t) converges absolutely and uniformly in t ∈ [0, 1]

to the function X(ω, t), ω ∈ Ω0, which is a continuous function in t for every ω ∈ Ω0. X(·, t)
is a random variable since in Lemma 3.2.4 the convergence of this series holds almost surely.
Moreover it holds X(t) ∼ N (0,

∑∞
n=1 S

2
n(t)), t ∈ [0, 1].

We show that this stochastic process, defined on (Ω0,A0,P), is a Wiener process. For that we
check the conditions of Definition 3.1.1. We consider arbitrary times 0 ≤ t1 < t2, t3 < t4 ≤ 1
and evaluate

cov(X(t2)−X(t1), X(t4)−X(t3)) = cov(
∞∑
n=1

Yn(Sn(t2)− Sn(t1)),
∞∑
n=1

Yn(Sn(t4)− Sn(t3)))

=
∞∑
n=1

(Sn(t2)− Sn(t1))(Sn(t4)− Sn(t3))

=
∞∑
n=1

(〈Hn, 1[0,t2]〉 − 〈Hn, 1[0,t1]〉)×

(〈Hn, 1[0,t4]〉 − 〈Hn, 1[0,t3]〉)

=
∞∑
n=1
〈Hn, 1[0,t2] − 1[0,t1]〉〈Hn, 1[0,t4] − 1[0,t3]〉

= 〈1[0,t2] − 1[0,t1], 1[0,t4] − 1[0,t3]〉
= 〈1[0,t2], 1[0,t4]〉 − 〈1[0,t1], 1[0,t4]〉
−〈1[0,t2], 1[0,t3]〉+ 〈1[0,t1], 1[0,t3]〉

= min{t2, t4} −min{t1, t4} −min{t2, t3}+ min{t1, t3},

by Parseval inequality and since 〈1[0,s], 1[0,t]〉 =
∫min{s,t}

0 du = min{s, t}, s, t ∈ [0, 1]. If 0 ≤
t1 < t2 ≤ t3 < t4 < 1, it holds cov(X(t2) − X(t1), X(t4) − X(t3)) = t2 − t1 − t2 + t1 = 0,
thus the increments of X (according to Lemma 3.2.4) are independent. Moreover it holds
X(0) ∼ N (0,

∑∞
n=1 S

2
n(0)) = N (0, 0), therefore X(0) a.s.= 0. For t1 = t3 = s, t2 = t4 = t it

follows that Var(X(t) − X(s)) = t − s − s + s = t − s, 0 ≤ s < t ≤ 1. Since X(t) − X(s) =∑∞
n=1 Yn(Sn(t) − Sn(s)) ∼ N(0,Var(X(t) − X(s))) by Lemma 3.2.4, it holds X(t) − X(s) ∼

N (0, t− s), and X d= W according to Definition 3.1.1.

Remark 3.2.2 1. Theorem 3.2.1 is the basis for an approximative simulation of the paths
of a Brownian motion through the partial sums X(n)(t) =

∑n
k=1 YkSk(t), t ∈ [0, 1], for

sufficient large n ∈ N.
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2. The construction in Theorem 3.2.1 can be used to construct the Wiener process with
continuous paths on the interval [0, t0] for arbitrary t0 > 0. If W = {W (t), t ∈ [0, 1]} is
a Wiener process on [0, 1] then Y = {Y (t), t ∈ [0, t0]} with Y (t) =

√
t0W ( tt0 ), t ∈ [0, t0],

is a Wiener process on [0, t0].
Exercise 3.2.1
Prove that.

3. The Wiener process W with continuous paths on R+ can be constructed as follows. Let
W (n) = {W (n)(t), t ∈ [0, 1]} be independent copies of the Wiener process as in Theorem
3.2.1. Define W (t) =

∑∞
n=1 1(t ∈ [n − 1, n])[

∑n−1
k=1 W

(k)(1) + W (n)(t − (n − 1))], t ≥ 0,
thus,

W (t) =


W (1)(t), t ∈ [0, 1],
W (1)(1) +W (2)(t− 1), t ∈ [1, 2],
W (1)(1) +W (2)(1) +W (3)(t− 2), t ∈ [2, 3],
etc.

Fig. 3.3:

Exercise 3.2.2
Show that the introduced stochastic process W = {W (t), t ≥ 0} is a Wiener process on R+.

3.3 Distribution and path properties of Wiener processes
3.3.1 Donsker’s invariance principle
Let {W (t), t ∈ [0, 1]} be a Wiener process and Z1, Z2, . . . a sequence of independent random
variables with EZi = 0, VarZi = 1, e.g., one can choose P(Zi = 1) = P(Zi = −1) = 1

2 for all
i ≥ 1. For every n ∈ N we define {W̃ (n)(t), t ∈ [0, 1]} by

W̃ (n)(t) =
Sbntc√
n

+ (nt− bntc)
Zbntc+1√

n
, (3.3.1)

where Si = Z1 + . . .+ Zi, i ≥ 1, S0 = 0.
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Construct an approximation of W by a random walk W̃ (n) with step size Zi as n→∞.
Theorem 3.3.1 (Invariance principle):
Let PW̃ (n) and PW be the distributions of W̃ (n) and W in C[0, 1]. Then it holds PW̃ (n)

W⇒ PW ,

as n → ∞, where W⇒ means the weak convergence in C[0, 1], i.e., for any bounded continuous
function f : C[0, 1]→ R

∫
fdPW̃ (n) →

n→∞

∫
fdPW .

Remark 3.3.1
In the construction of the approximation W̃ (n)(t), any i.i.d. sequence {Zn}n∈N with EZn = 0,
VarZn = 1 can be used. This was proven by Monroe Donsker (1951) and bears the name of in-
variance principle since the approximation W̃ (n)(·) ofW (·) does not depend on the distribution
of Z1.
This theorem means the convergence of distribution of the whole paths of W̃ (n)(·) to that of

W (·). It is quite theoretical to prove (see e.g. [13] 21.6-21.8). Instead, we shall prove only the
convergence of finite dimensional distributions.
Lemma 3.3.1 (Convergence of finite dimensional distributions):
For every k ≥ 1 and arbitrary t1, . . . , tk ∈ [0, 1] it holds:(

W̃ (n)(t1), . . . , W̃ (n)(tk)
)> d→ (W (t1), . . . ,W (tk))> , n→∞.

Proof For k = 1, the assertion is an easy corollary from the central limit theorem. Consider
the special case k = 2 (for k > 2 the proof is analogous). Let t1 < t2. For all s1, s2 ∈ R it
holds:

s1W̃
(n)(t1) + s2W̃

(n)(t2) = (s1 + s2)
Sbnt1c√

n
+ s2

(Sbnt2c − Sbnt1c+1)
√
n

+Zbnt1c+1

(
(nt1 − bnt1c)

s1√
n

+ s2√
n

)
+Zbnt2c+1(nt2 − bnt2c)

s2√
n
,

since Sbnt2c = Sbnt1c + Sbnt2c − Sbnt1c+1 + Zbnt1c+1.
Now observe that the 4 summands on the right-hand-side of the previous equation are inde-
pendent and moreover that the latter two summands converge (a.s. and therefore particularly
in distribution) to zero.
Consequently, it holds

lim
n→∞

Eei(s1W̃ (n)(t1)+s2W̃ (n)(t2)) = lim
n→∞

Eei
s1+s2√

n
Sbnt1cEei

s2√
n

(Sbnt2c−Sbnt1c+1)

= lim
n→∞

Ee
i(s1+s2)

√
bnt1c
n

Sbnt1c√
bnt1cEei

s2√
n
Sbnt2c−bnt1c−1

CLT= e−
t1
2 (s1+s2)2

e−
t2−t1

2 s2
2

= e−
1
2 (s2

1t1+2s1s2t1+s2
2t2)

= e−
1
2 (s2

1t1+2s1s2 min{t1,t2}+s2
2t2)

= ϕ(W (t1),W (t2))(s1, s2),

where ϕ(W (t1),W (t2)) is the characteristic function of (W (t1),W (t2))>.
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In detail, it holds
√
bnt1c
n →

n→∞

√
t1,

Sbnt1c√
bnt1c

d→
n→∞

Y1 ∼ N(0, 1) by the central limit theo-

rem, analogously 1√
n
Sbnt2c−bnt1c−1 =

√
bnt2c−bnt1c−1

n .
Sbnt2c−bnt1c−1√
bnt2c−bnt1c−1

d→
n→∞

√
t2 − t1Y2, where

Y2 ∼ N(0, 1) is independent of Y1. The equivalence of convergence in distribution and weak
convergence together with the fact that ϕY (s) = EeisY = e−s

2σ2/2 if Y ∼ N(0, σ2) finishes the
proof.

3.3.2 Law of large numbers
Introduce

Mt = max
s∈[0,t]

W (s), t > 0, (3.3.2)

where W = {W (t), t ≥ 0} is a Wiener process. The mapping Mt : Ω→ [0,∞) given in relation
(3.3.2) is a well-defined random variable since it holds: max

s∈[0,t]
W (s, ω) = limn→∞ max

i=1,...,n
W ( itn , ω)

for all ω ∈ Ω since the trajectories of {W (t), t ≥ 0} are continuous.
The following theorem will be proven in Section 5.6:

Theorem 3.3.2
Let W = {W (t), t ≥ 0} be the Wiener process defined on a probability space (Ω,A,P). Then
it holds:

P (Mt > x) = 2P(W (t) > x) =
√

2
πt

∫ ∞
x

e−
y2
2t dy, x ≥ 0, t > 0. (3.3.3)

From (3.3.3) it follows that maxt∈[0,1]W (t) has an exponentially bounded tail: thus max
t∈[0,1]

W (t)

has finite k-th moments, k ∈ N.
Corollary 3.3.1 (Law of large numbers):
Let {W (t), t ≥ 0} be a Wiener process. Then

W (t)
t

a.s.−→
t→∞

0.

Proof For any t ≥ 0, ∃! n ∈ N : t ∈ [n, n+ 1). Show that

W (t)
t

a.s.∼ W (n)
n

(n, t→∞, n ∈ N) and W (n)
n

a.s.→ 0 (n→∞).

Using the strong law of large numbers, we get

1
n
W (n) = 1

n

n∑
i=1

(W (i)−W (i− 1)) a.s.−→
n→∞

EW (1) = 0

due to the independence and stationarity of incrementsW (i)−W (i−1) d= W (1)−W (0) = W (1),
i ∈ N of W , and since W (1) ∼ N(0, 1). Now,∣∣∣∣W (t)

t
− W (n)

n

∣∣∣∣ ≤ ∣∣∣∣W (t)
t
− W (n)

t

∣∣∣∣+ ∣∣∣∣W (n)
t
− W (n)

n

∣∣∣∣
≤
∣∣∣∣W (n)

(1
t
− 1
n

)∣∣∣∣+ 1
n

sup
s∈[0,1]

|W (n+ s)−W (n)|

≤
∣∣∣∣ 2nW (n)

∣∣∣∣+ Z(n)
n

,
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where Z(n) = sups∈[0,1] |W (n+ s)−W (n)|, n ∈ N is a sequence of i.i.d. random variables with
Z(n) d= Z(0) = sups∈[0,1] |W (s)|. Show that EZ(0) <∞. If it is so then

Z(n)
n

= 1
n

n∑
i=1

Z(i)− 1
n

n−1∑
i=1

Z(i) a.s.−→
n→∞

EZ(0)− EZ(0) = 0

by the strong law of large numbers.
Estimate

P (Z(0) > x) ≤ P
(

max
s∈[0,1]

W (s) > x

)
+ P

(
max
s∈[0,1]

(−W (s)) > x

)

= 2P
(

max
s∈[0,1]

W (s) > x

)
= 2

√
2
π

∞∫
x

e−y
2/2dy

by Theorem 3.3.2, since {−W (s), s ≥ 0} is a Wiener process as well due to its symmetry, cf.
Theorem 3.3.3. Then

EZ(0) =
∞∫
0

P (Z(0) > x)dx ≤ 2
√

2
π

∞∫
0

∞∫
x

e−y
2/2dydx = 4E(X1(X ≥ 0)) <∞

for X ∼ N(0, 1).

3.3.3 Invariance properties

Specific transformations of the Wiener process yield again the Wiener process.
Theorem 3.3.3
Let {W (t), t ≥ 0} be a Wiener process. Then the stochastic processes {Y (i)(t), t ≥ 0},
i = 1, . . . , 4, with

Y (1)(t) = −W (t), (Symmetry or reflection at t = 0)
Y (2)(t) = W (t+ t0)−W (t0) for a t0 > 0, (Translation of the origin)
Y (3)(t) =

√
cW ( tc) for a c > 0, (Scaling)

Y (4)(t) =
{
tW (1

t ), t > 0,
0, t = 0. (Time inversion)

are Wiener processes as well.

Proof 1. Y (i)(0) = 0 a.s., i = 1, . . . , 4.

2. Y (i), i = 1, . . . , 4, have independent increments with Y (i)(t2)− Y (i)(t1) ∼ N (0, t2 − t1).

3. Y (i), i = 1, . . . , 3, have continuous trajectories. {Y (4)(t), t ≥ 0} has continuous trajecto-
ries for t > 0.

4. We have to prove that Y (4)(t) is a.s. continuous at t = 0, i.e. that limt→0 tW (1
t )

a.s.= 0.
limt→0 tW (1

t ) = limt→∞
W (t)
t

a.s.= 0 by Corollary 3.3.1.
Then Y (i), i = 1, . . . , 4 are Wiener processes by Definition 3.1.1.
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3.3.4 Path properties
Corollary 3.3.2
Let {W (t), t ≥ 0} be the Wiener process. Then it holds:

P
(

sup
t≥0

W (t) =∞
)

= P
(

inf
t≥0

W (t) = −∞
)

= 1,

and consequently

P
(

sup
t≥0

W (t) =∞, inf
t≥0

W (t) = −∞
)

= 1.

Proof For x, c > 0 it holds:

P
(

sup
t≥0

W (t) > x

)
= P

(
sup
t≥0

W

(
t

c

)
>

x√
c

)
= P

(
sup
t≥0

W (t) > x√
c

)
(3.3.4)

→
c→+∞

P(sup
t≥0

W (t) > 0)

→
c→+0

P(sup
t≥0

W (t) = +∞)

does not depend on x. Then

1 = P
({

sup
t≥0

W (t) = 0
}
∪
{

sup
t≥0

W (t) > 0
})

= P
(

sup
t≥0

W (t) = 0
)

+ P
(

sup
t≥0

W (t) > 0
)

︸ ︷︷ ︸
P

(
sup
t≥0

W (t)=+∞
)

.

Moreover, it holds

P
(

sup
t≥0

W (t) = 0
)

= P
(

sup
t≥0

W (t) ≤ 0
)
≤ P

(
W (1) ≤ 0, sup

t≥1
W (t) ≤ 0

)

= P
(
W (1) ≤ 0, sup

t≥1
(W (t)−W (1)) ≤ −W (1)

)

=
∫ 0

−∞
P

sup
t≥1

(W (t)−W (1)︸ ︷︷ ︸
Y (2)(t) d=W (t)

) ≤ −W (1) |W (1) = x

PW (1) (dx)

Y (2) d=W=
∫ 0

−∞
P
(

sup
t≥0

W (t) ≤ −x
)

PW (1) (dx)

=
∫ 0

−∞
P
(

sup
t≥0

W (t) = 0
)

PW (1) (dx)

= P
(

sup
t≥0

W (t) = 0
)

1
2 ,

since supt≥0W (t) ≥ 0 a.s., and P
(
supt≥0W (t) ≤ −x

)
does not depend on x by relation (3.3.4),

so take x = 0. Thus P
(
supt≥0W (t) = 0

)
= 0 and hence P

(
supt≥0W (t) =∞

)
= 1.



50 3 Wiener Process

Analogously one can show that P (inft≥0W (t) = −∞) = 1.
The remaining part of the claim follows from P (A ∩ B) = 1 for any A,B ∈ A with
P (A) = P (B) = 1, since P (A ∩B) = P (A) + P (B)− P (A ∪B) = 1 + 1− 1 = 1.

Remark 3.3.2 1. P
(
supt≥0X(t) =∞, inft≥0X(t) = −∞

)
= 1 implies that the trajecto-

ries of W oscillate between positive and negative values on [0,∞) an infinite number of
times.

2. Additionally to the strong law of large numbers (Corollary 3.3.1), the Wiener process
satisfies the law of iterated logarithm:

lim sup
t→∞

W (t)√
2t log log(t)

a.s.= 1, lim inf
t→∞

W (t)√
2t log log(t)

a.s.= −1.

Its proof can be found e.g. in [3, Chapter 19, Theorem 3.2].
Corollary 3.3.3
Let {W (t), t ≥ 0} be a Wiener process. Then it holds

P (ω ∈ Ω : W (t, ω) is nowhere differentiable on [0,∞)) = 1.

Proof

{ω ∈ Ω : W (t, ω) is nowhere differentiable on [0,∞)}
= ∩∞n=0{ω ∈ Ω : W (t, ω) is nowhere differentiable on [n, n+ 1)}.

It is sufficient to show that P(ω ∈ Ω : W (t, ω) is differentiable for a t0 = t0(ω) ∈ [0, 1]) = 0.
Define the set

Anm =
{
ω ∈ Ω : ∃ t0 = t0(ω) ∈ [0, 1] with |W (t0(ω) + h, ω)−W (t0(ω), ω))| ≤ mh, ∀h ∈

[
0, 4
n

]}
.

Then it holds

{ω ∈ Ω : W (t, ω) differentiable for a t0 = t0(ω)} ⊆
⋃
m≥1

⋃
n≥1

Anm.

We have to show P(∪m≥1 ∪n≥1 Anm) = 0. Since P
( ⋃
m≥1

⋃
n≥1

Anm

)
≤

∑
m≥1

∑
n≥1

P(Anm), it is

sufficient to show that P(Anm) = 0 ∀n,m ∈ N.
Let k0(ω) = argmin k=1,...,n{ kn ≥ t0(ω)}. Then it holds for ω ∈ Anm and j = 0, 1, 2∣∣∣∣W (

k0(ω) + j + 1
n

, ω

)
−W

(
k0(ω) + j

n
, ω

)∣∣∣∣ ≤ ∣∣∣∣W (
k0(ω) + j + 1

n
, ω

)
−W (t0(ω), ω)

∣∣∣∣
+
∣∣∣∣W (

k0(ω) + j

n
, ω

)
−W (t0(ω), ω)

∣∣∣∣
≤ 8m

n
.

Let ∆n(k) = W (k+1
n )−W ( kn) ∼ N(0, 1/n). Then

P (|∆n(k)| ≤ x) =
√
n

2π

x∫
−x

e−
nt2

2 dt ≤ 2x
√
n√

2π
, ∀ x ≥ 0.



3 Wiener Process 51

Then it holds

P(Anm) ≤ P

 n⋃
k=0

2⋂
j=0

{
|∆n(k + j)| ≤ 8m

n

}
≤

n∑
k=0

P

 2⋂
j=0

{
|∆n(k + j)| ≤ 8m

n

} =
n∑
k=0

(
P
(
|∆n(0)| ≤ 8m

n

))3

≤ (n+ 1)
( 16m√

2πn

)3
→ 0, n→∞,

by the independence and stationarity of the increments of the Wiener process.
Since Anm ⊂ An+1,m, it follows P (Anm)↗ and hence P(Anm) = 0 ∀ n,m ∈ N.

Corollary 3.3.4
With probability 1 it holds:

sup
n≥1

sup
0≤t0<...<tn≤1

n∑
i=1
|W (ti)−W (ti−1)| =∞,

i.e. {W (t), t ∈ [0, 1]} possesses a.s. trajectories with unbounded variation.

Proof Since every function g : [0, 1] → R with bounded variation is differentiable almost ev-
erywhere1, the assertion follows from Corollary 3.3.3.

Alternative proof
It is sufficient to show that limn→∞

∑2n
i=1

∣∣∣W (
it
2n
)
−W

(
(i−1)t

2n
)∣∣∣ = ∞ for t = 1. Since W has

independent and stationary increments, it holds

2n∑
i=1

∣∣∣∣W (
it

2n
)
−W

((i− 1)t
2n

)∣∣∣∣︸ ︷︷ ︸
Yi
d=
√

t
2nXi,Xi∼N(0,1) - i.i.d.

=
√
t

2n/2
2n∑
i=1
|Xi| = 2n/2

√
t

1
2n

2n∑
i=1
|Xi|︸ ︷︷ ︸

a.s.→ E|X1|,n→∞

a.s∼
n→∞

2n/2
√
tE|X1|

by the strong law of large numbers, where X1 ∼ N(0, 1). Hence,
2n∑
i=1

∣∣∣W (
it
2n
)
−W

(
(i−1)t

2n
)∣∣∣ a.s→

n→∞
+∞.

Remark 3.3.3
The quadratic variation of W over [s, t] is equal to t− s;

lim
n→∞

n∑
i=1

∣∣∣W (t(n)
i )−W (t(n)

i−1)
∣∣∣2 = t− s

a.s. or in L2, where Γn = {t(n)
i }ni=1 is a sequence of subdivisions of [s, t] such that

s ≤ t1 ≤ · · · ≤ tn ≤ t and Γn ⊆ Γn+1, ∀ n ∈ N.
1This follows from the fact that any function with bounded variation can be represented as a difference of
two non-decreasing monotone functions, each of which is differentiable a.e. on [0,1] by Lebesgue’s theorem.
Cf. [14], 6.2, p. 335
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3.4 Additional exercises
Exercise 3.4.1
Give an intuitive (exact!) method to realize trajectories of a Wiener process
W = {W (t), t ∈ [0, 1]}. Thereby use the independence and the distribution of the increments
of W .
Exercise 3.4.2
Given are the Wiener process W = {W (t), t ∈ [0, 1]} and L := argmaxt∈[0,1]W (t). Show that
it holds:

P(L ≤ x) = 2
π

arcsin
√
x, x ∈ [0, 1].

