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1 Basic notions of the theory of random
functions

1.1 Random functions
Let (Ω,F ,P) be a probability space, Ω 6= ∅, and (S,B) be a measurable space constructed upon
an abstract set S 6= ∅.
Definition 1.1.1
A random element X : Ω→ S is an F|B-measurable mapping of (Ω,F) into (S,B), i.e.

X−1(B) := {ω ∈ Ω : X(ω) ∈ B} ∈ F for all B ∈ B.

We write X ∈ F|B.
Later on, S will often be a topological space or even a metric space. Then, B will be chosen to

be the Borel σ-algebra B(S), i.e. the σ-algebra generated by all open subsets of S: B(S) = σ(M),
where M is the class of all open subsets of S. "generated by M" means: BS is the smallest
σ-Algebra on S containingM:

BS =
⋂

A: σ−Algebra
containing M

A.

Example 1.1.1 1. S = R =⇒ X is a random variable.

2. S = Rk, k ≥ 1 =⇒ X is a random vector .

3. S = {functions f : T → E}, where T and E are two abstract spaces =⇒ X is a random
(E-valued) function with index space T . If E = R, then the notation S = RT is used.

4. Let N be the set of all locally finite simple point patterns ϕ = {xi}∞i=1 in Rd. This means
• ϕ(B) := |ϕ∩B| <∞ for all bounded subsets B ∈ B(Rd) (write B ∈ Bo(Rd)), where
|A| denotes the cardinality of A
• xi 6= xj , i 6= j for all ϕ ∈ N

Let N be the minimal σ-algebra generated by all sets of the form {ϕ ∈ N : ϕ(B) = k},
where k ∈ N0 and B an open relatively compact subset of Rd. Then (N,N ) is a measur-
able space. The point process Φ is a random element (Ω,F)→ (N,N ).

Another possibility to define Φ is to see it as a random counting measure: Φ(B) =∑∞
i=1 δxi(B), or shortly Φ = supp Φ. The point process Φ is called homogeneous Poisson

process on Rd with intensity λ, if ϕ(B) ∼ Poi(λνd(B)) for all B ∈ Bo(Rd), where νd(·) is
the d-dimensional Lebesgue measure. One can show that Φ(B1), . . . ,Φ(Bn) are indepen-
dent random variables, if B1, . . . , Bn ∈ B0(Rd) are disjoint sets. Moreover, λνd(B) is the
mean number of points of Φ in the window B.

1



2 1 Basic notions of the theory of random functions

5. Let G be the set of all closed sets in Rd. Introduce the minimal σ-Algebra G, which
is generated by the class of sets {A ∈ G : A ∩B 6= ∅}, where B ⊂ Rd is compact. The
random closed set (RACS) is a random element Ξ : (Ω,F)→ (G,G). As an example take
Ξ =

⋃n
i=1Br(xi), r > 0, for any point process ϕ = {xi}∞i=1, which is a special case of the

so called germ-grain models.

(a) λ = 0.0001 (b) λ = 0.01 (c) λ = 0.0001, r = 40

Fig. 1.1: A realization of a homogeneous Poisson point process with intensity λ = 0.0001 (left),
λ = 0.01 (middle) and a germ-grain model of equal discs based on a homogeneous
Poisson point process with intensity λ = 0.0001

If T = R, R+ = [0;∞) or [a; b] ⊂ R, then X is called a random process with continuous time.
If T = N or Z, it is called a random process with discrete time. For T = Rd (Zd), d > 1 or a
(finite) subset of these spaces, we call X a random field. To stress that S depends on T , we
will sometimes use the notation ST .

Definition 1.1.2
The distribution of a random element X : Ω → S is a probability measure PX defined on the
measurable space (S,B) by

PX(B) = P(X−1(B)), B ∈ B.

Lemma 1.1.1
Any probability measure µ on (S,B) can be considered as a distribution of some random element
X.

Proof Take Ω = S, F = B, P = µ and X(ω) = ω.

Let us give a more intuitive definition of random functions:

Definition 1.1.3
Let T be an abstract index space1 and (S,B) a measurable space. A family X = {X(t), t ∈ T}
of random elements X(t) : Ω → S defined on a probability space (Ω,F ,P) is called a random
function. Evidently, X = X(ω, t) is a mapping of Ω × T onto S, which is F|B-measurable
for each t ∈ T . For any fixed ω ∈ Ω, the function {X(t, ω), t ∈ T} is called a realization
(trajectory) of X.