Hint: Use relation maxr∈[0,t]W (r) d= |W (t)|.
Exercise 3.4.3
For the simulation of a Wiener process W = {W (t), t ∈ [0, 1]} we also can use the approxima-
tion

Wn(t) =
n∑
k=1

Sk(t)zk

where Sk(t), t ∈ [0, 1], k ≥ 1 are the Schauder functions, and zk ∼ N (0, 1) i.i.d. random
variables and the series converges almost surely for all t ∈ [0, 1] (n → ∞). Show that for all
t ∈ [0, 1] the approximation Wn(t) also converges in the L2-sense to W (t).
Exercise 3.4.4
For the Wiener process W = {W (t), t ≥ 0} consider the process of the maximum M = {Mt :=
maxs∈[0,t]W (s), t ≥ 0}. Show that it holds:

a) The density fMt of the maximum Mt is given by

fMt(x) =
√

2
πt

exp
{
−x

2

2t

}
1{x ≥ 0}.

b) Expected value and variance of Mt are given by

EMt =
√

2t
π
, VarMt = t(1− 2/π).

Now we define τ(x) := argmin s∈R{W (s) = x} as the first point in time for which the Wiener
process takes value x.

c) Determine the density of τ(x) and show that Eτ(x) =∞.
Exercise 3.4.5
Let the Wiener process W = {W (t), t ≥ 0} be given. Quantity Q(a, b) denotes the probability
that W exceeds the half line y = at+ b, t ≥ 0, a, b > 0. Prove that

a) Q(a, b) = Q(b, a) and Q(a, b1 + b2) = Q(a, b1)Q(a, b2),

b) Q(a, b) is given by Q(a, b) = exp{−2ab}.
Exercise 3.4.6
Show that the Wiener process is a.s. γ-Hölder-continuous with γ ∈ (0, 1/2).
Exercise 3.4.7
Show that the Wiener process is a.s. not absolutely continuous.
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Definition 4.0.1
A stochastic process {X(t), t ≥ 0} is called Lévy process, if

1. X(0) = 0 a.s.,

2. {X(t)} has stationary and independent increments,

3. {X(t)} is stochastically continuous, i.e for an arbitrary ε > 0, t0 ≥ 0:

lim
t→t0

P(|X(t)−X(t0)| > ε) = 0.

Remark 4.0.1 • One can easily see that a compound Poisson process
X = {X(t) =

∑N(t)
i=1 Ui · 1(N(t) > 0), t ≥ 0} fulfills the three conditions, where {Ui}i≥1

are i.i.d. and N = {N(t), t ≥ 0} is a homogeneous Poisson process with intensity λ.
Indeed for arbitrary ε > 0 it holds

P (|X(t)−X(t0)| > ε) ≤ P(|X(t)−X(t0)︸ ︷︷ ︸
d=X(t−t0)

| > 0) = P(N(t−t0) > 0) = 1−e−λ|t−t0| −−−→
t→t0

0.

Then a compound Poisson process is a Lévy process.

• It holds for the Wiener process W for arbitrary ε > 0

P (|W (t)−W (t0)| > ε) =
√

2
π(t− t0)

∫ ∞
ε

exp
(
− y2

2(t− t0)

)
dy

x= y√
t−t0=

√
2
π

∫ ∞
ε√
t−t0

e−
x2
2 dx −−−→

t→t0
0.

Hence, the Wiener process is a Lévy process as well.

Later we shall show that all Lévy processes are mixtures and a limiting case of a compound
Poisson and Wiener processes.

4.1 Infinite Divisibility

Definition 4.1.1
Let X : Ω → R be an arbitrary random variable. Then X is called infinitely divisible, if for
arbitrary n ∈ N there exist i.i.d. random variables Y (n)

1 , . . . , Y
(n)
n with X d= Y

(n)
1 + . . .+ Y

(n)
n .

53
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Lemma 4.1.1
The random variable X : Ω→ R is infinitely divisible if and only if the characteristic function
ϕX of X can be expressed for every n ≥ 1 in the form

ϕX(s) = (ϕn(s))n for all s ∈ R,

where ϕn are characteristic functions of random variables.

Proof „ ⇒ “ Let Y (n)
1 , . . . , Y

(n)
n be i.i.d. random variables„ X d= Y

(n)
1 + . . . + Y

(n)
n . Hence, it

follows that ϕX(s) =
∏n
i=1 ϕY (n)

i

(s) = (ϕn(s))n.

“ ⇐ “ Now assume that ϕX(s) = (ϕn(s))n, s ∈ R. Then there exist Y (n)
1 , . . . , Y

(n)
n i.i.d.

with characteristic function ϕn and ϕ
Y

(n)
1 +···+Y (n)

n
(s) = (ϕn(s))n = ϕX(s). By the uniqueness

theorem for characteristic functions it follows that X d= Y
(n)

1 + . . .+ Y
(n)
n .

Theorem 4.1.1
Let {X(t), t ≥ 0} be a Lévy process. Then the random variable X(t) is infinitely divisible for
every t ≥ 0.

Proof For arbitrary t ≥ 0 and n ∈ N it obviously holds that

X (t) = X

(
t

n

)
+
(
X

(2t
n

)
−X

(
t

n

))
+ . . .+

(
X

(
nt

n

)
−X

((n− 1)t
n

))
.

Since {X(t)} has independent and stationary increments, the summands are obviously inde-
pendent and identically distributed random variables.

Let us recall a lemma from the basic probability course:

Lemma 4.1.2
Let X1, X2, . . . : Ω→ R be a sequence of random variables. If there exists a function ϕ : R→ C,
such that ϕ(s) is continuous in s = 0 and limn→∞ ϕXn(s) = ϕ(s) for all s ∈ R, then ϕ is the
characteristic function of a random variable X and it holds that Xn

d−→ X.

Definition 4.1.2
Let ν be a measure on the measurable space (R,B(R)). Then ν is called a Lévy measure, if
ν({0}) = 0 and ∫

R
min{y2, 1}ν(dy) <∞. (4.1.1)

Remark 4.1.1 • Apparently every Lévy measure is σ-finite and

ν ((−a, a)c) <∞, for all a > 0, (4.1.2)

where (−a, a)c = R \ (−a, a).

• In particular every finite measure ν is a Lévy measure, if ν({0}) = 0.

• If ν(dy) = g(y)dy then g(y) = O
(

1
|y|δ
)
for y → 0, where δ < 3.
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Fig. 4.1: y 7→ min{y2, 1}

• A condition equivalent to (4.1.1) is∫
R

y2

1 + y2 ν(dy) <∞, since y2

1 + y2 ≤ min
{
y2, 1

}
≤ 2 y2

1 + y2 . (4.1.3)

Theorem 4.1.2
Let a ∈ R, b ≥ 0 be arbitrary and let ν be an arbitrary Lévy measure. Let the characteristic
function of a random variable X : Ω→ R be given through the function ϕ : R→ C with

ϕ(s) = exp
{
ias− bs2

2 +
∫
R

(
eisy − 1− isy1(y ∈ (−1, 1))

)
ν(dy)

}
for all s ∈ R. (4.1.4)

Then X is infinitely divisible.
Remark 4.1.2 • The formula (4.1.4) is also called Lévy-Khintchine formula.

• The inversion of Theorem 4.1.2 also holds, hence every infinitely divisible random variable
has such a representation. Therefore the characteristic triplet (a, b, ν) is also called Lévy
characteristic of an infinitely divisible random variable.

• The map η : R→ C with

η(s) = ias− bs2

2 +
∫
R

(
eisy − 1− isy1(y ∈ (−1, 1))

)
ν(dy)

from (4.1.4) is called Lévy exponent of this infinitely divisible distribution.

Proof of Theorem 4.1.2
1st step: Show that ϕ is a characteristic function.

• For y ∈ (−1, 1) it holds

∣∣∣eisy − 1− isy
∣∣∣ =

∣∣∣∣∣
∞∑
k=0

(isy)k

k! − 1− isy
∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=2

(isy)k

k!

∣∣∣∣∣ ≤ y2
∞∑
k=2

|s|k

k!︸ ︷︷ ︸
:=c

≤ y2c

Hence it follows from (4.1.1) that the integral in (4.1.4) exists and therefore it is well-
defined.
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• Let now {cn} be an arbitrary sequence of numbers with cn > cn+1 > . . . > 0 and
limn→∞ cn = 0. Then the function ϕn : R→ C with

ϕn(s) := exp
{
is

(
a−

∫
[−cn,cn]c∩(−1,1)

yν(dy)
)
− bs2

2

}
exp

{∫
[−cn,cn]c

(
eisy − 1

)
ν(dy)

}

is the characteristic function of the sum of independent random variables Z(n)
1 and Z(n)

2 ,
since
– the first factor is the characteristic function of the normal distribution with expec-

tation a−
∫

[−cn,cn]c∩(−1,1) yν(dy) and variance b.
– the second factor is the characteristic function of a compound Poisson distribution

with parameters

λ = ν([−cn, cn]c) and PU (·) = ν(· ∩ [−cn, cn]c)/ν([−cn, cn]c))

by Theorem 2.2.2, 2.

• Furthermore limn→∞ ϕn(s) = ϕ(s) for all s ∈ R, where ϕ is obviously continuous in 0,
since it holds for the function ψ : R→ C in the exponent of (4.1.4)

ψ(s) =
∫
R

(
eisy − 1− isy1 (y ∈ (−1, 1))

)
ν(dy) for all s ∈ R

that |ψ(s)| ≤ cs2 ∫
(−1,1) y

2ν(dy) +
∫

(−1,1)c
∣∣eisy − 1

∣∣ ν(dy). Out of this and from (4.1.2) it
follows by Lebesgue’s theorem that lim

s→0
ψ(s) = 0.

• Lemma 4.1.2 yields that the function ϕ given in (4.1.4) is the characteristic function of a
random variable.

2nd step:
The infinite divisibility of this random variable follows from Lemma 4.1.1 and out of the fact,
that for arbitrary n ∈ N ν

n is also a Lévy measure and that

ϕn(s) = exp
{
i
a

n
s−

b
ns

2

2 +
∫
R

(
eisy − 1− isy1(y ∈ (−1, 1))

)(ν
n

)
(dy)

}
for all s ∈ R.

Remark 4.1.3
By the proof of Theorem 4.1.2, it holds X d= limn→∞(Yn+Zn) for an infinitely divisible random
variable X, where the limit is a limit in distribution, and {Yn} and {Zn} are independent
sequences of random variables such that Yn is normally distributed and Zn is compound Poisson
distributed. Due to this, the part as − bs2/2 is called the Gaussian part, and ψ(s) the jump
part of the Lévy exponent η(s).

4.2 Lévy-Khintchine Representation
Let {X(t), t ≥ 0} be a Lévy process. We want to represent the characteristic function of X(t),
t ≥ 0, through the Lévy-Khintchine formula.
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Lemma 4.2.1
Let {X(t), t ≥ 0} be a stochastically continuous process, i.e. for all ε > 0 and t0 ≥ 0 it holds
that limt→t0 P(|X(t) −X(t0)| > ε) = 0. Then for every s ∈ R, t 7−→ ϕX(t)(s) is a continuous
map from [0,∞) to C.

Proof Fix an s ∈ R. It holds that

• y 7−→ eisy continuous in 0, i.e. for all ε > 0 there exists a δ1 > 0, such that

sup
y∈(−δ1,δ1)

∣∣∣eisy − 1
∣∣∣ < ε

2 .

• {X(t), t ≥ 0} is stochastically continuous, i.e. for all t0 ≥ 0 there exists a δ2 > 0, such
that

sup
t≥0, |t−t0|<δ2

P (|X(t)−X(t0)| > δ1) < ε

4 .

• Hence, it follows that for s ∈ R, t ≥ 0 and |t− t0| < δ2 it holds∣∣∣ϕX(t)(s)− ϕX(t0)(s)
∣∣∣ =

∣∣∣E (eisX(t) − eisX(t0)
)∣∣∣ ≤ E

∣∣∣eisX(t0)
(
eis(X(t)−X(t0)) − 1

)∣∣∣
= E

∣∣∣eis(X(t)−X(t0)) − 1
∣∣∣ =

∫
R

∣∣∣eisy − 1
∣∣∣PX(t)−X(t0)(dy)

≤
∫

(−δ1,δ1)

∣∣∣eisy − 1
∣∣∣PX(t)−X(t0)(dy)

+
∫

(−δ1,δ1)c

∣∣∣eisy − 1
∣∣∣︸ ︷︷ ︸

≤2

PX(t)−X(t0)(dy)

≤ sup
y∈(−δ1,δ1)

∣∣∣eisy − 1
∣∣∣+ 2P (|X(t)−X(t0)| > δ1) ≤ ε.

Theorem 4.2.1
Let {X(t), t ≥ 0} be a Lévy process. Then for all t ≥ 0 it holds

ϕX(t)(s) = etη(s), s ∈ R,

where η : R→ C is a continuous function. In particular it holds that

ϕX(t)(s) = etη(s) =
(
eη(s)

)t
=
(
ϕX(1)(s)

)t
, for all s ∈ R, t ≥ 0.

Proof Due to stationarity and independence of increments we have for any t, t′ ≥ 0

ϕX(t+t′)(s) = EeisX(t+t′) = E
(
eisX(t)eis(X(t+t′)−X(t))

)
= ϕX(t)(s)ϕX(t′)(s), s ∈ R.

Let gs : [0,∞)→ C be defined by gs(t) = ϕX(t)(s), s ∈ R, then gs(t+ t′) = gs(t)gs(t′), t, t′ ≥ 0.
Since X(0) = 0, we have 

gs(t+ t′) = gs(t)gs(t′), t, t′ ≥ 0,
gs(0) = 1,
gs : [0,∞)→ C continuous.
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Hence there exists η : R → C such that gs(t) = eη(s)t for all s ∈ R, t ≥ 0. It is straightfor-
ward that ϕX(1)(s) = eη(s). It follows that η is continuous, since any characteristic function is
uniformly continuous, see the course on basic probability, Theorem 5.1.1, 4).

Definition 4.2.1
A family {Qλ, λ ∈ Λ} of probability measures is called weakly relatively compact, if an arbitrary
sequence of measures {Qλn}n∈N has a subsequence

{
Qλnk

}
k∈N

, which converges weakly.

Definition 4.2.2
Let B be the Borel σ-algebra on a metric space S. A family of probability measures Q =
{Qλ, λ ∈ Λ} on (S,B) is called tight if for all ε > 0 there exists a compact set Kε ∈ B such
that Qλ(Kc

ε) < ε for all λ ∈ Λ.

Lemma 4.2.2 (Prokhorov):
If the family of probability measures Q = {Qλ, λ ∈ Λ} on the metric measurable space (S,B)
is tight then it is weakly relatively compact. If S is a Polish1 space then every weakly relatively
compact family Q = {Qλ, λ ∈ Λ} of probability measures is also tight.

Proof: See [19, p. 318], [4, p. 154 and Appendix 2], [13, p. 261-263].

The lemma of Prokhorov is used to prove the weak convergence of a sequence of probability
measures, by checking its tightness and the convergence of all finite dimensional distributions.
In particular, if S is compact then every family of probability measures on (S,B) is tight, since
one can choose Kε = S for all ε > 0.

Remark 4.2.1
Lemma 4.2.2 holds also for uniformly bounded sequences of finite measures: Let µ1, µ2, . . . be
a sequence of finite measures (on B(R)) with

1. supn≥1 µn(R) ≤ c <∞ (uniform boundedness)

2. {µn} is tight.

Then {µn} is weakly relatively compact.

Proof See [20], page 122 - 123.

Theorem 4.2.2
Let {X(t), t ≥ 0} be a Lévy process. Then there exist a ∈ R, b ≥ 0 and a Lévy measure ν,
such that

ϕX(1)(s) = eias−
bs2

2 +
∫
R

(
eisy − 1− iy1(y ∈ (−1, 1))

)
ν(dy), for all s ∈ R.

Proof For all sequences (tn)n∈N ⊆ (0,∞) with lim
n→∞

tn = 0 it holds

η(s) =
(
etη(s)

)′∣∣∣∣
t=0

= lim
n→∞

etnη(s) − 1
tn

= lim
n→∞

ϕX(tn)(s)− 1
tn

, (4.2.1)

1Polish space is a complete separable metric space.
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since η : R → C is continuous. The latter convergence is even uniform in s ∈ [−s0, s0] for any
s0 > 0, since Taylor’s theorem yields

lim
n→∞

∣∣∣∣∣η(s)− etnη(s) − 1
tn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣η(s)− 1
tn

∞∑
k=1

(tnη(s))k

k!

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣ 1
tn

∞∑
k=2

(tnη(s))k

k!

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣η(s)
∞∑
k=1

(tnη(s))k

(k + 1)!

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣η2(s)tn
∞∑
k=1

(tnη(s))k−1

(k + 1)!

∣∣∣∣∣
≤ lim

n→∞
M2tn

∞∑
k=1

|tnM |k−1

(k + 1)! (where M := sup
s∈[−s0,s0]

|η(s)| <∞)

= lim
n→∞

M2tn

∞∑
k=1

|tnM |k−1

(k − 1)!
1

k(k + 1)

≤ lim
n→∞

M2tn

∞∑
k=1

|tnM |k−1

(k − 1)!

= lim
n→∞

M2tne
|tnM |

= 0.

Now let tn = 1
n and Pn be the distribution of X( 1

n). Hence it follows that

lim
n→∞

n

∫
R

(eisy − 1)Pn(ds) = lim
n→∞

ϕX( 1
n

)(s)− 1
1
n

= η(s), (4.2.2)

lim
n→∞

∫
R
n

∫ s0

−s0

(
eisy − 1

)
dsPn(dy) =

∫ s0

−s0
η(s)ds.

Representation (4.2.2) means that the distribution of X(1) is approximated by the distribution
of a compound Poisson random variable with intensity n and marks d= X(1/n). Consequently

lim
n→∞

n

∫
R

(
1− sin(s0y)

s0y

)
︸ ︷︷ ︸
≥0, for all s0y

Pn(dy) = lim
n→∞

n

∫
R
− 1

2s0

∫ s0

−s0

(
eisy − 1

)
dsPn(dy) = − 1

2s0

∫ s0

−s0
η(s)ds.

Since η : R → C is continuous with η(0) = 0, it follows from the mean value theorem that
for all ε > 0 it exists δ0 > 0 such that for all s0 ∈ (0, δ0),

∣∣∣− 1
2s0

∫ s0
−s0

η(s)ds
∣∣∣ < ε. Since

1− sin(s0y)
s0y

≥ 1
2 for |s0y| ≥ 2, it holds that for all ε > 0 there exist s0 > 0 such that

lim sup
n→∞

n

2

∫{
y:|y|≥ 2

s0

} Pn(dy) ≤ lim sup
n→∞

n

∫
R

(
1− sin(s0y)

s0y

)
Pn(dy) < ε.

Hence for all ε > 0 there exist s0 > 0, n0 > 0 such that

n

∫{
y:|y|≥ 2

s0

} Pn(dy) ≤ 4ε for all n ≥ n0.
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Decreasing s0 gives
n

∫{
y:|y|≥ 2

s0

} Pn(dy) ≤ 4ε for all n ≥ 1.

Since y2

1+y2 ≤ c
(
1− sin y

y

)
for all y 6= 0 and a c > 0, it follows that

sup
n≥1

n

∫
R

y2

1 + y2 Pn(dy) ≤ c′ for a c′ <∞.

Let now µn : B(R)→ [0,∞) be defined as

µn(B) = n

∫
B

y2

1 + y2 Pn(dy) for all B ∈ B(R).

It follows that {µn}n∈N is uniformly bounded, supn≥1 µn(R) ≤ c′. Furthermore it holds y2

1+y2 ≤
1, supn≥1 µn

({
y : |y| > 2

s0

})
≤ 4ε and {µn}n∈N is tight. By Lemma 4.2.1 it is relatively

compact, i.e., there exists {µnk}k∈N such that

lim
k→∞

∫
R
f(y)µnk(dy) =

∫
R
f(y)µ(dy)

for a finite measure µ and all f continuous and bounded. Let for s ∈ R the function fs : R→ C
be defined as

fs(y) =
{ (

eisy − 1− is sin(y)
) 1+y2

y2 , y 6= 0,
− s2

2 , otherwise.

Obviously fs is bounded and continuous and

η(s) = lim
n→∞

n

∫
R

(
eisy − 1

)
Pn(dy)

= lim
n→∞

(∫
R
fs(y)µn(dy) + isn

∫
R

sin yPn(dy)
)

= lim
k→∞

(∫
R
fs(y)µnk(dy) + isnk

∫
R

sin yPnk(dy)
)

=
∫
R
fs(y)µ(dy) + lim

k→∞
isnk

∫
R

sin yPnk(dy).

Then
η(s) = ia′s− bs2

2 +
∫
R

(
eisy − 1− is sin y

)
ν(dy)

for all s ∈ R where a′ = limk→∞ nk
∫
R sin yPnk(dy) < ∞, b = µ ({0}) and ν : B(R) → [0,∞)

such that

ν(dy) =
{

1+y2

y2 µ(dy), y 6= 0,
0 , y = 0.

The limit in the expression for a′ exists as an imaginary part of (4.2.2). It holds∫
R
|y1(y ∈ (−1, 1))− sin y| ν(dy) <∞
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because µ is finite and

|y1(y ∈ (−1, 1))− sin y| 1 + y2

y2 < c′′ for all y 6= 0 and a c′′ > 0.

Hence it follows that

η(s) = ias− bs2

2 +
∫
R

(
eisy − 1− isy1 (y ∈ (−1, 1))

)
ν(dy), for all s ∈ R

with
a = a′ +

∫
R

(y1(y ∈ (−1, 1))− sin y) ν(dy).

Remark 4.2.2
It follows from the last part of the proof of Theorem 4.2.2 that the Lévy-Kchintchine represen-
tation (4.1.4) rewrites as

ϕ(s) = exp
{
ia0s−

bs2

2 +
∫
R

(
eisy − 1− is · c(y))

)
ν(dy)

}
for all s ∈ R,

where c : R → R is any measurable function such that c(y) = y + o(y2), |y| → 0,
c(y) = O(1), |y| → ∞, and a0 = a +

∫
R (c(y)− y1(y ∈ [−1, 1])) ν(dy). For instance, one may

choose c(y) to be c(y) = sin y, y
1+y2 , etc.

4.3 Examples
In what follows it is enough to look at the distribution of X(1) by Theorem 4.2.1.

1. Wiener process

W (1) ∼ N (0, 1), ϕW (1)(s) = e−
s2
2 and hence follows (a, b, ν) = (0, 1, 0).

Let X = {X(t), t ≥ 0} be a Wiener process with drift µ, i.e. X(t) = µt + σW (t),
W = {W (t), t ≥ 0} – Brownian motion. It follows (a, b, ν) = (µ, σ2, 0) since

ϕX(1)(s) = EeisX(1) = Ee(µ+σW (1))is = eµisϕW (1)(σs) = eisµ−σ
2 s2

2 , s ∈ R.

2. Compound Poisson process with parameters (λ,PU ).
Let X(t) =

∑N(t)
i=1 Ui, for N(t) ∼ Pois(λt), t ≥ 0, and Ui i.i.d. ∼ PU . Then

ϕX(1)(s) = exp
{
λ

∫
R

(
eisx − 1

)
PU (dx)

}
= exp

{
λis

∫
R
x1(x ∈ [−1, 1])PU (dx) + λ

∫
R

(
eisx − 1− isx1(x ∈ [−1, 1])

)
PU (dx)

}
= exp

{
λis

∫ 1

−1
xPU (dx) + λ

∫
R

(
eisx − 1− isx1(x ∈ [−1, 1])

)
PU (dx)

}
, s ∈ R.

Hence it follows (a, b, ν) =
(
λ
∫ 1
−1 xPU (dx), 0, λPU

)
, where λPU is a finite measure on R.



62 4 Lévy Processes

3. Process of Gauss-Poisson type
LetX = {X(t), t ≥ 0} be given byX(t) = X1(t)+X2(t), t ≥ 0, whereX1 = {X1(t), t ≥ 0}
andX2 = {X2(t), t ≥ 0} are independent processes such thatX1 is a Wiener process with
drift µ and variance σ2, and X2 is a Compound Poisson process with parameters λ,PU .
Then

ϕX(t)(s) = ϕX1(t)(s)ϕX2(t)(s) = exp

isµ− σ2s2

2 + λ

∫
R

(
eisx − 1

)
PU (dx)


= exp

{
is

(
µ+ λ

∫ 1

−1
xPU (dx)

)
− σ2s2

2

+
∫
R
λ
(
eisx − 1− isx1(x ∈ [−1, 1])

)
PU (dx)

}
, s ∈ R.

Hence it follows that (a, b, ν) =
(
µ+ λ

∫ 1
−1 xPU (dx), σ2, λPU

)
.

4. Stable Lévy process
Let X = {X(t), t ≥ 0} be a Lévy process with X(1) ∼ α-stable distribution, α ∈ (0, 2].
To introduce α-stable laws, let us begin with an example.
If X = W (Wiener process) then X(1) ∼ N (0, 1). Let Y, Y1, . . . , Yn be i.i.d. N (µ, σ2)-
distributed random variables. Since the normal distribution is stable w.r.t. convolution
it holds

Y1 + . . .+ Yn ∼ N (nµ, nσ2) d=
√
nY + nµ−

√
nµ

=
√
nY + µ

(
n−
√
n
)

= n
1
2Y + µ

(
n− n

1
2
)

= n
1
αY + µ

(
n− n

1
α

)
, α = 2.

Definition 4.3.1
The distribution of a random variable Y is called α-stable if for all n ≥ 2 there exist deterministic
cn > 0 and dn such that

Y1 + . . .+ Yn
d= cnY + dn,

where Y1, . . . , Yn are independent copies of Y . The constant α ∈ (0, 2] is called index of stability.
Moreover, one can show that

cn = n1/α, dn =
{
µ
(
n− n

1
α

)
, α 6= 1,

µn logn , α = 1,

for some µ ∈ R, cf. [23].
Example 4.3.1 • α = 2: Normal distribution, with any mean and any variance.

• α = 1: Cauchy distribution with parameters (µ, σ2). The density:

fY (x) = σ

π
(
(x− µ)2 + σ2

) , x ∈ R.

It holds EY 2 =∞, EY does not exist.
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• α = 1
2 : Lévy distribution with parameters (µ, σ2). The density:

fY (x) =


(
σ
2π
) 1

2 1
(x−µ)

3
2

exp
{
− σ

2(x−µ)

}
, x > µ,

0 , otherwise.

These examples are the only examples of α-stable distributions where an explicit form of
the density is available. For other α ∈ (0, 2), α 6= 1

2 , 1, the α-stable distribution is introduced
through its characteristic function.

Definition 4.3.2
The distribution of a random variable is called symmetric, if Y d= −Y .

If Y has a symmetric α-stable distribution, α ∈ (0, 2], then for some c > 0

ϕY (s) = exp {−c |s|α} , s ∈ R.

Indeed, it follows from the stability of Y that

(ϕY (s))n = eidnsϕY
(
n

1
α s
)
, s ∈ R.

It follows that dn = 0, since ϕ−Y (s) = ϕY (s) = ϕY (−s) and hence eidns = e−idns, s ∈ R which
can hold only if dn = 0. The rest is left as an exercise.

Lemma 4.3.1 (Lévy-Khintchine representation of the cf. of a stable distribution):
Any α−stable law is infinitely divisible with the Lévy triplet (a, b, ν), where a ∈ R is arbitrary,

b =
{
σ2, α = 2,
0 , 0 < α < 2,

and

ν(dx) =
{

0 , α = 2,
c1

x1+α 1(x ≥ 0)dx+ c2
|x|1+α 1(x < 0)dx, 0 < α < 2, c1, c2 ≥ 0 : c1 + c2 > 0

See the proof in [23, Theorem B.1].
Exercise: Prove that for α−stable symmetric random variable Y it holds

P (|Y | ≥ x) ∼
x→∞


√

2σ2

πx e
− x2

2σ2 , α = 2, a = 0,
c
xα , 0 < α < 2, a = 0.

In general holds: If Y is α-stable, α ∈ (0, 2], then E|Y |p <∞, 0 < p < α.

Definition 4.3.3
The Lévy process X = {X(t), t ≥ 0} is called stable if X(1) has an α-stable distribution,
α ∈ (0, 2]. For α = 2, a stable Lévy process is simply the Brownian motion with drift.
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4.3.1 Subordinators

Definition 4.3.4
A Lévy process X = {X(t), t ≥ 0} is called subordinator, if for all 0 < t1 < t2, X(t1) ≤ X(t2)
a.s. Since

X(0) = 0 a.s. ⇒ X(t) ≥ 0, t ≥ 0, a.s.

This class of subordinators is important since one can easily introduce
∫ b
a g(t)dX(t) as a

Lebesgue-Stieltjes integral.
Theorem 4.3.1
The Lévy process X = X(t), t ≥ 0 is a subordinator if and only if the Lévy-Khintchine repre-
sentation can be expressed in the form

ϕX(1)(s) = exp
{
ias+

∫
R

(
eisx − 1

)
ν(dx)

}
, s ∈ R, (4.3.1)

where a ∈ [0,∞) and ν is the Lévy measure, with

ν ((−∞, 0)) = 0,
∫ ∞

0
min {1, y} ν(dy) <∞.

Proof Sufficiency
It has to be shown that X(t2) ≥ X(t1) a.s., if t2 ≥ t1 ≥ 0.
First of all we show that X(1) ≥ 0 a.s.. If ν ≡ 0, then X(1) = a ≥ 0 a.s., hence

ϕX(t)(s) =
(
ϕX(1)(s)

)t
= eiats, s ∈ R,

X(t) = at a.s. Therefore it follows that X(t) ↑ and X is a subordinator.
If ν([0,∞)) > 0 then there exists N > 0 such that for all n ≥ N it holds 0 < ν

([
1
n ,∞

))
<∞.

It follows

ϕX(1)(s) = exp
{
ias+ lim

n→∞

∫ ∞
1
n

(
eisx − 1

)
ν(dx)

}
= eias lim

n→∞
ϕn(s), s ∈ R,

where ϕn(s) = exp
(∫∞

1
n

(
eisx − 1

)
ν(dx)

)
is the characteristic function of a compound Poisson

process distribution with parameters

ν ([ 1
n ,∞

))
,
ν
(
· ∩
[

1
n
,∞
))

ν([ 1
n
,∞))

 for all n ∈ N. Let Zn be the

random variable with characteristic function ϕn.
It holds: Zn =

∑Nn
i=1 Ui, Nn ∼ Pois

(
ν
([

1
n ,∞

)))
, Ui ∼

ν(·∩[ 1
n
,∞))

ν([ 1
n
,∞)) ;

hence follows Zn ≥ 0 a.s. and X(1) d= a︸︷︷︸
≥0

+ limZn︸ ︷︷ ︸
≥0

≥ 0 a.s.. Since X is a Lévy process, it

holds
X (1) = X

( 1
n

)
+
(
X

( 2
n

)
−X

( 1
n

))
+ . . .+

(
X

(
n

n

)
−X

(
n− 1
n

))
,

where, because of stationarity and independence of the increments, X
(
k
n

)
−X

(
k−1
n

) a.s.
≥ 0 for

1 ≤ k ≤ n for all n. Hence X(q2) − X(q1) ≥ 0 a.s. for all q1, q2 ∈ Q, q2 ≥ q1 ≥ 0. Now
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let t1, t2 ∈ R such that 0 ≤ t1 ≤ t2. Let
{
q

(n)
1 , q

(n)
2

}
be sequences of numbers from Q with

q
(n)
1 ≤ q(n)

2 such that q(n)
1 ↓ t1, q(n)

2 ↑ t2, n→∞. For ε > 0

P (X(t2)−X(t1) < −ε) = P

X(t2)−X
(
q

(n)
2

)
+X

(
q

(n)
2

)
−X

(
q

(n)
1

)
︸ ︷︷ ︸

≥0

+X
(
q

(n)
1

)
−X (t1) < −ε


≤ P

(
X(t2)−X

(
q

(n)
2

)
+X

(
q

(n)
1

)
−X (t1) < −ε

)
≤ P

(
X(t2)−X

(
q

(n)
2

)
< −ε2

)
+ P

(
X
(
q

(n)
1

)
−X(t1) ≤ −ε2

)
−−−→
n→∞

0,

since X is stochastically continuous. Then

P (X(t2)−X(t1) < −ε) = 0 for all ε > 0 and
P (X(t2)−X(t1) < 0) = lim

ε→+0
P (X(t2)−X(t1) < −ε) = 0

⇒ X(t2) ≥ X(t1) a.s.

Necessity
Let X be a Lévy process, which is a subordinator. It has to be shown that ϕX(1)(·) has the
form (4.3.1).
After the Lévy-Khintchine representation for X(1) it holds that

ϕX(1)(s) = exp
{
ias− b2s2

2 +
∫ ∞

0

(
eisx − 1− isx1(x ∈ [−1, 1])

)
ν(dx)

}
, s ∈ R.

The measure ν is concentrated on [0,∞), since X(t)
a.s.
≥ 0 for all t ≥ 0 and from the proof of

Theorem 4.2.2 ν ((−∞, 0)) = 0 can be chosen. Since

ϕX(1)(s) = exp
{
ias− b2s2

2

}
︸ ︷︷ ︸

:=ϕY1(s)

exp
{∫ ∞

0

(
eisx − 1− isx1 (x ∈ [−1, 1])

)
ν(dx)

}
︸ ︷︷ ︸

:=ϕY2(s)

,

it follows that X(1) = Y1 + Y2, where Y1 and Y2 are independent, Y1 ∼ N (a, b2) and therefore
b = 0. (Otherwise Y1 could attain negative values and consequently X(1) could attain negative
values as well.) For all ε ∈ (0, 1)

ϕX(1)(s) = exp
{
is

(
a−

∫ 1

ε
xν(dx)

)
+
∫ ε

0

(
eisx − 1− isx

)
ν(dx) +

∫ ∞
ε

(
eisx − 1

)
ν(dx)

}
.

It has to be shown that for ε→ 0 it holds
∫∞
ε

(
eisx − 1

)
ν(dx)→

∫∞
0
(
eisx − 1

)
ν(dx) <∞ with∫∞

0 min {x, 1} ν(dx) <∞. ϕX(1)(s) = exp
{
is
(
a−

∫ 1
ε xν(dx)

)}
ϕZ1(s)ϕZ2(s), where Z1 and Z2

are independent, ϕZ1(s) = exp
{
ε∫
0

(
eisx − 1− isx

)
ν(dx)

}
, ϕZ2(s) = exp

{∫∞
ε

(
eisx − 1

)
ν(dx)

}
,

s ∈ R. Then X(1) d= a −
∫ 1
ε xν(dx) + Z1 + Z2. There exist ϕ

(2)
Z1

(0) = −EZ2
1

2 < ∞,
ϕ

(1)
Z1

(0) = 0 = iEZ1 and it therefore follows that EZ1 = 0 and P(Z1 ≤ 0) > 0. On the
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other hand, Z2 has a compound Poisson distribution with parameters
(
ν ([ε,∞)) , ν(·∩[ε,+∞])

ν([ε,+∞))

)
,

ε ∈ (0, 1).

⇒ P (Z2 ≤ 0) > 0, since P(Z2 = 0) > 0.
⇒ P (Z1 + Z2 ≤ 0) ≥ P (Z1 ≤ 0, Z2 ≤ 0) = P (Z1 ≤ 0) P (Z2 ≤ 0) > 0.

For X(1) to be positive it follows that a−
∫ 1
ε xν(dx) ≥ 0 for all ε ∈ (0, 1). Hence a ≥ 0 and∫ ∞

0
min {x, 1} ν(dx) <∞.

Moreover, for ε ↓ 0 it holds Z1
d→ 0 and consequently

ϕX(1)(s) = exp
{
is

(
a−

∫ 1

0
xν(dx)

)
+
∫ ∞

0

(
eisx − 1

)
ν(dx)

}
, s ∈ R.

Example 4.3.2 (α-stable subordinator):
Let X = {X(t), t ≥ 0} be a subordinator with a = 0 and the Lévy measure

ν(dx) =
{

α
Γ(1−α)

1
x1+αdx, x > 0,

0, x ≤ 0,
α ∈ (0, 1).

By Lemma 4.3.1 it follows that X is an α-stable Lévy process.
We show that l̂X(t)(s) = Ee−sX(t) = e−ts

α for all s, t ≥ 0.

ϕX(t)(s) =
(
ϕX(1)(s)

)t
= exp

{
t

∫ ∞
0

(
eisx − 1

) α

Γ(1− α)
1

x1+αdx

}
, s ∈ R.

It has to be shown that

uα = α

Γ(1− α)

∫ ∞
0

(
1− e−ux

) dx

x1+α , u ≥ 0.

This is enough since ϕX(t)(·) can be continued analytically to {z ∈ C : Imz ≥ 0}, i.e.
ϕX(t)(iu) = l̂X(t)(u), u ≥ 0. In fact, it holds that∫ ∞

0

(
1− e−ux

) dx

x1+α =
∫ ∞

0
u

∫ x

0
e−uydyx−1−αdx

Fubini=
∫ ∞

0

∫ ∞
y

ue−uyx−1−αdxdy

=
∫ ∞

0

∫ ∞
y

x−1−αdxue−uydy

= u

α

∫ ∞
0

e−uyy−αdy

Subst.= u

α

∫ ∞
0

e−zz−α
1
u−α

d

(
z

u

)
= uα

α

∫ ∞
0

e−zz(1−α)−1dz

= uα

α
Γ(1− α)

and hence follows l̂X(t)(s) = e−ts
α , t, s ≥ 0.
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Theorem 4.3.2 (Monotone time substitution):
Let X = {X(t), t ≥ 0} be a Lévy process and let τ = {τ(t), t ≥ 0} be a subordinator,
which are both defined on a probability space (Ω,F ,P). Let X and τ be independent. Then
Y = {Y (t), t ≥ 0}, defined by Y (t) = X(τ(t)), t ≥ 0, is a Lévy process.
Without proof

4.4 Additional Exercises
Exercise 4.4.1
Let X be a random variable with distribution function F and characteristic function ϕ. Show
that the following statements hold:

a) If X is infinitely divisible, then it holds ϕ(t) 6= 0 for all t ∈ R. Hint: Show that
limn→∞ |ϕn(s)|2 = 1 for all s ∈ R, if ϕ(s) = (ϕn(s))n. Note further that |ϕn(s)|2 is
again a characteristic function and limn→∞ x

1
n = 1 holds for x > 0.

b) Give an example (with explanation) for a distribution, which is not infinitely divisible.

Exercise 4.4.2
Show that the sum of two independent Lévy processes is again a Lévy process, and state the
corresponding Lévy characteristic.
Exercise 4.4.3
Look at the following function ϕ : R→ C with

ϕ(t) = eψ(t), where ψ(t) = 2
∞∑

k=−∞
2−k(cos(2kt)− 1).

Show that ϕ(t) is the characteristic function of an infinitely divisible distribution. Hint: Look
at the Lévy-Khintchine representation with measure ν({±2k}) = 2−k, k ∈ Z.
Exercise 4.4.4
Let the Lévy process {X(t), t ≥ 0} be a Gamma process with parameters b, p > 0, that is, for
every t ≥ 0 it holds X(t) ∼ Γ(b, pt). Show that {X(t), t ≥ 0} is a subordinator with the Laplace
exponent ξ(u) =

∫∞
0 (1− e−uy)ν(dy) with ν(dy) = py−1e−bydy, y > 0. (The Laplace exponent

of {X(t), t ≥ 0} is the function ξ : [0,∞)→ [0,∞), for which holds that Ee−uX(t) = e−tξ(u) for
arbitrary t, u ≥ 0)
Exercise 4.4.5
Let {X(t), t ≥ 0} be a Lévy process with Lévy exponent η and {τ(s), s ≥ 0} be an independent
subordinator with Lévy exponent γ. The stochastic process Y be defined as Y = {X(τ(s)), s ≥
0}. Show that Y is a Lévy process with characteristic Lévy exponent γ(−iη(·)), i.e.,

E
(
eiθY (s)

)
= eγ(−iη(θ))s, θ ∈ R.

Hint: Since τ is a process with non-negative values, it holds Eeiθτ(s) = eγ(θ)s for all θ ∈ {z ∈
C : Imz ≥ 0} through the analytical continuation of Theorem 4.1.3. In order to calculate
the expectation for the characteristic function, the identity E(X) = E(E(X|Y )) =

∫
R E(X|Y =

y)FY (dy) for two random variables X and Y can be used. In doing so, it should be conditioned
on τ(s).
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Exercise 4.4.6
Let {X(t), t ≥ 0} be a compound Poisson process with Lévy measure

ν(dx) = λ
√

2
σ
√
π
e−

x2
2σ2 dx, x ∈ R,

where λ, σ > 0. Show that {σW (N(t)), t ≥ 0} has the same finite-dimensional distributions
as X, where {N(s), s ≥ 0} is a Poisson process with intensity 2λ and W is a standard Wiener
process independent from N .

Hint: Use
∫∞
−∞ cos(sy)e−

y2
2a dy =

√
2πa · e−

as2
2 for a > 0 and s ∈ R.

Exercise 4.4.7
Let W be a standard Wiener process and τ an independent α

2 -stable subordinator, where
α ∈ (0, 2). Show that {W (τ(s)), s ≥ 0} is an α-stable Lévy process.
Exercise 4.4.8
Show that the subordinator τ with marginal density

fτ(t)(s) = t

2
√
π
s−

3
2 e−

t2
4s 1{s > 0}

is a 1
2 -stable subordinator.

Hint: Differentiate the Laplace transform of τ(t) and solve the differential equation.



5 Martingales

5.1 Basic Ideas
Let (Ω,F ,P) be a complete probability space.
Definition 5.1.1
Let {Ft, t ≥ 0} be a family of σ-algebras Ft ⊂ F . It is called

1. a filtration if Fs ⊆ Ft, 0 ≤ s < t.

2. a complete filtration if it is a filtration such that F0 (and therefore all Fs, s > 0) contains
all sets of zero probability.
Later on we will always assume that we have a complete filtration.

3. a right-continuous filtration if for all t ≥ 0 Ft = ∩s>tFs.

4. a natural filtration for a stochastic process {X(t), t ≥ 0}, if it is generated by the past of
the process until time t ≥ 0, i.e. for all t ≥ 0 Ft is the smallest σ-algebra which contains
the sets {ω ∈ Ω : (X(t1), . . . , X(tn))> ∈ B}, for all n ∈ N, 0 ≤ t1, . . . , tn ≤ t, B ∈ B(Rn).

A random variable τ : Ω → R+ is called stopping time (w.r.t. the filtration {Ft, t ≥ 0}), if
for all t ≥ 0 {ω ∈ Ω : τ(ω) ≤ t} ∈ Ft.
If {Ft, t ≥ 0} is the natural filtration of a stochastic process {X(t), t ≥ 0}, then τ being a
stopping time means that by looking at the past of the process X you can tell whether the
moment τ occurred.
Lemma 5.1.1
Let {Ft, t ≥ 0} be a right-continuous filtration. τ is a stopping time w.r.t. {Ft, t ≥ 0} if and
only if {τ < t} ∈ Ft︸ ︷︷ ︸

{ω∈Ω:τ(ω)<t}∈Ft

for all t ≥ 0.

Proof „⇐ “
Let {τ < t} ∈ Ft, t ≥ 0. To show: {τ ≤ t} ∈ Ft.
Since {τ ≤ t} = ∩∞n=1{τ < t+ 1

n} for all ε > 0 it follows {τ ≤ t} ∈ ∩s>tFs = Ft.
„⇒ “
To show: {τ ≤ t} ∈ Ft, t ≥ 0 ⇒ {τ < t} ∈ Ft, t ≥ 0.
{τ < t} = ∪s∈(0,t)∩Q{τ ≤ t− s} ∈ ∪s∈(0,t)∩QFt−s ⊂ Ft.

Definition 5.1.2
Let (Ω,F ,P) be a probability space, {Ft, t ≥ 0} a filtration (Ft ⊂ F , t ≥ 0) and X =
{X(t), t ≥ 0} a stochastic process on (Ω,F ,P). X is adapted w.r.t. the filtration {Ft, t ≥ 0}
if X(t) is Ft-measurable for all t ≥ 0, i.e. for all B ∈ B(R) {X(t) ∈ B} ∈ Ft.
Definition 5.1.3
The time τB = inf{t ≥ 0 : X(t) ∈ B} is called first hitting time of the set B ∈ B(R) by the
stochastic process X = {X(t), t ≥ 0} (also called: first passage time, first entrance time).