1The notation T comes from "time", since for random processes t ∈ T is often interpreted as the time parameter.



1 Basic notions of the theory of random functions 3

Let us ask the question of existence of random functions with some predefined properties.
First of all, we mention the existence result for random functions X = {X(t), t ∈ T}, where all
X(t) have given distributions and are independent.
Theorem 1.1.1 (Z. Lomnicki, S. Ulam (1934)):
Let (St,Bt)t∈T be a sequence of arbitrary measurable spaces equipped with a probability mea-
sure µt for every t ∈ T in an index space T . Then there exists a probability space (Ω,F ,P)
and a random function X = {X(t) : Ω→ St, t ∈ T} such that

1. X(t) is F|Bt-measurable for all t ∈ T .

2. the random elements X(t) are independent for all t ∈ T .

3. PX(t) = µt on Bt for all t ∈ T .

Many meaningful classes of random functions are constructed on the basis of independent
ones, see examples in Section 1.2.
Definition 1.1.4
For n ∈ N and t1, . . . , tn ∈ T we call the distribution of the random vector (X(t1), . . . , X(tn))>
a finite-dimensional distribution of random function X = {X(t), t ∈ T}. For n = 1, the
distribution of X(t) is called marginal. We write

Pt1,...,tn(Bt1 , . . . , Btn) = P(X(t1) ∈ Bt1 , . . . , X(tn) ∈ Btn),

where Btk ∈ Btk , k = 1, . . . , n.
Let us analyze the question of equivalence of Definition 1.1.1, Example 1.1.1 3) and Defini-

tion 1.1.3. For that, one has to solve the problem of measurability of a mapping ω 7−→ X(ω, ·),
ω ∈ Ω. Let S = {functions f : T → E} := ET . Let us consider a more general space S by
admitting S = {functions f on T : f(t) ∈ Et} for a family of measurable spaces (Et, Et)t∈T .

Introduce the class M of elementary cylinder sets C(t, Bt) of S, i.e. M contains sets of the
form {f ∈ S : f(t) ∈ Bt}, where t ∈ T and Bt ∈ Et. These sets contain all functions f with
trajectories f(·) that go through the "gate" Bt.
Definition 1.1.5
The σ-algebra BT on S generated byM is called a cylindric σ-algebra BT = σ(M). Notation:
BT =

⊗
t∈T Et. For Et = E for all t ∈ T one can use BT = ET .

Let us prove the following result:
Proposition 1.1.1
A family X = {X(ω, t) : t ∈ T}, i.e. the family of F|Et-measurable random elements is a
random function if and only if the mapping ω 7−→ X(ω, ·), ω ∈ Ω is F|BT -measurable.

Proof "⇒" If X−1(Bt) ∈ F for all Bt ∈ Et, t ∈ T , then {ω ∈ Ω : X(ω, ·) ∈ C(t, Bt)} ∈ F , thus
X−1(M) ⊆ F and X is F|BT -measurable, because BT is generated byM.
"⇐" Let X be F|BT -measurable. Introduce the coordinate projection πT,t : ST → Et by
πT,tf = f(t) for f ∈ ST , t ∈ T . πT,t is BT |Et-measurable, since for all Bt ∈ Et we have
π−1
T,t(Bt) = C(t, Bt) ∈ BT . It is clear that X(ω, t) = πT,tX(ω). Since πT,t is BT |Et-measurable

and X is F|BT -measurable, then X(ω, t) is F|Et-measurable for all t as a composition of two
measurable mappings.
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Fig. 1.2: Trajectories going through a "gate" Bt

Now let us consider the question whether a random function X is defined by all its finite-
dimensional distributions. To be more concrete, for all t1, . . . , tn ∈ T introduce the space
Et1,...,tn := Et1×. . .×Etn as a phase space of the random vectorXt1,...,tn := (X(t1), . . . , X(tn))>.
Let Et1,...,tn := Et1 ⊗ . . . ⊗ Etn be the σ-Algebra on Et1,...,tn generated by all "parallelepipeds"
Bt1 × . . .×Btn , Btk ∈ Etk for all k = 1, . . . , n.
Then the vector Xt1,...,tn is F|Et1,...,tn-measurable, since

X−1
t1,...,tn(Bt1 × . . .×Btn) =

n⋂
k=1
{X(tk) ∈ Btk} ∈ F .