69
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Theorem 5.1.1
Let {Ft, t ≥ 0} be a right-continuous filtration and X = {X(t), t ≥ 0} an adapted (w.r.t.
{Ft, t ≥ 0}) càdlàg process. For open B ⊂ R, τB is a stopping time. If B is closed then
τ̃B = inf{t ≥ 0 : X(t) ∈ B or X(t−) ∈ B} is a stopping time, where X(t−) = lims↑tX(s).

Proof 1. Let B ∈ B(R) be open. Because of Lemma 5.1.1 it is enough to show that
{τB < t} ∈ Ft, t ≥ 0. Because of right-continuity of the trajectories of X it holds:

{τB < t} = ∪s∈Q∩[0,t){X(s) ∈ B} ∈ ∪s∈Q∩[0,t)Fs ⊆ Ft, since Fs ⊆ Ft, s < t.

2. Let B ∈ B(R) be closed. For all ε > 0 let Bε = {x ∈ R : d(x,B) < ε} be a parallel set of
B, where d(x,B) = infy∈B |x− y|. Bε is open for all ε > 0.

{τ̃B ≤ t} =

 ⋃
s∈Q∩(0,t]

{X(s) ∈ B}

 ∪
⋂
n≥1

⋃
s∈Q∩(0,t)

{X(s) ∈ B 1
n
}

 ∈ Ft,

since X is adapted w.r.t. {Ft, t ≥ 0}.

Lemma 5.1.2
Let τ1, τ2 be stopping times w.r.t. the filtration {Ft, t ≥ 0}. Then min{τ1, τ2}, max{τ1, τ2},
τ1 + τ2 and ατ1, α ≥ 1, are stopping times (w.r.t. {Ft, t ≥ 0}).

Proof For all t ≥ 0 it holds:

1. {min{τ1, τ2} ≤ t} = {τ1 ≤ t}︸ ︷︷ ︸
∈Ft

∪{τ2 ≤ t}︸ ︷︷ ︸
∈Ft

∈ Ft,

2. {max{τ1, τ2} ≤ t} = {τ1 ≤ t} ∩ {τ2 ≤ t} ∈ Ft,

3. {ατ1 ≤ t} = {τ1 ≤ t
α} ∈ F t

α
⊂ Ft, since t

α ≤ t,

4. {τ1 + τ2 ≤ t}c = {τ1 + τ2 > t} = {τ1 > t}︸ ︷︷ ︸
∈Ft

∪{τ2 > t}︸ ︷︷ ︸
∈Ft

∪{τ1 ≥ t, τ2 > 0}︸ ︷︷ ︸
∈Ft

∪{τ2 ≥ t, τ1 > 0}︸ ︷︷ ︸
∈Ft

∪

{0 < τ2 < t, τ1 + τ2 > t} ∪ {0 < τ1 < t, τ2 + τ1 > t},
To show: {0 < τ2 < t, τ1 + τ2 > t} ∈ Ft. ({0 < τ1 < t, τ2 + τ1 > t} ∈ Ft works
analogously.)
{0 < τ2 < t, τ1 + τ2 > t} =

⋃
s∈Q∩(0,t)

{s < τ2 < t, τ1 > t− s} ∈ Ft

Theorem 5.1.2
Let τ be an a.s. finite stopping time w.r.t. the filtration {Ft, t ≥ 0} on the probability space
(Ω,F ,P), i.e. P(τ <∞) = 1. Then there exists a sequence of discrete stopping times {τn}n∈N,
τ1 ≥ τ2 ≥ τ3 ≥ . . ., such that τn ↓ τ , n→∞ a.s.
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Proof For all n ∈ N let

τn =
{

0, if τ(ω) = 0
k+1
2n , if k

2n < τ(ω) ≤ k+1
2n , for a k ∈ N0

For all t ≥ 0 and for all n ∈ N ∃k ∈ N0 : k
2n ≤ t < k+1

2n , i.e. it holds {τn ≤ t} = {τn ≤ k
2n } =

{τ ≤ k
2n } ∈ F k

2n
⊂ Ft ⇒ τn is a stopping time. Obviously τn ↓ τ , n→∞ a.s.

Corollary 5.1.1
Let τ be an a.s. finite stopping time w.r.t. the filtration {Ft, t ≥ 0} and X = {X(t), t ≥ 0} a
càdlàg process on (Ω,F ,P), Ft ⊂ F for all t ≥ 0. Then X(ω, τ(ω)), ω ∈ Ω is a random variable
on (Ω,F ,P).

Proof To show: X(τ) : Ω → R is measurable, i.e. for all B ∈ B(R) {X(τ) ∈ B} ∈ F . Let
τn ↓ τ , n→∞ be as in Theorem 5.1.2. Since X is càdlàg, it holds that X(τn) −−−→

n→∞
X(τ) a.s..

Then X(τ) is F-measurable as the limit of X(τn) which are themselves F-measurable. Indeed,
for all B ∈ B(R) it holds

{X(τn) ∈ B} =
∞⋃
k=0


{
τn = k

2n
}

︸ ︷︷ ︸
∈F

∩
{
X

(
k

2n
)
∈ B

}
︸ ︷︷ ︸

∈F

 ∈ F

5.2 (Sub-, Super-)Martingales
The word "martingale" originates from the betting strategy named after citizens of french city
Martignes who were famous in 18th century for their simplicity and stupidity. The strategy
" à la martengalo" can be best explained in a pitch-and-toss game: a gambler with initial capital
2n Euro wins a stake if a coin comes up heads, and he looses his stake, otherwise. At the initial
point of time, the gambler bets 1 Euro, and doubles his bet after each loss, till the first win.
After each win, the next bet has to be 1 Euro again, and so forth. It is easy to see that if the
win comes in m ≤ n games, the gambler wins in total 1 Euro. Hence, this gamble strategy is
simply a redistribution of the gain over m games. However, the probability of loss in this series
of m games is (1/2)m, thus a small number, but not zero. Is m > n then the gambler looses
his whole capital. Hence, the strategy is very risky, since the gain of 1 Euro is opposed to the
loss of 2n Euro. The expected gain in any number of games is here obviously zero.
Definition 5.2.1
Let X = {X(t), t ≥ 0} be a stochastic process adapted w.r.t. to a filtration {Ft, t ≥ 0},
Ft ⊂ F , t ≥ 0, on the probability space (Ω,F ,P), E |X(t)| <∞, t ≥ 0.
X is called martingale, resp. sub- or supermartingale, if E(X(t) | Fs) = X(s) a.s., resp. E(X(t) |
Fs) ≥ X(s) a.s. or E(X(t) | Fs) ≤ X(s) a.s. for all s, t ≥ 0 with t ≥ s. For a martingale, it
holds obviously E(X(t)) = E(X(s)) = const for all s, t; accordingly, E(X(t)) ≥ (≤)E(X(s)) for
s < t if X is a sub- or supermartingale.
Definition 5.2.1 means that the best (in L2-sense) prediction of X(t), t > s on the basis of
observations X(u), u ∈ [0, s], is the actual last value X(s).
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Definition 5.2.2
A discrete (sub-, super-) martingale w.r.t. a filtration {Fn}n∈N is a sequence of random variables
{Xn}n∈N on a probability space (Ω,F ,P) such that Xn is measurable w.r.t. {Fn}n∈N and
E(Xn+1|Xn) a.s.= Xn(

a.s.
≥ Xn,

a.s.
≤ Xn) for all n ∈ N. A discrete stopping time w.r.t. {Fn}n∈N

is a random variable τ : Ω → N ∪ {∞}, such that {τ ≤ n} ∈ Fn for all n ∈ N ∪ {∞}, where
F∞ = σ{

⋃∞
n=1 Fn}.

Very often martingales are constructed on the basis of a stochastic process Y = {Y (t), t ≥ 0}
as follows: X(t) = g(Y (t)) − Eg(Y (t)) for some measurable function g : R → R, or by
X(t) = eiuY (t)

ϕY (t)(u) , for any fixed u ∈ R.

Examples

1. Poisson process
Let Y = {Y (t), t ≥ 0} be the homogeneous Poisson process with intensity λ > 0.
EY (t) = Var Y (t) = λt since Y (t) ∼ Pois(λt), t ≥ 0.

a) X(t) = Y (t) − λt, t ≥ 0 ⇒ X(t) is a martingale w.r.t. the natural filtration
{Fs, s ≥ 0}. Indeed, by stationarity and independence of increments of Y , it
holds

E(X(t) | Fs) = E(Y (t)− λt− (Y (s)− λs) + (Y (s)− λs)) | Fs)
= Y (s)− λs+ E(Y (t)− Y (s)− λ(t− s) | Fs)

ind.incr.= Y (s)− λs+ E(Y (t)− Y (s))− λ(t− s)
stat. incr.= Y (s)− λs+ E(Y (t− s))︸ ︷︷ ︸

=λ(t−s)

−λ(t− s)

= Y (s)− λs = X(s) for any s ≤ t.

b) X̃(t) = X2(t)− λt, t ≥ 0 ⇒ X̃(t) is a martingale w.r.t. {Fs, s ≥ 0}.

E(X̃(t) | Fs) = E(X2(t)− λt | Fs) = E((X(t)−X(s) +X(s))2 − λt | Fs)
= E((X(t)−X(s))2 + 2(X(t)−X(s))X(s) +X2(s)− λs− λ(t− s) | Fs)
= X̃(s) + E(X(t)−X(s))2︸ ︷︷ ︸

=Var(Y (t)−Y (s))=λ(t−s)

+2X(s) E(X(t)−X(s))︸ ︷︷ ︸
=0

−λ(t− s)

a.s.= X̃(s), s ≤ t.

2. Compound Poisson process
Let Y (t) =

∑N(t)
i=1 Ui, t ≥ 0, where N = {N(t), t ≥ 0} is a homogeneous Poisson pro-

cess with intensity λ > 0, Ui are independent identically distributed random variables,
E|Ui| <∞, {Ui} independent of N . Let X(t) = Y (t)− EY (t) = Y (t)− λtEU1, t ≥ 0.
Exercise 5.2.1
Show that X = {X(t), t ≥ 0} is a martingale w.r.t. its natural filtration.

3. Wiener process
Let W = {W (t), t ≥ 0} be a Wiener process, {Fs, s ≥ 0} be the natural filtration.
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a) Y = {Y (t), t ≥ 0}, where Y (t) := W 2(t)−EW 2(t) = W 2(t)−t, t ≥ 0, is a martingale
w.r.t. {Fs, s ≥ 0}.
Indeed, it holds

E(Y (t) | Fs) = E((W (t)−W (s) +W (s))2 − s− (t− s) | Fs)
= E((W (t)−W (s))2 + 2W (s)(W (t)−W (s)) +W (s)2 | Fs)− s− (t− s)
= E((W (t)−W (s))2) + 2W (s) E(W (t)−W (s))︸ ︷︷ ︸

=0

+E(W 2(s) | Fs)− s− (t− s)

= t− s+W 2(s)− s− (t− s)
= W 2(s)− s = Y (s), s ≤ t.

b) Ỹ (t) := euW (t)−u2 t
2 , t ≥ 0 and a fixed u ∈ R.

E|Ỹ (t)| = e−u
2 t

2 EeuW (t) = e−u
2 t

2 eu
2 t

2 = 1 <∞. We show that Ỹ = {Ỹ (t), t ≥ 0} is
a martingale w.r.t. {Fs, s ≥ 0}.

E(Ỹ (t) | Fs) = E(eu(W (t)−W (s)+W (s))−u2 s
2−u

2 (t−s)
2 | Fs)

= e−u
2 s

2 euW (s)︸ ︷︷ ︸
=Ỹ (s)

e−u
2 (t−s)

2 E(eu(W (t)−W (s)) | Fs)︸ ︷︷ ︸
=E(euW (t−s))=eu

2 (t−s)
2

= Ỹ (s)e−u2 (t−s)
2 eu

2 (t−s)
2 = Ỹ (s), s ≤ t.

4. Lévy martingale
Let X be a random variable (on (Ω,F ,P)) with E|X| <∞. Let {Fs, s ≥ 0} be a filtration
on (Ω,F ,P).
Construct Y (t) = E(X | Ft), t ≥ 0. Y = {Y (t), t ≥ 0} is a martingale.
Indeed, E|Y (t)| = E|E(X | Ft)| ≤ E(E(|X| | Ft)) = E|X| <∞, t ≥ 0.
E(Y (t) | Fs) = E(E(X | Ft) | Fs)

a.s.= E(X | Fs) = Y (s), s ≤ t since Fs ⊆ Ft.

Remark:
If {Y (n)| n = 1, ..., N}, where N ∈ N, is a martingale, then it is Lévy since Y (n) =
E(Y (N) | Fn)) for all n = 1, ..., N , i.e. X := Y (N). However, the latter is not always
possible for processes of the form {Y (n)| n ∈ N} or {Y (t)| t ≥ 0}.

5. Lévy processes
Let X = {X(t), t ≥ 0} be a Lévy process with Lévy exponent η and natural filtration
{Fs, s ≥ 0}.

a) If E|X(1)| < ∞, define Y (t) = X(t) − tEX(1)︸ ︷︷ ︸
=EX(t)

, t ≥ 0. As in the previous cases it

can be shown that Y = {Y (t), t ≥ 0} is martingale w.r.t. the filtration {Fs, s ≥ 0}
(Compare Examples 1 and 2).

b) In the general case one can use the combination from Example 3 b) – normalize
eiuX(t) by the characteristic function of X(t), i.e. let Y (t) = eiuX(t)

ϕ
(u)
X(t)

= eiuX(t)

etη(u) =

eiuX(t)−tη(u), t ≥ 0, u ∈ R.
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To show: Y = {Y (t), t ≥ 0} is a complex-valued martingale.
E|Y (t)| = |e−tη(u)| <∞, since η : R+ → C. EY (t) = 1, t ≥ 0. Furthermore, it holds

E(Y (t) | Fs) = E(eiu(X(t)−X(s))−(t−s)η(u)eiuX(s)−sη(u) | Fs)
= eiuX(s)−sη(u)e−(t−s)η(u)E(eiu(X(t)−X(s)))
= Y (s)e−(t−s)η(u)e(t−s)η(u) = Y (s), s ≤ t.

6. Compensated martingale
Let {Yn}n∈N be a sequence of random variables with E|Yn| <∞∀n ∈ N, Fn = σ(Y1, . . . , Yn),
F0 = {∅,Ω}. Introduce Sn =

∑n
k=1 Yk, Zn =

∑n
k=1 E(Yk|Fk−1). Set Xn = Sn−Zn, n ∈ N.

Then {Xn}n∈N is a martingale w.r.t. the filtration {Fn}n∈N, since

E(Xn+1|Fn) = E(Sn+1 − Zn+1|Fn)
= E(Xn + Yn+1 − E(Yn+1|Fn)|Fn)
= E(Xn|Fn) + E(Yn+1|Fn)− E(Yn+1|Fn)
= Xn,

since Xn is Fn-measurable. So, an arbitrary sum Sn can be compensated to a martingale
Sn −Zn by subtracting a predictable sequence Zn, in the sense that Zn can be predicted
knowing S1, . . . , Sn−1.

7. Monotone Submartingales/Supermartingales
Every integrable stochastic process X = {X(t), t ≥ 0}, which is adapted w.r.t. to
a filtration {Fs, s ≥ 0} and has a.s. monotone nondecreasing (resp. non-increasing)
trajectories, is a sub- (resp. a super-)martingale.
In fact, it holds e.g. X(t)

a.s.
≥ X(s), t ≥ s ⇒ E(X(t) | Fs)

a.s.
≥ E(X(s) | Fs)

a.s.= X(s). In
particular, every subordinator is a submartingale.

Lemma 5.2.1
Let X = {X(t), t ≥ 0} be a stochastic process, which is adapted w.r.t. a filtration {Ft, t ≥ 0}
and let f : R→ R be convex such that E|f(X(t))| <∞, t ≥ 0. Then Y = {f(X(t)), t ≥ 0} is
a sub-martingale, if

a) X is a martingale, or

b) X is a sub-martingale and f is monotone nondecreasing.

Proof Use Jensen’s inequality for conditional expectations:

E(f(X(t)) | Fs)
a.s.
≥ f(E(X(t) | Fs)︸ ︷︷ ︸

b)
≥X(s),

a)
=X(s)

)
a.s.
≥ f(X(s)).

5.3 Uniform Integrability

It is known that in general Xn
a.s.−−−→
n→∞

X or Xn
P−−−→

n→∞
X do not yield Xn

L1−−−→
n→∞

X. Here
X,X1, X2, . . . are random variables defined on the probability space (Ω,F ,P). When does
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„Xn
P−−−→

n→∞
X“⇒ „Xn

L1−−−→
n→∞

X“ hold? The answer provides the notion of uniform integrability
of {Xn, n ∈ N}.
Definition 5.3.1
The sequence {Xn, n ∈ N} of random variables is called uniformly integrable, if E|Xn| < ∞,
n ∈ N, and sup

n∈N
E(|Xn|1(|Xn| > x)) −−−−→

x→+∞
0.

Remark 5.3.1
Let {Xn}n≥0 and {Yn}n≥0 be uniformly integrable sequences of random variables, c be a con-
stant. Then {cXn}n≥0, {c+Xn}n≥0, {Xn + Yn}n≥0, {max{|Xn|, |Yn|}}n≥0 are uniformly inte-
grable as well.
Lemma 5.3.1
The sequence {Xn, n ∈ N} of random variables is uniformly integrable if and only if

1. sup
n∈N

E|Xn| <∞ (uniform boundedness) and

2. for every ε > 0 there is a δ > 0 such that E(|Xn|1(A)) < ε for all n ∈ N and all A ∈ F
with P(A) < δ.

Proof Let {Xn} be a sequence of random variables. It has to be shown that

sup
n∈N

E(|Xn|1(|Xn| > x)) −−−−→
x→+∞

0⇐⇒
1) sup

n∈N
E|Xn| <∞

2) ∀ε > 0 ∃δ > 0 : E(|Xn|1(A)) < ε ∀A ∈ F : P(A) < δ

„⇐“
Set An = {|Xn| > x} for all n ∈ N and x > 0. It holds P(An) ≤ 1

xE|Xn| by Markov’s inequality
and consequently supn P(An) ≤ 1

x supn E|Xn| ≤ c
x −−−→x→∞

0
⇒ ∃N > 0 : ∀x > N P(An) < δ
2)⇒ supn E(|Xn|1(An)) ≤ ε. Since ε > 0 can be chosen arbitrarily small

⇒ supn E(|Xn|1(|Xn| > x)) −−−→
x→∞

0.

„⇒“

1.

sup
n

E|Xn| ≤ sup
n

(E(|Xn|1(|Xn| > x)) + E(|Xn|1(|Xn| ≤ x)))

≤ sup
n

(E(|Xn|1(|Xn| > x)) + xP(|Xn| ≤ x)︸ ︷︷ ︸
≤1

)

≤ ε+ x <∞

2. For all ε > 0 ∃x > 0 such that E(|Xn|1(|Xn| > x)) < ε
2 because of uniform integrability.

Choose δ > 0 such that xδ < ε
2 . Then it holds

E(|Xn|1(A)) = E(|Xn|︸ ︷︷ ︸
≤x

1(|Xn| ≤ x)︸ ︷︷ ︸
≤1

1(A)) + E(|Xn|1(|Xn| > x) 1(A)︸ ︷︷ ︸
≤1

)

≤ xP(A)︸ ︷︷ ︸
≤ ε2

+ E(|Xn|1(|Xn| > x))︸ ︷︷ ︸
≤ ε2

≤ ε.
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Theorem 5.3.1
The sequence of random variables {Xn}n≥0 is uniformly integrable iff exists function ψ : R→ R
such that ψ(x)/x ↑ +∞ for x→ +∞, supn∈N Eψ(|Xn|) <∞. For the necessity, ψ can be chosen
to be convex.

Proof Without loss of generality, we may assume Xn ≥ 0 a.s. ∀n ∈ N.
Sufficiency: Let v(x) = ψ(x)/x. Then

E(Xn1(Xn > x)) ≤ 1
v(x)E(Xnv(Xn)1(Xn > x)) ≤ 1

v(x)Eψ(Xn) ≤ 1
v(x) sup

n≥0
Eψ(Xn) −−−−→

x→+∞
0,

since by assumption v(x) is monotonously increasing to +∞, so for Xn > x it holds
v(Xn) > v(x)⇒ v(Xn)

v(x) ≥ 1, and xv(x) = ψ(x).
Necessity: Since {Xn}n≥0 is uniformly integrable, it holds u(x) := supn∈N E(Xn1(Xn > x)) →
0 monotonously as x → +∞. Choose a sequence y0 = 0, yk → +∞ as k → +∞ s.t.∑∞
k=0

√
u(yk) < c < ∞. Set g(x) = x√

u(yk)
if x ∈ [yk, yk+1). It holds g(x)

x ↑ +∞ as x → +∞,

since g(yk−0)
yk

≤ 1√
u(yk−1)

≤ 1√
u(yk)

= g(yk)
yk

for all k ∈ N. Furthermore, it holds

Eg(Xn) =
∞∑
k=0

Eg(Xn)1(Xn ∈ [yk, yk+1)) =
∞∑
k=0

E
(

Xn√
u(yk)

1(Xn ∈ [yk, yk+1))
)

≤
∞∑
k=0

1√
u(yk)

u(yk) =
∞∑
k=0

√
u(yk) < c <∞, ∀n ∈ N

by definition of u(yk). To prove our statement, it is sufficient to construct a convex function
ψ ≤ g s.t. ψ(x)/x ↑ +∞ for x → +∞. Let the graph of ψ(x), x ≥ 0 be a linear interpolation
between points (yk, g(yk − 0)), k ∈ N0, cf. Figure 5.1. Since g(yk−0)

yk
= (u(yk−1))−1/2 grows

Fig. 5.1: Functions ψ and g
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monotonously with k → +∞, so the supergraph of ψ is a convex hull of the supergraph of the
discontinuous function g(x), hence, g(x) ≥ ψ(x) ∀x ≥ 0 and ψ(·) is convex by construction.
It holds that ψ(yk)

yk
= g(yk−0)

yk
= 1√

u(yk)
−−−−→
k→+∞

+∞, so ψ(x)
x → +∞ as x → +∞. Indeed, for

x ∈ [yk, yk+1), it holds ψ(x)
x = ak− bk

x , where bk > 0 by construction of g and ψ, so monotonicity
is clear. Then supn Eψ(Xn) ≤ supn Eg(Xn) ≤ c <∞.

Lemma 5.3.2
Let {Xn}n∈N be a sequence of random variables with E|Xn| < ∞, n ∈ N, Xn

P−−−→
n→∞

X. Then

Xn
L1
−−−→
n→∞

X if and only if {Xn}n∈N is uniformly integrable.

Particularly, Xn
P−−−→

n→∞
X implies EXn −−−→

n→∞
EX.

Proof 1) Let {Xn}n∈N be uniformly integrable. It has to be shown that E|Xn −X| −−−→
n→∞

0.

Since Xn
P−−−→

n→∞
X one obtains that {Xn}n∈N has a subsequence {Xnk}k∈N converging almost

surely to X. Consequently, Fatou’s Lemma yields

E|X| ≤ lim inf
k→∞

E|Xnk | ≤ sup
n∈N

E|Xn|,

and therefore E|X| < ∞ by Lemma 5.3.1, 1). By Remark 5.3.1 the uniform integrability
of {Xn}n∈N implies the uniform integrability of {Xn − X}n∈N. Moreover, one infers from
lim
n→∞

P (|Xn −X| > ε) = 0 and Lemma 5.3.1, 2) that

lim
n→∞

E(|Xn −X|1 (|Xn −X| > ε)) = 0

for all ε > 0. Consequently it follows

lim
n→∞

E|Xn −X| = lim
n→∞

[E(|Xn −X|1 (|Xn −X| > ε)) + E(|Xn −X|1 (|Xn −X| ≤ ε))] ≤ 2ε

for all ε > 0, i.e. Xn
L1
−−−→
n→∞

X.

2) Now let E|Xn −X| −−−→
n→∞

0. The properties 1) and 2) of Lemma 5.3.1 have to be shown.

1. sup
n

E|Xn| ≤ sup
n

E|Xn −X|+ E|X| <∞, since Xn
L1
−→ X.

2. For all A ⊂ F , P(A) ≤ δ:

E(|Xn|1(A)) ≤ E(|Xn −X| 1(A)︸ ︷︷ ︸
≤1

) + E(|X|1(A)) ≤ E|Xn −X|︸ ︷︷ ︸
< ε

2

+ε

2 = ε

with an appropriate choice of δ, since E|X| <∞ and since for all ε > 0 ∃N , such that for
all n > N E|Xn −X| < ε

2 .

Corollary 5.3.1
Let Xn

P−−−→
n→∞

X.
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1. If f : R→ R is continuous and either
a) bounded or
b) {f(Xn)}n∈N is uniformly integrable
then f(Xn) L1

−−−→
n→∞

f(X).

2. Dominated convergence theorem of Lebesgue: if |Xn| ≤ Y a.s. ∀n and EY < ∞ then
there exists EX and Xn

L1
−−−→
n→∞

X.

3. If {|Xn|r}n∈N, r ≥ 1 is uniformly integrable then Xn
Lr−−−→

n→∞
X. If E|Xn|r < ∞ and

Xn
Lr−−−→

n→∞
X for r ≥ 1 then {|Xn|r}n∈N is uniformly bounded.

4. If E|Xn|r+α < c <∞ for all n ∈ N and some r ≥ 1, α > 0 then Xn
Lr−−−→

n→∞
X.

Proof 1,b): By continuity theorem (cf. Theorem 6.4.3, WR), f(Xn) P−−−→
n→∞

f(X). The asser-
tion follows by Lemma 5.3.2.
1,a): Show that {f(Xn)}n∈N is uniformly integrable. Since f is bounded, {f(Xn)}n∈N is uni-
formly integrable by Theorem 5.3.1 with ψ(x) = x1+δ, δ > 0. Application of 1,b) finishes the
proof.
2): By Lemma 5.3.1, we need to show the following:
a) supn∈N E|Xn| ≤ EY < ∞. b) ∀ε > 0 ∃δ > 0 : E(|Xn|1(A)) ≤ E(Y 1(A)) < ε,∀n ∈ N,
∀A ∈ F : P(A) < δ since Y is integrable.
3): Set Zn = |Xn − X|r, ∀n ∈ N. It holds Zn

P−−−→
n→∞

0 and |Xn|r
P−−−→

n→∞
|X|r by continuity

theorem. {Zn}n∈N is uniformly integrable by Minkowski inequality, since {|Xn|r}n∈N and |X|r
are uniformly integrable. The application of Lemma 5.3.2 to {Zn}n∈N finishes the proof.
4): Apply Theorem 5.3.1 with ψ(x) = x1+α/r to see that {|Xn|r} is uniformly integrable. Then
apply 3).

5.4 Stopped Martingales
Notation: x+ = (x)+ = max(x, 0), x ∈ R.
Theorem 5.4.1 (Doob’s inequality):
Let X = {X(t), t ≥ 0} be a càdlàg submartingale, adapted w.r.t. the filtration {Ft, t ≥ 0}.
Then for arbitrary t > 0 and arbitrary x > 0 it holds:

P
(

sup
0≤s≤t

X(s) > x

)
≤ E(X(t))+

x
.

Proof Since P(sup0≤s≤tX(s) > x) = P(sup0≤s≤t(X(s))+ > x) for all t ≥ 0, x > 0, assume
w.l.o.g. X(t) ≥ 0, t ≥ 0 a.s. Introduce A = {supt1,...,tn X(s) > x} for arbitrary times 0 ≤ t1 <
t2 < . . . < tn ≤ t. Then A = ∪nk=1Ak, where

A1 = {X(t1) > x},
A2 = {X(t1) ≤ x,X(t2) > x},

...
Ak = {X(t1) ≤ x,X(t2) ≤ x, . . . ,X(tk−1) ≤ x,X(tk) > x},



5 Martingales 79

k = 2, . . . , n, Ai ∩Aj = ∅, i 6= j. It has to be shown that P(A) ≤ E(X(tn))
x . Indeed,

E(X(tn)) ≥ E(X(tn)1(A)) =
n∑
k=1

E(X(tn)1(Ak)) ≥ x
n∑
k=1

P(Ak) = xP(A),

k = 1, . . . , n− 1, since X is a submartingale and thus it follows that

E(X(tn)1(Ak)) ≥ E(X(tk)1(Ak)) ≥ E(x1(Ak)) = xP(Ak),

k = 1, . . . , n−1, tn > tk. Let B ⊂ [0, t] be a finite subset, 0 ∈ B, t ∈ B ⇒ it is proven similarly
that P(maxs∈BX(s) > x) ≤ EX(t)

x . Since Q is dense in R, B = [0, t) ∩ Q ∪ {t} = ∪∞k=1Bk,
Bk ⊂ [0, t) ∩ Q ∪ {t} finite, Bk ⊂ Bn, k < n. By the monotonicity of the probability measure
it holds

P
(

sup
s∈B

X(s) > x

)
= P

(
sup

s∈∪nBn
X(s) > x

)
= P

(
∪n{max

s∈Bn
X(s) > x}

)
= lim

n→∞
P
(

max
s∈Bn

X(s) ≥ x
)
≤ EX(t)

x
.

By the right-continuity of the paths of X it holds P(sup0≤s≤tX(s) > x) ≤ EX(t)
x .

Corollary 5.4.1
Let µ > 0 and Y = {Y (t), t ≥ 0} with Y (t) = W (t) − µt be a Wiener process with negative
drift. Then

P
(

sup
t≥0

Y (t) > x

)
≤ e−2µx, x > 0.

Proof From Example 3 of Section 5.2 X(t) = exp{u(Y (t) + tµ) − u2t
2 }, t ≥ 0 is a martingale

w.r.t. the natural filtration ofW . For u = 2µ it holds X(t) = exp{2µY (t)}, t ≥ 0. By Theorem
5.4.1

P
{

sup
0≤s≤t

Y (s) > x

}
= P

{
sup

0≤s≤t
e2µY (s) > e2µx

}
≤ Ee2µY (t)

e2µx = EX(t)
e2µx = e−2µx, x > 0,

since by martingale property of X it holds EX(t) = EX(0) = 1, and consequently

P(sup
s≥0

Y (s) > x) = lim
t→∞

P( sup
0≤s≤t

Y (s) > x) ≤ e−2µx.

Theorem 5.4.2
Let X = {X(t), t ≥ 0} be a martingale w.r.t. the filtration {Ft, t ≥ 0} with càdlàg paths. If
τ : Ω → [0,∞) is a finite stopping time w.r.t. the filtration {Ft, t ≥ 0}, then the stochastic
process {X(τ ∧ t), t ≥ 0} is a martingale (the so-called stopped martingale) w.r.t. the same
filtration. Here a ∧ b = min{a, b}.
Lemma 5.4.1
LetX = {X(t), t ≥ 0} be a martingale with càdlàg-trajectories w.r.t. the filtration {Ft, t ≥ 0}.
Let τ be a finite stopping time and let {τn}n∈N be the sequence of discrete stopping times out
of Theorem 5.1.2, for which τn ↓ τ , n→∞, holds. Then {X(τn∧ t)}n∈N is uniformly integrable
for every t ≥ 0.
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Proof As in Theorem 5.1.2, consider stopping times

τn =
{

0 , if τ = 0
k+1
2n , if k

2n < τ ≤ k+1
2n , for a k ∈ N0

1. It is to be shown: E|X(τn ∧ t)| <∞ for all n.
E|X(τn ∧ t)| ≤

∑
k: k2n<t

E|X( k
2n )| + E|X(t)| < ∞, since X is a martingale, therefore

integrable.

2. It is to be shown: supn E(|X(τn ∧ t)|1(|X(τn ∧ t)| > x︸ ︷︷ ︸
An

)) −−−→
x→∞

0.

sup
n

E(|X(τn ∧ t)|1(An))

= sup
n

 ∑
k: k2n<t

E
(∣∣∣∣X (

k

2n
)∣∣∣∣ 1({τn = k

2n
}
∩An

))
+ E (|X(t)| 1 (τn > t) 1 (An))


|X(t)| - subm.
≤ sup

n

 ∑
k: k2n<t

E
(
|X(t)| 1

({
τn = k

2n
}
∩An

))
+ E (|X(t)| 1 ({τn > t} ∩An))


= sup

n

E

|X(t)|
∑

k: k2n<t

1
({

τn = k

2n
}
∩An

)+ E (|X(t)| 1 ({τn > t} ∩An))


= sup

n
E (|X(t)| 1 (An)) ≤ sup

n
E (|X(t)| 1 (Y > x))

= E (|X(t)| 1 (Y > x)) ,

where 1(An) ≤ 1(sup
n
|X(τn ∧ t)|︸ ︷︷ ︸

Y

> x). It remains to prove that P(Y > x) −−−→
x→∞

0. (The

latter obviously implies lim
x→∞

E (|X(t)| 1 (Y > x)) = 0, since E|X(t)| <∞ for all t ≥ 0.)
Doob’s inequality yields

P(Y > x) ≤ P( sup
0≤s≤t

|X(s)| > x) ≤ E|X(t)|
x

−−−−→
x→+∞

0,

since {|X(t)|, t ≥ 0} is a submartingale.

Proof of Theorem 5.4.2
It is to be shown that {X(τ ∧ t), t ≥ 0} is a martingale.

1. E|X(τ ∧ t)| <∞ for all t ≥ 0. As in Corollary 5.1.1 τn ↓ τ , n→∞ yields X(τn∧ t)
a.s.−−−→
n→∞

X(τ ∧ t). Since E|X(τn ∧ t)| <∞ for all n (cf. 1. of the proof of Lemma 5.4.1) it follows
E|X(τ∧t)| <∞ because of Lemma 5.4.1, since uniform integrability gives L1-convergence.

2. Martingale property
It is to be shown:

E(X(τ ∧ t) | Fs)
a.s.= X(τ ∧ s), s ≤ t
m

E(X(τ ∧ t)1(A)) a.s.= E(X(τ ∧ s)1(A)), A ∈ Fs
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First of all, we show that {X(τn ∧ t), t ≥ 0} is a martingale, i.e. E(X(τn ∧ t)1(A)) =
E(X(τn∧ s)1(A)), A ∈ Fs, n ∈ N. Let t1, . . . , tk ∈ (s, t) be discrete values, which τn takes
with positive probability in (s, t).

E(X(τn ∧ t) | Fs) = E(E(X(τn ∧ t) | Ftk) | Fs)
= E(E(X(τn ∧ t)︸ ︷︷ ︸

X(τn)

1(τn ≤ tk) | Ftk) | Fs)

+ E(E(X(τn ∧ t)︸ ︷︷ ︸
X(t)

1(τn > tk) | Ftk) | Fs)

= E(1(τn ≤ tk)E(X(τn) | Ftk) | Fs)
+ E(1(τn > tk)E(X(t) | Ftk) | Fs)

= E(X(τn)1(τn ≤ tk) | Fs) + E(1(τn > tk)X(tk) | Fs)
= E(X(tk ∧ τn) | Fs) = . . . = E(X(tk−1 ∧ τn) | Fs) = . . .

= E(X(t1 ∧ τn) | Fs)
= E(X(t1 ∧ τn)1(τn ≤ s) | Fs) + E(X(t1 ∧ τn)1(τn > s) | Fs)
= 1(τn ≤ s)X(τn) + 1(τn > s)E(X(t1) | Fs)
= 1(τn ≤ s)X(τn) + 1(τn > s)X(s)
a.s.= X(τn ∧ s),

where „ . . . “ means the above reasoning. Since X is càdlàg and τn ↓ τ , n→∞, it holds
X(τn ∧ t)

a.s.−−−→
n→∞

X(τ ∧ t). Furthermore, by Lemma 5.4.1 {X(τn ∧ t)}n∈N is uniformly
integrable. Therefore it follows that

E(X(τn ∧ t)1(A)) = E(X(τn ∧ s)1(A)) for all A ∈ Fs
↓ ↓

E(X(τ ∧ t)1(A)) = E(X(τ ∧ s)1(A))

⇒ {X(τ ∧ t), t ≥ 0} is a martingale.

Definition 5.4.1
Let τ : Ω → R+ be a stopping time w.r.t. the filtration {Ft, t ≥ 0}, Ft ⊂ F , t ≥ 0. The
stopped σ-algebra Fτ is defined by A ∈ Fτ ⇔ A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0.

Lemma 5.4.2 1. Let η, τ be stopping times w.r.t. the filtration {Ft, t ≥ 0}, η
a.s.
≤ τ . Then

it holds Fη ⊂ Fτ .

2. Let X = {X(t), t ≥ 0} be a martingale with càdlàg-trajectories w.r.t. the filtration
{Ft, t ≥ 0} and let τ be a stopping time w.r.t. {Ft, t ≥ 0}. Then X(τ) is Fτ -measurable.

Proof 1. Let A ∈ Fη. Then A ∩ {η ≤ t} ∈ Ft, t ≥ 0 and

A ∩ {τ ≤ t} = A ∩ {η ≤ t}︸ ︷︷ ︸
∈Ft

∩{τ ≤ t}︸ ︷︷ ︸
∈Ft

∪ B︸︷︷︸
∈F0

∈ Ft,

for all t ≥ 0, where B ⊆ {η > τ} has probability zero since (Ω,F ,P) is a complete
probability space. ⇒ A ∈ Fτ since {Ft, t ≥ 0} is a complete filtration.
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2. It has to be shown: {X(τ) ∈ B}∩{τ ≤ t} ∈ Ft for all t ≥ 0, B ∈ B(R). Since X is càdlàg
it holds

X(s, ω) = X(0, ω)1(s = 0) + lim
n→∞

2n∑
k=2

X

(
t
k − 1

2n , ω

)
1
(
k − 1

2n t ≤ s < k

2n t
)
, s ∈ [0, t].

⇒ X(s, ω) is B[0,t] × Ft-measurable. Then for ω ∈ {τ ≤ t} it holds

X(τ(ω)) = X(0, ω)1{τ(ω) = 0}+ lim
n→∞

2n∑
k=2

X

(
t
k − 1

2n , ω

)
1
(
k − 1

2n t ≤ τ(ω) < k

2n t
)

is Ft-measurable, sinceX(0, ω) is F0-measurable, F0 ⊆ Ft, 1{τ(ω) = 0} is F0-measurable,
X(t k2n , ω) is Ftk/2n-measurable, Ftk/2n ⊆ Ft and 1{k−1

2n t ≤ τ(ω) < k
2n t} is Ftk/2n-

measurable. ⇒ X(τ) is Fτ -measurable.

Theorem 5.4.3 (Optional sampling theorem):
Let X = {X(t), t ≥ 0} be a martingale with càdlàg trajectories w.r.t. a filtration {Ft, t ≥ 0}
and let τ be a finite stopping time w.r.t. {Ft, t ≥ 0}. Then E(X(t) | Fτ ) a.s.= X(τ ∧ t), t > 0.

Remark 5.4.1
The meaning of this theorem is the following: the predictor (or sampler) of X(t) under the
observations {X(s), s ∈ [0, τ ]} (i.e. Fτ ) is either X(t) itself if it was observed (t ≤ τ) or the
last observable value X(τ), otherwise (if t > τ).

Proof First of all we show that E(X(t) | Fτn) a.s.= X(τn ∧ t), t ≥ 0, n ∈ N, where τn ↓ τ ,
n → ∞, is the discrete approximation of τ , cf. Theorem 5.1.2. Let t1 ≤ t2 ≤ . . . ≤ tk = t be
the values attained by τn ∧ t with positive probability. It is to be shown that for all A ∈ Fτn
it holds: E(X(t)1(A)) = E(X(τn ∧ t)1(A)). Then

(X(t)−X(τn ∧ t))1(A) tk=t=
k−1∑
i=1

(X(tk)−X(ti))1({τn ∧ t = ti} ∩A)

=
k∑
i=2

(X(tk)−X(ti−1))1({τn ∧ t = ti−1} ∩A)

=
k∑
i=2

k∑
j=i

(X(tj)−X(tj−1))1({τn ∧ t = ti−1} ∩A)

=
k∑
j=2

j∑
i=2

(X(tj)−X(tj−1))1({τn ∧ t = ti−1} ∩A)

=
k∑
j=2

(X(tj)−X(tj−1))1({τn ∧ t ≤ tj−1} ∩A),
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E((X(t)−X(τn ∧ t))1(A)) =
k∑
j=2

E [(X(tj)−X(tj−1))1({τn ∧ t ≤ tj−1} ∩A)]

=
k∑
j=2

E
[
E
[
(X(tj)− X(tj−1)︸ ︷︷ ︸

Ftj−1−meas.

) 1({τn ∧ t ≤ tj−1} ∩A)︸ ︷︷ ︸
Ftj−1−meas.

]
|Ftj−1

]

=
k∑
j=2

E
[
1({τn ∧ t ≤ tj−1} ∩A)(E

[
X(tj)|Ftj−1

]
︸ ︷︷ ︸

=X(tj−1)

−X(tj−1))
]

= 0 a.s.

by Definition 5.4.1 and martingale property. Hence it holds E(X(t) | Fτn) a.s.= X(τn ∧ t), since
X(τn) is Fτn-measurable. τ ≤ τn ⇒ Fτ ⊆ Fτn . Since {X(τn ∧ t)}n∈N is uniformly integrable
for t ∈ [0,∞), it holds

E(X(t) | Fτ ) = lim
n→∞

E(X(t) | Fτn) = lim
n→∞

X(τn ∧ t) = X(τ ∧ t) a.s.,

since X is càdlàg.

Corollary 5.4.2
Let X = {X(t), t ≥ 0} be a càdlàg martingale and let η, τ be finite stopping times such
that P(η ≤ τ) = 1. Then it holds E(X(t ∧ τ) | Fη)

a.s.= X(η ∧ t), t ≥ 0. In particular,
E(X(τ ∧ t))) = E(X(0)) holds.

Proof Since X is a martingale {X(τ ∧ t), t > 0} is also a martingale by Theorem 5.4.2. Apply
Theorem 5.4.3 to it:

E(X(τ ∧ t) | Fη)
a.s.= X(τ ∧ η ∧ t) a.s.= X(η ∧ t),

since η
a.s.
≤ τ . Set η = 0, then E(E(X(τ ∧ t) | F0)) = EX(0 ∧ t) = EX(0).

5.5 Lévy Processes and Martingales
Theorem 5.5.1
Let X = {X(t), t ≥ 0} be a Lévy process with characteristics (a, b, ν).

1. There exists a càdlàg modification X̃ = {X̃(t), t ≥ 0} of X.

2. The natural filtration of càdlàg Lévy processes ist right-continuous.

Without proof
Theorem 5.5.2 (Regeneration theorem for Lévy processes):
Let X = {X(t), t > 0} be a càdlàg Lévy process with natural filtration {FX

t , t ≥ 0} and let
τ be a finite stopping time w.r.t. {FX

t , t ≥ 0}. The process Y = {Y (t), t ≥ 0}, given by
Y (t) = X(τ+t)−X(τ), t ≥ 0, is also a Lévy process, adapted w.r.t. the filtration {FX

τ+t, t ≥ 0},
which is independent of FX

τ and has the same characteristics as X. τ is called regeneration
time.
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Fig. 5.2: Construction of the process Y by means of regeneration time τ .

Proof For any n ∈ N, take arbitrary 0 ≤ t0 < · · · < tn and u1, . . . , un ∈ R. We claim that all
assertions of the theorem follow from the relation

E

1(A) exp


n∑
j=1

iuj(Y (tj)− Y (tj−1))


 (5.5.1)

= P(A)E

exp


n∑
j=1

iuj(X(tj)−X(tj−1))




for all A ∈ FX
τ .

1. By Lemma 5.4.2, since τ+s and τ+ t, s, t ≥ 0, s ≤ t are stopping times with τ+s ≤ τ+ t
a.s., we have FX

τ+s ⊆ FX
τ+t, i.e. {FX

τ+t}t≥0 is a filtration, and Y (t) = X(τ + t)−X(τ) is
{FX

τ+t}-adapted: X(τ) is FX
τ -measurable, X(τ + t) is FX

τ+t-measurable, FX
τ ⊆ FX

τ+t.

2. It follows from (5.5.1) for A = Ω that X d= Y , i.e., Y is a Lévy process with the same
Lévy exponent η as X.

3. It also follows from (5.5.1) that Y and FX
τ are independent, since arbitrary increments

of Y do not depend on FX
τ .

4. Now let us prove (5.5.1). We begin with the case of
a) ∃c > 0: P(τ ≤ c) = 1. By Example 5, b) of Section 5.2, Ỹj = {Ỹj(t)}t≥0,

j = 1, . . . , n with Ỹj(t) = exp{iujX(t) − tη(uj)}, t ≥ 0 are complex-valued mar-
tingales. Furthermore, it holds

E(1(A) exp{
n∑
j=1

iuj(Y (tj)− Y (tj−1))})

= E(1(A) exp{
n∑
j=1

iuj(X(τ + tj)−X(τ)−X(τ + tj−1) +X(τ)))})

= E

1(A)
n∏
j=1

Ỹj(τ + tj)
Ỹj(τ + tj−1)

exp{η(uj)(τ + tj)}
exp{η(uj)(τ + tj−1)}
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= E

E

1(A)
n∏
j=1

Ỹj(τ + tj)
Ỹj(τ + tj−1)

exp{(tj − tj−1)η(uj)} | FX
τ+tn−1



= E

1(A)
n−1∏
j=1

Ỹj(τ + tj)
Ỹj(τ + tj−1)

e(tj−tj−1)η(uj) e
(tn−tn−1)η(un)

Ỹn(τ + tn−1)
E(Ỹn(τ + tn) | FX

τ+tn−1)︸ ︷︷ ︸
Ỹn(τ+tn−1)


= E

1(A)

n−1∏
j=1

Ỹj(τ + tj)
Ỹj(τ + tj−1)

e(tj−tj−1)η(uj)

 e(tn−tn−1)η(un)


= . . . = E(1(A)

n∏
j=1

e(tj−tj−1)η(uj)) = P(A)
n∏
j=1

e(tj−tj−1)η(uj)

= P(A)E(exp{i
n∑
j=1

(uj(X(tj)−X(tj−1)))}).

b) Prove (5.5.1) for arbitrary finite stopping times τ : P(τ <∞) = 1. For any k ∈ N it
holds Ak = A∩{τ ≤ k} ∈ FX

τ∧k. Then it follows from 4. a) and relation (5.5.1) that

E

1(Ak) exp


n∑
j=1

iuj(Yk,tj − Yk,tj−1)


 (5.5.2)

= P(Ak)E

exp


n∑
j=1

iuj(X(tj)−X(tj−1))




for Yk,t = X((τ ∧ k) + t) −X(τ ∧ k). Now let k → ∞ on both sides of (5.5.2). By
Lebesgue’s theorem on majorized convergence, (5.5.1) follows for any a.s. finite τ ,
since τ ∧ k a.s.→ τ as k →∞.

5.6 Martingales and the distribution of the maximum of the Wiener
process

Let W = {W (t), t ≥ 0} be a Wiener process and let Mt = maxs∈[0,t]W (s), t ≥ 0. We would
like to prove Theorem 3.3.2, namely, to show that for t > 0 and x ≥ 0 it holds

P(Mt > x) =
√

2
πt

∫ ∞
x

e−
y2
2t dy.

Theorem 5.6.1 (Reflection principle):
Let τ be an arbitrary a.s. finite stopping time w.r.t. the natural filtration {FW

t , t ≥ 0}. Let
X = {X(t), t ≥ 0} be the reflected Wiener process at time τ , i.e.
X(t) = W (τ ∧ t)− (W (t)−W (τ ∧ t)), t ≥ 0. Then X d= W holds.

Proof It holds

X(t) = W (τ ∧ t)− (W (t)−W (τ ∧ t)) =
{
W (t) , t < τ

2W (τ)−W (t) , t ≥ τ.
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Fig. 5.3: Reflection principle.

Let X1(t) = W (τ ∧ t), X2(t) = W (τ + t) −W (τ), t ≥ 0. From Theorem 5.5.2 follows that
X2 is independent from (τ,X1) (W – Lévy process and τ – regeneration time). It holds
W (t) = X1(t) +X2((t− τ)+), X(t) = X1(t)−X2((t− τ)+), t ≥ 0. Indeed,

X1(t) +X2((t− τ)+) =
{
W (t) +X2(0) = W (t), t < τ

W (τ) +W (τ + t− τ)−W (τ) = W (t), t ≥ τ.

⇒ W (t) = X1(t) +X2((t− τ)+), t ≥ 0. Furthermore

X1(t)−X2((t− τ)+) =
{
W (t)−X2(0) = W (t), t < τ

W (τ)−W (τ + t− τ) +W (τ) = 2W (τ)−W (t), t ≥ τ.

⇒ X(t) = X1(t)−X2((t− τ)+), t ≥ 0. From Theorems 5.5.2 and 3.3.3 it follows that X2
d= W ,

−W d= W and hence
(τ1, X1, X2) d= (τ,X1,−X2)

↓ ↓
W

d= X

.

Let W = {W (t), t ≥ 0} be the Wiener process on (Ω,F ,P), let {FW
t , t ≥ 0} be the natural

filtration w.r.t. W . For z ∈ R let τW{z} = inf{t ≥ 0 : W (t) = z}. τW{z} := τWz is an a.s. finite
stopping time w.r.t. {FW

t , t ≥ 0}, z > 0, since it obviously holds {τWz ≤ t} ∈ FW
t . Since W

has continuous paths (a.s.), {FW
t , t ≥ 0} is right-continuous.

Corollary 5.6.1
For all z > 0, y ≥ 0, it holds that P(Mt ≥ z,W (t) < z − y) = P(W (t) > y + z).

Proof Mt is a random variable, sinceW has continuous paths. Let τ := τWz . By Theorem 5.6.1,
it holds for Y (t) = W (τ∧t)−(W (t)−W (τ∧t)), t ≥ 0, that Y d= W . Hence {τWz ,W} d= {τYz , Y },
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since W (τ) = z, τWz = τYz . Therefore

P(τ ≤ t,W (t) < z − y) = P(τYz ≤ t, Y (t) < z − y),

whereas {τYz ≤ t} ∩ {Y (t) < z − y} = {τYz ≤ t} ∩ {2z −W (t) < z − y}. If τ = τYz ≤ t then
Y (t) = 2W (τ)−W (t) = 2z −W (t), and hence

P(τ ≤ t,W (t) < z−y) = P(τ ≤ t, 2z−W (t) < z−y) = P(τ ≤ t,W (t) > z+y) = P(W (t) > z+y).

Per definition of τ = τWz it holds:

P(τ ≤ t,W (t) < z − y) = P(Mt ≥ z,W (t) < z − y) = P(W (t) > y + z)

since τWz ≤ t⇐⇒ maxs∈[0,t]W (s) ≥ z.

Now we are ready to prove Theorem 3.3.2.

Proof In Corollary 5.6.1 set y = 0 ⇒ P(Mt ≥ z,W (t) < z) = P(W (t) > z). It holds
P(W (t) > z) = P(W (t) ≥ z) for all t and all z, since W (t) ∼ N (0, t), thus continuously
distributed.
⇒ P(Mt ≥ z,W (t) < z) + P(W (t) ≥ z) = P(W (t) > z) + P(W (t) > z)
⇒ P(Mt ≥ z,W (t) < z) + P(Mt ≥ z,W (t) ≥ z) = P(Mt ≥ z) = 2P(W (t) > z)
⇒ P(Mt > z) = 2P(W (t) > z) = 2 1√

2πt
∫∞
z e−

y2
2z dy =

√
2
πt

∫∞
z e−

y2
2t dy.

Let X(t) = W (t) − tµ, t ≥ 0, µ > 0, be the Wiener process with negative drift. Consider
P(supt≥0X(t) > x), x ≥ 0. To motivate it, calculate the following ruin probability in risk
theory. Let x ≥ 0 be the initial capital of an insurance company. Let µ be the volume of
premium collection per time unit. Then µt are earned premiums at time t ≥ 0. Let W (t) be
the loss process (price development). Then Y (t) = x + tµ −W (t) is the remaining capital at
time t. The ruin probability is thus

P(inf
t≥0

Y (t) < 0) = P(x− sup
t≥0

X(t) < 0) = P(sup
t≥0

X(t) > x).

Theorem 5.6.2
It holds

P(sup
t≥0

X(t) > x) = e−2µx, x ≥ 0, µ > 0.

Proof Let τ = τXx = inf{t ≥ 0 : X(t) = x}. It holds

P(sup
t≥0

X(t) > x) = P(τ <∞) = lim
t→+∞

P(τ < t).

Compute this limit. For that, introduce the process Y = {Y (t), t ≥ 0},

Y (t) = exp
{
uX(t)− t

(
u2

2 − µu
)}

, t ≥ 0,

u ≥ 0 fixed. It can easily be shown that Y is a martingale. τ ′ = τ ∧ t is a finite stopping time
w.r.t. {FX

t , t ≥ 0}. By Corollary 5.4.1, EY (τ ′) = EY (0) = e0 = 1. On the other hand,

1 = E(Y (τ ′)) = E(Y (τ ′)1(τ < t)) + E(Y (τ ′)1(τ ≥ t)) = E(Y (τ)1(τ < t)) + E(Y (τ ′)1(τ ≥ t)).
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If we can show that
lim

t→+∞
E(Y (τ ′)1(τ ≥ t)) = 0, (5.6.1)

then limt→+∞ E(Y (τ)1(τ < t)) = 1. Since Y (τ) = exp
{
ux− τ

(
u2

2 − µu
)}

, it follows

lim
t→+∞

E
[
exp

{
−τ

(
u2

2 − uµ
)}

1(τ < t)
]

= e−ux,

and for u = 2µ it holds

lim
t→+∞

E
[
e01(τ < t)

]
= lim

t→+∞
P(τ < t) = e−2µx.

Hence, P(supt≥0X(t) > x) = e−2µx. Now let us prove (5.6.1). By Corollary 3.3.2, it is known
that

W (t)
t

a.s.−−→ 0, (t→ +∞).

Hence,

lim
t→∞

X(t)
t

= lim
t→∞

(
W (t)
t
− µ

)
= −µ

⇒ X(t) a.s.→ −∞, (t→∞). Then,

Y (τ ′)1(τ ≥ t) = exp{2µX(t)}1(τ ≥ t) a.s.→ 0 (t→∞).

By Lebesgue’s theorem, it holds E [Y (τ ′)1(τ ≥ t)]→ 0, (t→ +∞).

5.7 Additional Exercises
Exercise 5.7.1
Let X,Y : Ω→ R be arbitrary random variables on (Ω,F ,P) with

E|X| <∞, E|Y | <∞, E|XY | <∞,

and let G ⊂ F be an arbitrary sub-σ-Algebra of F . Then it holds

(a) E(X|{∅,Ω}) = EX,E(X|F) = X,

(b) E(aX + bY |G) = aE(X|G) + bE(Y |G) for arbitrary a, b ∈ R,

(c) E(X|G) ≤ E(Y |G), if X ≤ Y ,

(d) E(XY |G) = Y E(X|G), if Y is a (G,B(R))-measurable random variable,

(e) E(E(X|G2)|G1) = E(X|G1), if G1 and G2 are sub-σ-algebras of F with G1 ⊂ G2,

(f) E(X|G) = EX, if the σ-algebra G and σ(X) = X−1(B(R)) are independent, i.e., if
P(A ∩A′) = P(A)P(A′) for arbitrary A ∈ G and A′ ∈ σ(X).

(g) E(f(X)|G) ≥ f(E(X|G)), if f : R→ R is a convex function, such that E|f(X)| <∞.
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Exercise 5.7.2
Look at the two random variables X and Y on the probability space ([−1, 1],B([−1, 1]), 1

2ν)
with E|X| <∞, where ν is the Lebesgue measure on [−1, 1]. Determine σ(Y ) and a version of
the conditional expectation E(X|Y ) for the following random variables:

(a) Y (ω) = ω5 (Hint: Show first that σ(Y ) = B([−1, 1]))

(b) Y (ω) = (−1)k for ω ∈
[
k−3

2 , k−2
2

)
, k = 1, . . . , 4 and Y (1) = 1

(Hint: It holds E(X|B) = E(X1B)
P(B) for B ∈ σ(Y ) with P(B) > 0)

(c) Calculate the distribution of E(X|Y ) in (a) and (b), if X ∼ U [−1, 1].

Exercise 5.7.3
Let X and Y be random variables on a probability space (Ω,F ,P). The conditional variance
Var(Y |X) is defined by

Var(Y |X) = E((Y − E(Y |X))2|X).

Show that
Var Y = E(Var(Y |X)) + Var(E(Y |X)).

Exercise 5.7.4
Let now S and τ be stopping times w.r.t. the filtration {Ft, t ≥ 0}. Show:

(a) A ∩ {S ≤ τ} ∈ Fτ ∀A ∈ FS

(b) Fmin{S,τ} = FS ∩ Fτ

Exercise 5.7.5 (a) Let {X(t), t ≥ 0} be a martingale. Show that EX(t) = EX(0) holds for
all t ≥ 0.

(b) Let {X(t), t ≥ 0} be a sub- resp. supermartingale. Show that EX(t) ≥ EX(0) resp.
EX(t) ≤ EX(0) holds for all t ≥ 0.

Exercise 5.7.6
Let the stochastic process X = {X(t), t ≥ 0} be adapted and càdlàg. Show that

P( sup
0≤v≤t

X(v) > x) ≤ EX(t)2

x2 + EX(t)2

holds for arbitrary x > 0 and t ≥ 0, if X is a submartingale with EX(t) = 0 and EX(t)2 <∞.
Exercise 5.7.7
Let X = {X(n), n ∈ N} be a martingale. Show that the sequence of random variables
X(τ ∧ 1), X(τ ∧ 2), . . . is uniformly integrable for every finite stopping time τ , if E|X(τ)| <∞
and E(|X(n)|1{τ>n})→ 0 for n→∞.
Exercise 5.7.8
Let S = {Sn = a+

∑n
i=1Xi, n ∈ N} be a symmetric random walk with a > 0 and P(Xi = 1) =

P(Xi = −1) = 1/2 for i ∈ N. The random walk is stopped at the time τ , when it exceeds or
falls below one of the two values 0 and K > a for the first time, i.e.

τ = min
k≥0
{Sk ≤ 0 or Sk ≥ K}.
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Show that Mn =
∑n
i=0 Si − 1

3S
3
n is a martingale and E(

∑τ
i=0 Si) = 1

3(K2 − a2)a+ a holds.
Hint: To calculate E(Mn|FM

m ), n > m, you can use E(
∑l
i=kXi)3 = 0, 1 ≤ k ≤ l, Mn =∑m

r=0 Sr +
∑n
r=m+1 Sr − 1

3S
3
n and Sn = Sn − Sm + Sm.

Exercise 5.7.9
Let {Xn}n∈N be a discrete martingale and τ a discrete stopping time w.r.t. {Fn}n∈N. Show
that{Xmin{τ,n}}n∈N is also a martingale w.r.t. {Fn}n∈N.
Exercise 5.7.10
Let {Sn}n∈N be a symmetric random walk with Sn =

∑n
i=1Xi for a sequence of independent and

identically distributed random variables X1, X2, . . ., such that P(X1 = 1) = P(X1 = −1) = 1
2 .

Let τ = inf{n : |Sn| >
√
n} and Fn = σ{X1, . . . , Xn}, n ∈ N.

(a) Show that τ is a stopping time w.r.t. {Fn}n∈N.

(b) Show that {Gn}n∈N with Gn = S2
min{τ,n} − min{τ, n} is a martingale w.r.t. {Fn}n∈N.

(Hint: Use exercise 5.7.9)

(c) Show that |Gn| ≤ 4τ holds for all n ∈ N.
(Hint: It holds |Gn| ≤ |S2

min{τ,n}|+ |min{τ, n}| ≤ S2
min{τ,n} + τ)



6 Stationary Sequences of Random Variables

6.1 Sequences of Independent Random Variables
It is known that the series

∞∑
n=1

1
nα

<∞⇐⇒ α > 1,

∞∑
n=1

(−1)n

nα
<∞⇐⇒ α > 0,

since the drift of neighboring terms in the second series has order 1
n1+α , i.e.

∞∑
n=1

(−1)n

nα
= −1 +

∞∑
k=1

( 1
(2k)α −

1
(2k + 1)α

)
,

whereas

1
(2k)α −

1
(2k + 1)α = (2k + 1)α − (2k)α

(2k)α(2k + 1)α =

(
1 + 1

2k

)α
− 1

(2k + 1)α
k→∞=

1 + α
2k − 1 + o

(
1
2k

)
(2k + 1)α

= α+ o (1)
2k(2k + 1)α = O

( 1
(2k)α+1

)
= O

( 1
nα+1

)
, n = 2k.

For which α > 0 does the series
∑∞
n=1

δn
nα converge, where δn are i.i.d. random variables with

Eδn = 0, e.g. P(δn = ±1) = 1
2?

More general question: Under which conditions holds
∑∞
n=1Xn < ∞ a.s., where Xn are

independent random variables?
It is known that for a sequence of random variables {Yn} with Yn

a.s.−−−→
n→∞

Y it holds that

Yn
P−−−→

n→∞
Y . The opposite is in general not true.

Theorem 6.1.1
Let Xn, n ∈ N be independent random variables. If Sn =

∑n
i=1Xi

P−−−→
n→∞

S, then Sn
a.s.−−−→
n→∞

S.

Without proof
Corollary 6.1.1
If the Xn, n ∈ N are independent random variables with VarXn < ∞, EXn = 0, n ∈ N and∑∞
n=1 VarXn <∞, then

∑∞
n=1Xn converges a.s.

Proof Let Sn =
∑n
i=1Xi for n ∈ N. Prove that {Sn}n∈N is a Cauchy sequence in L2(Ω,F ,P).

Namely, for n > m it holds

E(Sn − Sm)2 = ‖Sn − Sm‖2L2 =
n∑

i=m+1
VarXi −−−−−→

n,m→∞
0,

91
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since
∑∞
i=1 VarXi <∞. Hence, {Sn}n∈N is a Cauchy sequence in L2(Ω,F ,P). Then

∃S = lim
n→∞

Sn =
∞∑
i=1

Xi

in the mean square sense and thus Sn
P−−−→

n→∞
S. The statement of the corollary then follows

from Theorem 6.1.1.

Corollary 6.1.2
If
∑∞
n=1 a

2
n < ∞, where {an}n∈N is a deterministic sequence, and {δn} is a sequence of i.i.d.

random variables with Eδn = 0, Var δn = σ2 < ∞, n ∈ N, then the sequence
∑∞
n=1 anδn

converges a.s.
Exercise 6.1.1
Derive Corollary 6.1.2 from Corollary 6.1.1.
In our motivating example δn i.i.d., Eδn = 0, Var δn = σ2 > 0 (e.g. P(δn = ±1) = 1

2),
an = 1

nα , n ∈ N.
∑∞
n=1

δn
nα <∞, if

∑∞
n=1

1
n2α <∞, i.e. for α > 1

2 .

Corollary 6.1.3 (Three-Series-Theorem):
Let {Xn}n∈N be a sequence of independent random variables with

∑∞
n=1 EXn,

∑∞
n=1 VarXn <

∞. Then
∑∞
n=1Xn

a.s.
< ∞.

Proof Let Yn = Xn − EXn, thus Xn = EXn︸ ︷︷ ︸
=an

+Yn, n ∈ N, and EYn = 0,
∑∞
n=1 an < ∞ by

our assumptions. Then
∑∞
n=1 Yn

a.s.
< ∞ by Corollary 6.1.1, since VarXn = Var Yn, n ∈ N,∑∞

n=1 VarXn <∞ ⇒
∑
nXn =

∑∞
n=1 an +

∑∞
n=1 Yn

a.s.
< ∞.

6.2 Stationarity in the Strict Sense and Ergodic Theory
6.2.1 Basic Ideas
Let {Xn}n∈N be a stationary in the strict sense sequence of random variables, i.e. for all
n, k ∈ N the distribution of (Xn, . . . , Xn+k)T is independent of n ∈ N. In particular, this means
that all Xn are identically distributed. In the language of Kolmogorov’s theorem:

P((Xn, Xn+1, . . .) ∈ B) = P((X1, X2, . . .) ∈ B),

for all n ∈ N and all B ∈ B(R∞), where R∞ = R× R× . . .× . . . .
Example 6.2.1 (Stationary sequences of random variables): 1. Let {Xn}n∈N be a se-

quence of i.i.d. random variables, then {Xn}n∈N is stationary.

2. Let Yn = a0Xn + . . . + akXn+k, where k is a fixed natural number, {Xn}n∈N from 1),
a0, . . . , ak ∈ R (fixed), n ∈ N. Yn are not independent anymore but identically distributed.
The sequence {Yn}n∈N is stationary.

3. Let Yn =
∑∞
j=0 ajXn+j for arbitrary n ∈ N. The sequence {aj}j∈N0 is a sequence of

real numbers with
∑∞
j=0 a

2
j < ∞ and {Xn}n∈N are i.i.d. random variables with EXn =

0,VarXn < ∞ (compare Corollary 6.1.2). It is obvious that {Yn}n∈N is a stationary
sequence. (This construction is important for autoregressive time series (AR processes),
e.g. in econometrics).
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4. Let Yn = g(Xn, Xn+1, . . .), n ∈ N, g : R∞ → R measurable, {Xn}n∈N as in 1). Then
{Yn}n∈N is stationary.

Remark 6.2.1 1. An arbitrary stationary sequence of random variables X = {Xn}n∈N
can be extended to a stationary sequence X̄ = {Xn}n∈Z. In fact, the finite dimensional
distribution of X̄ can be defined as:

(Xn, . . . , Xn+k)
d= (X1, . . . , Xk+1), n ∈ Z, k ∈ N.

Therefore, by Kolmogorov’s theorem, there exists a probability space and a sequence
{Yn}n∈Z with the above distribution. We set X̄ = {Yn}n∈Z, it hence follows that
{Yn}n∈N

d= {Xn}n∈N.

2. We define a shift of coordinates. Let x ∈ R∞−∞, x = (xk, k ∈ Z). Define the mapping
θ : R∞−∞ → R∞−∞, (θx)k = xk+1 (shift of the coordinates by 1), k ∈ Z. If θ is considered
on R∞−∞, then it is bijective and the inverse mapping would be (θ−1x)k = xk−1, k ∈ Z.
Let now X = {Xn, n ∈ Z} be a stationary sequence of random variables. Let X̄ = θX,

X̃ = θ−1X. It is obvious that X̄ and X̃ are again stationary and X̄ d= X
d= X̃, i.e.,

P(θ−1X ∈ B) = P(θX ∈ B) = P(X ∈ B), B ∈ B(R∞−∞).

θ is called a measure preserving map. There are also other maps which have a measure
preserving effect.

Definition 6.2.1
Let (Ω,F ,P) be an arbitrary probability space. A map T : Ω→ Ω is called measure preserving,
if

1. T is measurable, i.e. T−1A ∈ F for all A ∈ F ,

2. P(T−1A) = P(A), A ∈ F .

Lemma 6.2.1
Let T be a measure preserving mapping and let X0 be a random variable. Define Xn(ω) =
X0(Tn(ω)), ω ∈ Ω, n ∈ N. Then the sequence of random variables X = {X0, X1, X2, . . .} is
stationary.

Proof Let
X(ω) = (X0(ω), X0(T (ω)), X0(T 2(ω)), . . .),

θX(ω) = (X0(T (ω)), X0(T 2(ω)), X0(T 3(ω)), . . .),

B ∈ B(R∞), A = {ω ∈ Ω : X(ω) ∈ B}, A1 = {ω ∈ Ω : θX(ω) ∈ B}. Therefore ω ∈ A1 ⇔
T (ω) ∈ A. Since P(T−1A) = P(A), it holds P(A1) = P(A). For An = {ω ∈ Ω : θnX(ω) ∈ B}
the same holds, P(An) = P(A), n ∈ N (Induction). Hence the sequence X is stationary.

The sequence X in Lemma 6.2.1 is called a sequence generated by T .
Definition 6.2.2
A map T : Ω→ Ω is called measure preserving in both directions, if

1. T is bijective and T (Ω) = Ω,
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2. T and T−1 are measurable,

3. P(T−1A) = P(A), A ∈ F , and therefore P(TA) = P(A).

Thus, exactly as in Lemma 6.2.1, we can construct stationary sequences of random variables
with time parameter n ∈ Z:

X(ω) = {X0(Tn(ω))}n∈Z, ω ∈ Ω,

where T is a measure preserving map (in both directions), X0(T 0(ω)) = X0(ω), (T 0 = Id).
Lemma 6.2.2
For an arbitrary stationary sequence of random variables X = (X0, X1, . . .) there exists a
measure preserving map T and a random variable Y0 such that Y (ω) = {Y0(Tn(ω))}n∈N has the
same distribution as X: X d= Y. The same statement holds for sequences with time parameter
n ∈ Z and measure preserving maps in both directions.

Proof Consider the canonical probability space (R∞,B(R∞),PX), Y (ω) = ω, ω ∈ R∞, Y0(ω) =
ω0 for ω = (ω0, ω1, ω2, . . .) ∈ R∞, T = θ. Thus, Y is constructed since PX(A) = PX(Y ∈ A) =
PY (A), A ∈ B(R∞).

Example 6.2.2 (Measure preserving maps): 1. Let Ω = {ω1, . . . , ωk}, k ≥ 2, F = 2Ω,
P(ωi) = 1

k , i = 1, . . . , k, be a Laplace probability space. Then Tωi = ωi+1 for all
i = 1, . . . , k − 1, Tωk = ω1, is measure preserving.

2. Let Ω = [0, 1), F = B([0, 1)), P = ν1 – Lebesgue-measure on [0, 1). Let Tω = (ω + s)
mod 1, s ≥ 0. T is measure preserving in both directions.

Stationary sequences of random variables, which in these examples can be generated by the
map T , are mostly deterministic resp. cyclic. In Example 1) we can consider a random variable
X0 : Ω → R, such that X(ωi) = xi are all pairwise distinct. Therefore Xn(ω) = X0(Tn(ω))
uniquely defines the value of Xn+1(ω) = X0(Tn+1(ω)), for all n ∈ N.

Remark 6.2.2
Measure preserving maps play an important role in physics. There, T is interpreted as the
change of state of a physical system and the measure P can e.g. be the volume. (Example: T
– change of temperature, measure P – volume of the gas.) Therefore the ergodic theory to be
developed can be immediately transfered to some physical processes.
Theorem 6.2.1 (Poincarè):
If T is a measure preserving map on (Ω,F ,P), A ∈ F , then for almost all ω ∈ A the relation
{Tn(ω) ∈ A} holds for infinitely many n ∈ N.

That means, the trajectory {Tn(ω), n ∈ N} returns to A infinitely often for almost all ω ∈ Ω,
P(A) > 0.

Proof Let N = {ω ∈ A : Tn(ω) /∈ A,∀n ≥ 1}. It is obvious that N ∈ F , since {ω ∈ Ω :
Tn(ω) /∈ A} ∈ F for all n ≥ 1. N ∩T−nN = ∅ for all n ≥ 1. In fact, if ω ∈ N ∩T−n0N for some
n0 ∈ N, then ω ∈ A, Tn(ω) /∈ A for all n ≥ 1, ω1 = Tn0(ω), ω1 ∈ N . Hence it follows that
ω1 ∈ A, i.e. Tn0(ω) ∈ A. That is a contradiction with ω ∈ N. For arbitrary m ∈ N it holds

T−mN ∩ T−(n+m)N = T−m(N ∩ T−nN) = T−m(∅) = ∅.
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Hence the sets T−nN , n ∈ N, are pairwise disjoint, belong to F and P(T−nN) = P(N) = a ≥ 0
holds. Then

1 ≥ P(∪n≥0T
−nN) =

∞∑
n=0

P(T−nN) =
∞∑
n=0

a,

which is possible only if a = 0, i.e., P(N) = 0. Hence it follows that for almost all ω ∈ A
(ω ∈ A \ N) there exists a n1 = n1(ω), such that Tn1(ω) ∈ A. Now use T k be instead of T ,
k ∈ N in the above reasoning, Nk = {ω ∈ A : T kn(ω) /∈ A,∀n ≥ 1}. It holds P(Nk) = 0 and for
all ω ∈ A \Nk there exists nk = nk(ω) such that (T k)nk(ω) ∈ A. Since knk ≥ k it follows for
almost all ω ∈ A that Tn(ω) ∈ A for infinitely many n.

Corollary 6.2.1
Let X ≥ 0 be a random variable, A = {ω ∈ Ω : X(ω) > 0}. Then it holds for almost all ω ∈ A
that

∑∞
n=0X(Tn(ω)) = +∞, where T is a measure preserving map.

Exercise 6.2.1
Prove it.
Remark 6.2.3
The proof of Theorem 6.2.1 holds for the sets A ∈ F : P(A) ≥ 0. If however P(A) = 0, it is
possible that A \N = ∅ and thus the statement of the theorem is trivial.
As an example we consider Ω = [0, 1), F = B[0,1), P = ν1 – Lebesgue-measure, T (ω) = (ω + s)
mod 1, s /∈ Q. Set A = {ω0}, ω0 ∈ Ω. Then Tn(ω0) 6= ω0 holds for all n, because otherwise
there exists k,m ∈ N, such that ω0 + ks−m = ω0 and hence follows s = m

k ∈ Q. Thus we get
a contradiction.

6.2.2 Mixing Properties and Ergodicity
Here we study the dependence structure in a stationary sequence of random variables, which
is generated by a measure preserving map T .

Let X = {Xn}n∈N be a stationary sequence (in the strict sense) of random variables. Then
there exists a measure preserving map T : Ω→ Ω such that Xn(ω) d= X0(Tn(ω)) and Xn

d= X0,
and thusX0 gives the marginal distribution of the sequenceX. In turn, the map T is responsible
for the dependence within X (it indicates the properties of multidimensional distributions). We
shall therefore now examine the dependence properties of X generated by T .
Definition 6.2.3 1. Event A ∈ F is called invariant w.r.t. (a measure preserving map)

T : Ω→ Ω, if T−1A = A.

2. Event A ∈ F is called almost invariant w.r.t. T , if P(T−1A4A) = 0. Here 4 is the
symmetric difference of sets.

Exercise 6.2.2
Show that the set of all (almost) invariant events w.r.t. T is a σ-algebra J(J∗).
Lemma 6.2.3
Let A ∈ J∗. Then there exists B ∈ J such that P(A4B) = 0.

Proof Let B = lim supn→∞ T−nA = ∩∞n=1 ∪∞k=n T
−kA. It is to be shown that B ∈ J ,

P(A4B) = 0. It is obvious that T−1(B) = lim supn→∞ T−(n+1)A = B and hence B ∈ J .
It is easy to see that A4B ⊂ ∪∞k=0(T−kA4T−(k+1)A). Since P(T−kA4T−(k+1)A) = 0 for all
k ≥ 1 due to A ∈ J∗, it follows that P(A4B) = 0.
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Definition 6.2.4 1. The measure preserving map T : Ω → Ω is called ergodic if for every
A ∈ J

P(A) =
{

0
1 .

2. The stationary sequence of random variablesX = {Xn}n∈N is called ergodic if the measure
preserving map T : Ω→ Ω, which generates X, is ergodic.

Lemma 6.2.4
The measure preserving map T is ergodic if and only if the probability of almost invariant sets

P(A) =
{

0
1 for all A ∈ J∗.

Proof „⇐ “
Obvious, since arbitrary invariant set are also almost invariant, i.e. J ⊂ J∗.
„⇒ “
Let T be ergodic and A ∈ J∗. According to Lemma 6.2.3 it follows that there exists B ∈ J
such that P(A4B) = 0. Therefore P(A) = P(A ∩ B) = P(B). Since T is ergodic and B ∈ J it
follows

P(A) = P(B) =
{

0
1 .

Definition 6.2.5
A random variable Y : Ω → R is called (almost) invariant w.r.t. a measure preserving map
T : Ω→ Ω if Y (ω) = Y (T (ω)) for (almost) all ω ∈ Ω.
Theorem 6.2.2
Let T : Ω→ Ω be a measure preserving map. The following statements are equivalent:

1. T is ergodic.

2. If Y is almost invariant w.r.t. T then Y = const a.s.

3. If Y is invariant w.r.t. T then Y = const a.s.

Proof 1)⇒ 2)⇒ 3)⇒ 1)
1)⇒ 2)

Let T be ergodic and Y – almost invariant. It is to be shown that Y (ω) = const for almost all
ω ∈ Ω. Y (T (ω)) = Y (ω) almost surely. Let Av = {ω ∈ Ω : Y (ω) ≤ v}, v ∈ R. Hence it follows
that Av ∈ J∗ for all v ∈ R and by Lemma 6.2.4

P(Av) =
{

0
1 for all v.

Let c = sup {v : P(Av) = 0}. Show that P(Y = c) = 1. It holds Av ↑ Ω, v → ∞, Av ↓ ∅,
v → −∞ ⇒ |c| <∞. Thus

P(Y < c) = P
(
∪∞n=1

{
Y ≤ c− 1

n

})
≤
∞∑
n=1

P
(
Ac− 1

n

)
︸ ︷︷ ︸

=0

= 0,
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by definition of c. Analogously one proves that P(Y > c) = 0 and hence P(Y = c) = 1.
2)⇒ 3) is obvious.

3)⇒ 1) It is to be shown that T is ergodic, i.e. P(A) =
{

0
1 for all A ∈ J.

Let Y = 1A. It is invariant w.r.t. T , hence it follows that 1A = const =
{

0
1 and P(A) =

{
0
1 .

Remark 6.2.4 1. The statements of Theorem 6.2.2 stay true if you demand 3) for a.s.
bounded random variables Y .

2. If Y is invariant w.r.t. T then Yn = min {Y, n}, n ∈ N, is also invariant w.r.t. T .
Example 6.2.3 1. Let Ω = {ω1, . . . , ωd}, F = 2Ω, P({ωi}) = 1

d , i = 1, . . . , d. Let T (ωi) =
ωi+1, i = 1, . . . , d− 1, ωd

T7−→ ω1. T is obviously ergodic and hence any invariant random
variable is constant.

2. Let Ω = [0, 1), F = B[0,1), P = ν1, T (ω) = (ω + s) mod 1. Show that T is ergodic ⇐⇒
s /∈ Q.

Proof „⇐ “
Let s /∈ Q, Y be an arbitrary invariant random variable. Let Y be bounded a.s. so that
EY 2 < ∞ (compare Remark 6.2.4, 1)). We decompose the random variable Y into a Fourier-
series. The Fourier series of Y is Y (ω) =

∑∞
n=0 ane

2πinw. We want to show that an = 0,
n > 0, and hence follows that Y (ω) = a0 a.s.. Then T is ergodic by Theorem 6.2.2. Indeed, by
definition of T, T (ω) = ω+ s− k, k ∈ N. Since T is measure preserving and since Y is invariant
w.r.t. T it holds

an =< Y (ω), e2πinw >L2= E(Y (ω)e−2πinw) = E(Y (T (ω))e−2πinw)e−2πins = e−2πinsan.

Therefore if s /∈ Q then an = 0.
„⇒“

If s = m
n ∈ Q, then T is not ergodic, i.e. there exists A ∈ J such that 0 < P (A) < 1.

Indeed, set A = ∪n−1
k=0

{
ω ∈ Ω : 2k

2n ≤ ω <
2k+1

2n

}
. It is clear that P(A) = 1

2 . A is invariant, since

T (A) =
(
A+ 2m

2n

)
mod 1 = A.

Definition 6.2.6 1. The measure preserving map T : Ω→ Ω is called mixing (on average),
if for all A1, A2 ∈ F it holds: P(A1 ∩ T−nA2) −−−→

n→∞
P(A1)P(A2)

( 1
n

∑n
k=1 P(A1∩T−kA2) −−−→

n→∞
P(A1)P(A2), respectively), i.e., by repeated application of

T to A2, A1 and A2 are getting asymptotically independent.

2. Let X = {Xn}n∈N0
be a stationary sequence of random variables which are generated by

a random variable X0 and a measure preserving map T . X is called weakly dependent (on
average), if the random variables Xk and Xk+n are getting asymptotically independent
for n→∞, i.e. for all B1, B2 ∈ BR and k ∈ N0

P(Xk ∈ B1, Xk+n ∈ B2) −−−→
n→∞

P(X0 ∈ B1)P(X0 ∈ B2)(
1
n

n∑
k=1

P(X0 ∈ B1, Xk ∈ B2) −−−→
n→∞

P(X0 ∈ B1)P(X0 ∈ B2), respectively
)
.
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Theorem 6.2.3
Any stationary sequence of random variables X = {Xn}n∈N0

, generated by the measure pre-
serving map T , is weakly dependent (on average) if and only if T is mixing (on average).

Proof We prove the equivalence of mixing and weak dependence. The proof of the equivalence
of mixing and weak dependence on average is analogous and left as an exercise to the reader.
„⇐ “ If T is mixing we have to show that X = {Xn}n∈N0 with Xn(ω) = X0(Tn(ω)), n ∈ N0 is
weakly dependent. Let B1, B2 ∈ BR. W.l.o.g., choose k = 0. Then

P(X0 ∈ B1, X0 ◦ Tn ∈ B2) = P(X−1
0 (B1)︸ ︷︷ ︸
=A1

∩T−n(X−1
0 (B2))︸ ︷︷ ︸

=T−nA2

)

−−−→
n→∞

P(A1)P(A2) = P(X0 ∈ B1)P(X0 ∈ B2).

„ ⇒ “ Let any X = {Xn}n∈N0 with Xn(ω) = X0(Tn(ω)), n ∈ N0 be weakly dependent. For
any A1, A2 ∈ F construct the random variable

X0(ω) =


0, ω /∈ A1 ∪A2

1, ω ∈ A1 ∩Ac2
2, ω ∈ A1 ∩A2

3, ω ∈ Ac1 ∩A2

.

Since Xn(ω) = X0(Tn(ω)) yields a weakly dependent sequence, it holds

P(A1 ∩ T−nA2) = P({1 ≤ X0 ≤ 2} ∩ {Xn ≥ 2}) −−−→
n→∞

P(X0 ∈ [1, 2])P(X0 ≥ 2) = P(A1)P(A2).

Hence, T is mixing.

Theorem 6.2.4
Let T be a measure preserving map. T is ergodic if and only if it is mixing on average.

Proof „⇐ “
It is to be shown, that if T is mixing on average then T is ergodic, i.e. for all A ∈ J it holds

P(A) =
{

0
1 . Let A1 ∈ F , A2 = A ∈ J. Then

1
n

∑n
k=1 P(A1∩T−n(A2)︸ ︷︷ ︸

=A2

) = P(A1∩A2) −−−→
n→∞

P(A1)P(A2), which is possible only if P(A1∩A2) =

P(A1)P(A2). For A1 = A, we get P(A) = P2(A) and hence P(A) =
{

0
1 .

„ ⇒ “
Later.

Now we give the motivation for the term „mixing“.
Theorem 6.2.5
Let A ∈ F , P(A) > 0. The measure preserving map T : Ω → Ω is ergodic (i.e. mixing on
average) if and only if

P
(
∪∞n=0T

−nA
)

= 1,

i.e. the preimages T−nA, n ∈ N0 cover almost the whole Ω.



6 Stationary Sequences of Random Variables 99

Proof „⇒ “
Let B = ∪∞n=0T

−nA. Obviously, T−1B = ∪∞n=1T
−nA ⊂ B. Since T is measure preserving,

i.e. P(T−1B) = P(B), it follows that P(T−1B4B) = P(B \ T−1B) = P(B) − P(T−1B) = 0.

Hence, B ∈ J∗ (B is almost invariant w.r.t. T ) and P(B) =
{

0
1 by Lemma 6.2.4. Since

P(B) ≥ P(A) > 0 ⇒ P(B) = 1.
„ ⇐ “

Let T be non-ergodic. It is to be shown that P(B) < 1 for some A ∈ F ,P(A) > 0. If T is not
ergodic, there exists A ∈ J such that 0 < P(A) < 1. Hence, B = ∪∞n=0 T

−nA︸ ︷︷ ︸
A

= A and hence

P(B) < 1.

Remark 6.2.5
So far, the fact that the random variables X are real-valued was never explicitly used. There-
fore the above observations can be transferred without modifications to sequences of random
elements with values in an arbitrary measurable space M.

6.2.3 Ergodic Theorem

Let X = {Xn}∞n=0 be a sequence of random variables on the probability space (Ω,F ,P). If Xn

are i.i.d. then by the law of large numbers

1
n

n−1∑
k=0

Xk
a.s.−−−→
n→∞

EX0, if E|X0| <∞.

We want to prove a similar statement about stationary sequences.

Theorem 6.2.6 (Ergodic theorem, Birkhoff-Khinchin):
Let X = {Xn}n∈N0

be a stationary sequence of random variables generated by the random
variable X0 and a measure preserving map T : Ω→ Ω. Let J be the σ-algebra of the invariant
sets w.r.t. T and E|X0| <∞. Then

1
n

n−1∑
k=0

Xk
a.s.−−−→
n→∞

E(X0 | J).

If X is weakly dependent on average (i.e. T is ergodic), then E(X0 | J) = E(X0).

Lemma 6.2.5
Let {Xn}, T be as above. Let Sn(ω) =

∑n−1
k=0 X0(T k(ω)), Mn(ω) = max {0, S1(ω), . . . , Sn(ω)}.

Under the conditions of Theorem 6.2.6 it holds

E(X01(Mn > 0)) ≥ 0, n ∈ N.

Proof Let ω ∈ {ω : Mn(ω) > 0}. For all k ≤ n it holds Sk(ω0) ≤ Mn(ω0), ω0 ∈ Ω. Take
ω0 = T (ω). We can add X0 and get

X0(ω) +Mn(T (ω)) ≥ X0(ω) + Sk(T (ω)) = Sk+1(ω).
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For k = 0, . . . , n − 1 it holds X0(ω) ≥ Sk+1(ω) −Mn(T (ω)). Hence it follows that X0(ω) ≥
max {S1(ω), . . . , Sn(ω)}︸ ︷︷ ︸

=Mn(ω)

−Mn(T (ω)). Since Mn(ω) > 0, then Mn = max {S1, . . . , Sn}. It fol-

lows that

E(X01(Mn > 0)) ≥ E((Mn −Mn(T ))1(Mn > 0)) ≥ E(Mn −Mn(T (ω))) = 0,

since T is measure preserving.

Proof of the Theorem 6.2.6 W.l.o.g. let E(X0 | J) = 0, otherwise replace X0 by
X0−E(X | J). It has to be shown: limn→∞

Sn
n

a.s.= 0, Sn =
∑n−1
k=0 Xk. It is enough to show that

0 ≤ lim inf
n→∞

Sn
n
≤ lim sup

n→∞

Sn
n
≤ 0

with probability one. First we show that S = lim supn→∞ Sn
n ≤ 0. It is enough to show that

P(S > ε︸ ︷︷ ︸
Aε

) = 0 for all ε > 0. Let X∗0 = (X0 − ε)1Aε , S∗k =
∑k−1
j=0 X

∗
0 (T j(ω)),

M∗k = max{0, S∗1 , . . . , S∗k}. By Lemma 6.2.5, it follows E(X∗0 1(M∗n > 0)) ≥ 0 for all n ≥ 1.
But

{M∗n > 0} =
{

max
1≤k≤n

S∗k > 0
}
↑n→∞

{
sup
k≥1

S∗k > 0
}

=
{

sup
k≥1

S∗k
k
> 0

}
=
{

sup
k≥1

Sk
k
> ε

}
∩Aε = Aε,

since
{

supk≥1
Sk
k > ε

}
⊃
{
S > ε

}
= Aε. By Lebesgue’s theorem

0 ≤ E(X∗0 1(M∗n > 0)) −−−→
n→∞

E(X∗0 1Aε), since E|X∗0 | ≤ E|X0|+ ε. Hence

0 ≤ E(X∗0 1Aε) = E((X0 − ε)1Aε) = E(X01Aε)− εP(Aε) = E(E(X01Aε | J))− εP(Aε)

= 1E(1Aε E(X0 | J)︸ ︷︷ ︸
=0

)− εP(Aε) = −εP(Aε)

which means that P(Aε) ≤ 0, i.e. P(Aε) = 0 for all ε > 0.
In oder to show 0 ≤ lim infn→∞ Sn

n = S it is enough to look at −X0 instead of X0, since
lim supn→∞(−Sn

n ) = − lim infn→∞(Snn ). Since P(−S ≤ 0) = 1 it holds P(S ≥ 0) = 1. Consider
now the case if T is ergodic. Since Y = E(X0|J) is an invariant random variable by definition
of J, it follows from Theorem 6.2.2,3) that Y = const a.s., i.e., Y = EY = E(E(X0|J)) = EX0.

Remark 6.2.6
The peculiarity of the Ergodic Theorem in comparison with the strong law of large numbers
lies in the fact that the limiting value E(X0 | J) is random.

1 Since S̄ = lim supn→∞ Sn
n

is invariant w.r.t. T (S̄(T ) = S̄) then Aε = {S̄ > ε} ∈ J, and hence 1Aε is
J-measurable. Then

E(X01Aε |J) = 1Aε E(X0|J).
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Example 6.2.4
We consider the probability space from Example 6.2.3 a): Ω = {ω1, . . . , ωd}, d = 2l ∈ N. Let
T : Ω→ Ω be defined by 

T (ωi) = ωi+2 , i = 1, . . . , d− 2,
T (ωd−1) = ω1 ,
T (ωd) = ω2 .

Let A1 = {ω1, ω3, . . . , ω2l−1}, A2 = {ω2, ω4, . . . , ω2l}. Since (Ω,F ,P) is a Laplace probability
space (P({ωi}) = 1

d , for all i) it follows that P(Ai) = 1
2 , i = 1, 2. On the other hand, A1, A2 ∈ J

w.r.t. T and therefore T is not ergodic. For an arbitrary random variable X0 : Ω→ R it holds

1
n

n−1∑
k=0

X0 (Tn(ω)) −−−→
n→∞

{
2
d

∑l−1
j=0X0(ω2j+1), with probability 1

2 , if ω ∈ A1,
2
d

∑l
j=1X0(ω2j) , with probability 1

2 , if ω ∈ A2.

Proof of Theorem 6.2.4 It has to be shown: If T : Ω → Ω is ergodic then T is mixing on
average, i.e. for all A1, A2 ∈ F

1
n

n−1∑
k=0

P(A1 ∩ T−kA2) −−−→
n→∞

P(A1)P(A2).

Since T is ergodic, Yn = 1
n

∑n−1
k=0 1(T−kA2) Theorem 6.2.6−−−−−−−−−→

n→∞
P(A2) a.s. By Lebesgue’s theorem it

follows from 1(A1)Yn
a.s.−−−→
n→∞

1(A1)P(A2) that

E(1(A1)Yn) = 1
n

n−1∑
k=0

P(A1 ∩ T−kA2) −−−→
n→∞

P(A1)P(A2).

Lemma 6.2.6
If {Xn}n∈N is a uniformly integrable sequence of random variables and pn,i ≥ 0 are such that∑n
i=1 pn,i = 1 for all n ∈ N then the sequence of random variables Yn =

∑n
i=1 pn,i |Xi|, n ∈ N,

is uniformly integrable as well.

Without proof

Corollary 6.2.2
Under the conditions of Theorem 6.2.6 it holds

1
n

n−1∑
k=0

Xk
L1
−−−→
n→∞

E(X0 | J)

resp.
1
n

n−1∑
k=0

Xk
L1
−−−→
n→∞

E(X0)

in the ergodic case.
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Proof As in the proof of Theorem 6.2.6, assume E(X0|J) = 0 w.l.o.g. If {Xn}n∈N0 is stationary,
it is uniformly integrable because it then holds

sup
n

E(|Xn|1(|Xn| > ε)) = E(|X0|1(|X0| > ε)) −−−→
ε→∞

0,

since E|X0| < ∞. Let Sn = 1
n

∑n−1
k=0 Xk =

∑n
i=1 pn,iXi−1, pn,i = 1

n , S̃n = 1
n

∑n−1
k=0 |Xk| =∑n

i=1 pn,i|Xi−1|. By Lemma 6.2.6,
{
S̃n
}
n∈Z

is uniformly integrable and so is {Sn}n∈N since
Sn ≤ S̃n, 1(|Sn| > ε) ≤ 1(S̃n > ε), consequently

sup
n∈N

E(|Sn|1(|Sn| > ε)) ≤ sup
n∈N

E(|S̃n|1(|S̃n| > ε)) ∀ε > 0.

By Lemma 5.3.2, it follows from Sn
a.s.−−−→
k→∞

0 that Sn
L1
−−−→
n→∞

0.

6.3 Stationarity in the Wide Sense

Let {Xn}n∈Z be a sequence of random variables, which is stationary in the wide sense:
E|Xn|2 <∞, n ∈ N, EXn = const, n ∈ N, cov(Xn, Xm) = C(n−m), n,m ∈ Z.

6.3.1 Correlation Theory

Theorem 6.3.1 (Herglotz):
C : Z→ R is a positive semi-definite function iff there exists a finite measure µ on (−π, π) such
that

C(n) =
∫ π

−π
einxµ(dx), n ∈ Z.

µ is called the spectral measure of C.

Remark 6.3.1
Since the covariance function of a stationary sequence is positive semi-definite the above rep-
resentation holds for an arbitrary covariance function C.

Proof of Theorem 6.3.1 „⇐ “
If C(n) =

∫ π
−π e

inxµ(dx), n ∈ Z, then for all n ∈ N, for all z1, . . . , zn ∈ C and t1, . . . , tn ∈ Z

n∑
i,j=1

zj z̄jC(ti − tj) =
∫ π

−π

∣∣∣∣∣∣
n∑
j=1

zje
itjx

∣∣∣∣∣∣
2

µ(dx) ≥ 0.

Hence it follows that C is positive semi-definite.
„⇒ “

For all N ≥ 1, x ∈ [−π, π], define the function gN (x) = 1
2πN

∑N
k,j=1C(k− j)e−i(k−j)x ≥ 0, since

C is positive semi-definite. It is continuous in x. It holds

gN (x) = 1
2π

∑
|n|<N

(
1− |n|

N

)
C(n)e−inx,
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since there are N−|n| pairs (k, j) ∈ {1, . . . , N}2 such that k−j = n, n ∈ {−(N−1), . . . , N−1}.
Define the measure µN on ([−π, π],B[−π,π]) by µN (B) =

∫
B gN (x)dx, B ∈ B([−π, π]).

∫ π

−π
einxµN (dx) =

∫ π

−π
einxgN (x)dx =

{ (
1− |n|N

)
C(n), |n| < N,

0, otherwise,

since
{
einx

}
n∈Z is an orthogonal system in L2[−π, π]. For n = 0 it holds

µN ([−π, π]) = C(0) < ∞, hence
{
µN
C(0)

}
n∈N

is a family of probability measures, which is tight
since µN have compact support [−π, π]. By Lemma 4.2.2, there exists a subsequence {Nk}k∈N,
Nk →∞ as k →∞ such that µNk

ω−−−→
k→∞

µ. µ is finite measure on [−π, π] and hence follows

∫ π

−π
einxµ(dx) = lim

k→∞

∫ π

−π
einxµNk(dx) = lim

k→∞

(
1− |n|

Nk

)
C(n) = C(n) for all n ∈ Z

by definition of weak convergence since einx is continuous and bounded in x.

Let X = {Xn}n∈Z be a stationary in the wide sense sequence of random variables. Then the
following spectral representation holds:

Xn
a.s.=

∫ π

−π
einxZ(dx), n ∈ Z,

where Z is an orthogonal random measure on ([−π, π],B([−π, π])). Therefore both Z and
I(f) =

∫ π
−π f(x)Z(dx) are to be introduced for deterministic functions f : [−π, π]→ C.

6.3.2 Orthogonal Random Measures
Let us briefly sketch the construction scheme of Z and stochastic integral I(·) on a σ-finite
space Λ:

1. Z is defined on a semiring K of subsets of a σ-finite phase space Λ (e.g. Λ = [−π, π] as
above).

2. Z is defined on the algebra A, which is generated by K.

3. Define the integral I w.r.t. Z for a simple function on Λ where µ(Λ) < ∞ for a given
measure µ.

4. Define I as L2− limn→∞ I(fn) for arbitrary non-random functions f , f = limn→∞ fn, fn
simple, µ(Λ) <∞.

5. Define I on a σ-finite space Λ = ∪nΛn, µ(Λn) < ∞, Λn ∩ Λm = ∅, n 6= m, as
I(f) =

∑
n In(f | Λn), In – integral w.r.t. Z on Λn. Hence Z is extended to

{A ∈ σ(A) : µ(A) <∞} as Z(A) = I(1(A)).

Now dwell on the above steps in more detail:
Step 1

Let K be a semiring of the subsets of Λ (Λ – arbitrary space), i.e. for all A,B ∈ K it
holds A ∩ B ∈ K; if A ⊂ B, then there exist A1, . . . , An ∈ K, Ai ∩ Aj = ∅, i 6= j, such that
B = A ∪ ∪ni=1Ai.
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Definition 6.3.1 1. A complex-valued random (signed) measure Z = {Z(B), B ∈ K},
given on the probability space (Ω,F ,P), is called orthogonal if
a) Z(B) ∈ L2(Ω,F ,P), B ∈ K,
b) A,B ∈ K, A ∩B = ∅ ⇒ 〈Z(A), Z(B)〉L2(Ω,F ,P) = E(Z(A) · Z(B)) = 0,
c) the σ-additivity holds: If B,B1, . . . , Bn, . . . ∈ K, B = ∪nBn, Bi ∩ Bj = ∅, i 6= j,

then Z(B) a.s.=
∑
n Z(Bn), where the convergence of this series is interpreted in L2

sense.

2. The orthogonal random measure Z is called centered if EZ(B) = 0, B ∈ K.

3. The measure µ = {µ(B), B ∈ K} defined by µ(B) = E|Z(B)|2 = 〈Z(B), Z(B)〉L2(Ω,F ,P),
B ∈ K, is called structure (or control) measure of Z.

It is easy to see that µ is in fact a measure on K. If Λ ∈ K then µ is finite, otherwise σ-finite
(here Λ = ∪nΛn, Λn ∈ K, Λn ∩ Λm = ∅, n 6= m, such that µ(Λn) <∞).

Exercise 6.3.1
Show that for all A,B ∈ K it holds 〈Z(A), Z(B)〉L2(Ω,F ,P) = µ(A ∩B).

Example 6.3.1
Let Λ = [0,∞), K = {[a, b), 0 ≤ a < b <∞}, Z([a, b)) = W (b)−W (a), 0 ≤ a < b <∞, where
W = {W (t), t ≥ 0} is the Wiener process. Z is an orthogonal random measure on K since
W has independent increments. Analogously, this definition can be transferred to an arbitrary
quadratic integrable stochastic process X with independent increments instead of W .

However, there is still an open question of existence of such measure Z on K.

Theorem 6.3.2
Let µ be a σ–finite measure on semiring K. Then there exists a probability space (Ω,F ,P) and
a centered orthogonal random measure Z on (Ω,F ,P), defined on {B ∈ K : µ(B) < ∞} with
structure measure µ.

Proof: cf. [4, Ch. VII].

Step 2
Let A be the algebra which contains all finite unions of sets from K. If Z is an orthogonal

random measure with a σ–finite structure measure µ as above, it can easily be extended to A
by additivity: for B ∈ A, B = ∪ni=1Bi, Bi ∈ K, Bi ∩Bj = ∅, i 6= j, we set Z(B) =

∑n
i=1 Z(Bi).

It can be easily shown that this extension does not depend on the choice of sets Bi making up
the set B.
By the theorem of Caratheodory, µ is uniquely continued on E = σ(A). However, in order to

make the same extension for Z, a stochastic integral I(·) with respect to Z has to be introduced
first.

6.3.3 Integral with respect to an orthogonal random measure

Step 3
Let (Λ, E , µ) be a measurable space with µ(Λ) < ∞. Let f : Λ → C be a simple function,

i.e. f(x) =
∑n
i=1 ci1(x ∈ Bi), for ci ∈ C and Bi ∈ E , i = 1, . . . , n, such that ∪ni=1Bi = Λ,

Bi ∩Bj = ∅, i 6= j.
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Definition 6.3.2
The stochastic integral of f w.r.t. an orthogonal random measure Z (defined on (Ω,F ,P)) is
given by I(f) =

∫
Λ f(x)Z(dx) =

∑n
i=1 ciZ(Bi).

Exercise 6.3.2
Show that the definition is correct, i.e. I(f) does not depend on the representation of f as a
simple function.
Lemma 6.3.1 (Properties of I):
Let I(·) be the integral w.r.t. the orthogonal random measure, defined on simple functions
Λ→ C as above. The following properties hold:

1. Isometry: 〈I(f), I(g)〉L2(Ω) = 〈f, g〉L2(Λ), where f and g are simple functions Λ → C,
〈f, g〉L2(Λ) =

∫
Λ f(x)g(x)µ(dx).

2. Linearity: For every simple function f, g : Λ→ C holds I(f + g) a.s.= I(f) + I(g).

Exercise 6.3.3
Prove it.
Step 4

Consider the space Λ with µ(Λ) <∞. Let now f ∈ L2(Λ, E , µ). Then there exists a sequence
of simple functions fn : Λ → C such that fn

L2(Λ)−−−→
n→∞

f (simple functions are tight in L2(Λ)).
Then define I(f) = limn→∞ I(fn), whereas this limit is to be understood in the L2(Ω,F ,P)-
sense. One can show that the definition of I(f) is independent of the choice of the sequence
{fn}.
Lemma 6.3.2
The statements of Lemma 6.3.1 hold for integral I : L2(Λ, E , µ)→ L2(Ω,F ,P), µ(Λ) <∞.

Proof Use the continuity of 〈·, ·〉.

Remark 6.3.2
If Z is centered then EI(f) = 0 holds for arbitrary functions f ∈ L2(Λ, E , µ).
Step 5

Let now Λ be σ-finite, i.e. Λ = ∪nΛn, µ(Λn) < ∞, Λn ∩ Λm = ∅, n 6= m. Then for all
f ∈ L2(Λ, E , µ) holds f =

∑
n f |Λn . Set En = σ(K ∩ Λn) , and let µn be the extension of µ|Kn

onto En for all n ∈ N.
On L2(Λn, En, µn) the integral In w.r.t. Z is defined as in 1)- 4). Now set I(f) :=

∑
n In(f |Λn).

Theorem 6.3.3
The map I : L2(Λ, E , µ)→ L2(Ω,F ,P) is an isometry. The random measure Z can be continued
to {B ∈ E : µ(B) <∞} as Z(B) := I(1B).

6.3.4 Spectral Representation
Let X = {X(t), t ∈ T} be an arbitrary complex-valued stochastic process on (Ω,F ,P), T –
an arbitrary index set, E|X(t)|2 < ∞, t ∈ T , EX(t) = 0, t ∈ T (w.l.o.g., otherwise consider
X̃(t) = X(t)− EX(t), t ∈ T ), with C(s, t) = E(X(s)X(t)), s, t ∈ T .
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Theorem 6.3.4 (Karhunen):
The above process X has the spectral representation X(t) a.s.=

∫
Λ f(t, x)Z(dx), t ∈ T, where

(Λ, E , µ) is a σ−finite measurable space and Z is a centered orthogonal random measure on
{B ∈ E : µ(B) <∞} with control measure µ, f(t, ·) ∈ L2(Λ, E , µ), ∀t ∈ T if and only if there
exists a system of functions f(t, ·) ∈ L2(Λ, E , µ), t ∈ T , such that
C(s, t) =

∫
Λ f(s, x)f(t, x)µ(dx), s, t ∈ T , and this system F is complete in L2(Λ, E , µ)

(i.e. 〈f(t, ·), ψ〉L2(Λ) = 0, ψ ∈ L2(Λ, E , µ) for all t ∈ T implies ψ ≡ 0 µ-almost everywhere).

Proof: cf. [4, Ch. VII].

Theorem 6.3.5
Let {Xn, n ∈ Z} be a centered complex-valued wide sense stationary sequence of random vari-
ables on (Ω,F ,P). Then there exists an orthogonal centered random measure Z on
([−π, π],B([−π, π])) (defined on (Ω,F ,P)) such that Xn

a.s.=
∫ π
−π e

inxZ(dx), n ∈ Z.

Proof Let F = {einx, x ∈ [−π, π], n ∈ Z}. This system is complete in L2([−π, π]) (cf. the
theory of the Fourier series). By Theorem 6.3.1, it follows that

C(n,m) = E(XnXm) =
∫ π

−π
einxe−imxµ(dx),

where µ is the spectral measure ofX, thus a finite measure on ([−π, π],B([−π, π])). By Theorem
6.3.4 there exists an orthogonal random measure on (Ω,F ,P) such that Xn

a.s.=
∫ π
−π e

inxZ(dx),
n ∈ Z.

Theorem 6.3.6 (Ergodic theorem for stationary (in the wide sense) sequences of
random variables):
Under the conditions of Theorem 6.3.5 it holds

1
n

n−1∑
k=0

Xk
L2(Ω)−−−−→ Z({0}) as k →∞.

In particular if X is not centered, i.e. EXn = a, n ∈ Z, then 1
n

∑n−1
k=0 Xk

L2(Ω)−−−−→
n→∞

a, if
E|Z({0})|2︸ ︷︷ ︸

µ({0})

= 0, thus Z (and therefore µ) have no atom at zero.

Proof Let Sn = 1
n

∑n−1
k=0 Xk =

∫ π
−π

1
n

n−1∑
k=0

eikx︸ ︷︷ ︸
ψn(x)

Z(dx). It holds ψn(x) =
{

1
n

1−einx
1−eix , x 6= 0

1, x = 0
, for

all n ∈ N. Then Sn − Z({0}) =
∫ π
−π (ψn(x)− 1(x = 0))︸ ︷︷ ︸

ϕn(x)

Z(dx) =
∫ π
−π ϕn(x)Z(dx).

‖Sn − Z({0})‖2L2(Ω) = ‖ϕn(x)‖2L2([−π,π],µ) =
∫ π
−π |ϕn(x)|2µ(dx) −−−→

n→∞
0 by Lebesgue theorem

since |ϕn(x)| ≤


2

n|1−eix| −−−→n→∞
0, x 6= 0,

0, x = 0,
x ∈ [−π, π].
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6.4 Additional Exercises
Exercise 6.4.1
Let Z1, Z2, . . . be a sequence of random variables such that the series

∑∞
i=1 Zi converges almost

surely. Let a1, a2, . . . be a monotone increasing sequence of positive (deterministic) numbers
with an →∞, n→∞. Show that

1
an

n∑
k=1

akZk
a.s.→ 0, n→∞.

Exercise 6.4.2
Let X be a random variable on a probability space (Ω,F ,P) and T : Ω → Ω a measure
preserving map. Show that EX = E(X ◦ T ), i.e.∫

Ω
X(T (ω))P(dω) =

∫
Ω
X(ω)P(dω).

(Hint: algebraic induction)
Exercise 6.4.3
Let (Ω,F , P ) = ([0, 1),B([0, 1)), ν), where ν denotes the Lebesgue measure on [0, 1). Let
λ ∈ (0, 1).

1. Show that T (x) = (x + λ) (mod 1) is a measure preserving map, where a (mod b) :=
a−

⌊
a
b

⌋
· b for a ∈ R and b ∈ N.

2. Show that T (x) = λx and T (x) = x2 are not measure preserving.

Exercise 6.4.4
Let a stationary sequence Xn, n ≥ 0 be generated by a random variable X0 and a measure
preserving map T . Assume that X is m-dependent, that is, families of random variables
{Xk, k ≤ n} and {Xj , j ≥ n+m} are independent for any n. Prove that T is ergodic.
Exercise 6.4.5
Let Ω = R2 and P be a normal distribution in R2 with zero mean and identity matrix of
covariances. Assume that transformation T : Ω → Ω acts in polar coordinates as T ((r, ϕ)) =
(r, 2ϕ (mod 2π)), r ≥ 0, 0 ≤ ϕ < 2π.

1. Prove that T preserves the measure P.

2. Find the limit

lim
n→∞

1
n

(
n−1∑
k=0

f(T k(x))
)
, x ∈ R2

for f1 = x2
1, f2(x) = x1, x2.

Hint: At first, prove this fact for the functions of the form
f(r, ϕ)=

∑m
k=0 ckI{ϕ ∈ [αk, βk]}I{r ∈ [xk, yk]}, and then pass to a limit.

Exercise 6.4.6
Let Xn, n ≥ 0 be a centered Gaussian stationary sequence with covariance function
C(n) = E(XkXk+n). Let C(n) → 0, n → ∞. Prove that the measure preserving map T, which
corresponds to X, i.e. Xn

d= X0(Tn), is mixing (on average) and, consequently, ergodic.
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Exercise 6.4.7
Let Xn, n ≥ 0 be a stationary sequence, and g : R∞ → R be a measurable function. Prove
that the random sequence Yn := g(Xn+1, Xn+2, . . .), n ≥ 0 is stationary as well. Prove that if
{Xn, n ≥ 0} is ergodic then the sequence {Yn, n ≥ 0} is ergodic, too.
Exercise 6.4.8
Let Xn = cos(nϕ), n ≥ 1, where ϕ is U [−π, π]-distributed random variable. Prove that the
random sequence {Xn, n ≥ 1} is wide sense stationary but not stationary in the strict sense.
Exercise 6.4.9
Let {Nt, t ≥ 0} be a Poisson process with intensity λ > 0. Consider the process Xt := ξ(−1)Nt ,
t ≥ 0, where ξ is a random variable independent of N with P(ξ = −1) = P(ξ = 1) = 1/2.

1. Compute the mean value and the covariance function of the process X. Show that the
random sequence {Xn, n ≥ 0} is stationary in wide sense.

2. Find the spectral density of the covariance function of the random sequence {Xn, n ≥ 0}.

Exercise 6.4.10
Let {W (t), t ∈ R+} be a Wiener process. Define the family of random variables Z((a, b]) :=
W (b)−W (a) on the semiring K = {(a, b],−∞ < a < b <∞}.

1. Show that Z is an orthogonally scattered random measure on K.

2. Let I(f) be the stochastic integral of f ∈ L2(R) with respect to Z. Show that I(f) is a
Gaussian random variable. Find EI(f) and E[I(f)2].

3. Prove that I(f) is a Gaussian random variable for any orthogonally scattered Gaussian
random measure Z.

Exercise 6.4.11
Let Z be the orthogonal random measure from Exercise 6.4.10.

1. Find its structure measure µ.

2. Find
E
∣∣∣∣∫ π

0
sin t dZ(t)

∣∣∣∣2 .
3. Find

E
(∫ 1

0
t dZ(t)

∫ 1

0
(2 + t2) dZ(t)

)
.
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