Then, the finite-dimensional distribution Pt1,...,tn ofX at "time" points t1, . . . , tn is a probability
measure on (Et1,...,tn , Et1,...,tn). For parallelepipeds B = Bt1 × . . .×Btn it holds

Pt1,...,tn(B) = P(X(t1) ∈ Bt1 , . . . , X(tn) ∈ Btn). (1.1.1)

The finite-dimensional distributions of a random function X have the following important
properties:
For all n ≥ 2, t1, . . . , tn ∈ T , Btk ∈ Etk , k = 1, . . . , n and an arbitrary permutation (i1, . . . , in)
of (1, . . . , n) the following two conditions are satisfied:

1. Symmetry:
Pt1,...,tn(Bt1 × . . .×Btn) = Pti1 ,...,tin

(Bti1 , . . . , Btin )

2. Consistency:

Pt1,...,tn(Bt1 × . . .×Btn−1 × Etn) = Pt1,...,tn−1(Bt1 , . . . , Btn−1)

They are evident considering (1.1.1) and {X(tn) ∈ Etn} = Ω. The consistency condition can
be equivalently written as

Pt1,...,tm,...,tn(Bt1×. . .×Etm×. . .×Btn) = Pt1,...,tm−1,tm+1,...,tn(Bt1×. . . Btm−1×Btm+1×. . .×Btn)
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for any m ∈ {1, . . . , n}. In the above conditions, only n-tuples of t1, . . . , tn are meaningful with
ti 6= tj , i 6= j. Otherwise if say t1 = t2 = t, one could write Pt1,t2(B1 × B2) = P(X(t) ∈
B1, X(t) ∈ B2) = P(X(t) ∈ B1 ∩B2) = Pt(B1 ∩B2) for all B1, B2 ∈ Et.

To formulate the basic theorem of Kolmogorov on the existence of a random function with
given finite-dimensional distributions, we need the following

Definition 1.1.6
Two measurable spaces (C, C) and (D,D) are called isomorphic ((C, C) ∼ (D,D)) if there exists
a one-to-one mapping h : C → D such that h ∈ C|D and h−1 ∈ D|C. If D is a Borel subset of
[0; 1] and D is the σ-Algebra of Borel subsets of D (i.e. D = D∩B([0; 1])) we call a measurable
space (C, C), which is isomorphic to (D,D), a Borel space.

For instance, if C is a Borel subset of a Polish space2 P with σ-Algebra C = C ∩ B(P), then
it can be shown that (C, C) is a Borel space. A natural choice of P can be e.g. Rk, k ≥ 1.

Theorem 1.1.2 (A. N. Kolmogorov, 1933):
Let (Et, Et)t∈T be a family of Borel spaces. For any n ∈ N and t1, . . . , tn ∈ T , ti 6= tj , i 6= j
let measures Pt1,...,tn be given on spaces (Et1,...,tn , Et1,...,tn) such that they satisfy the conditions
of symmetry and consistency. Then there exists a probability space (Ω,F ,P) and a random
function X = {X(t) : t ∈ T} defined on it such that its finite-dimensional distributions coincide
with the measures Pt1,...,tn .

Remark 1.1.1
In Definition 1.1.6 (and consequently the formulation of Kolmogorov’s Theorem) it is required
that Et is isomorphic to a Borel subset of [0; 1] and not to the whole [0; 1]. It was done to
admit finite and countable spaces Et as the following result shows:

Theorem 1.1.3
The Borel space (D,D) is isomorphic to

(D,D) ∼


(K,B(K)) if D is non-countable,
(N, 2N) if D is countable,
((1, . . . , |D|),A(1, . . . , |D|)) if D is finite,

where |D| is the number of elements of D, A(1, . . . , |D|) is the σ-algebra of all subsets of D,
and 2D is the σ-algebra of all subsets of D. The space (K,B(K)) is defined as follows: take the
Polish space {0, 1} with metric d(x, y) = 1{x 6= y}, x, y ∈ {0, 1}, set K = {0, 1}N and introduce
the metric dK on that space by

dK(x, y) =
∞∑
n=1

2−n d(xn, yn)
1 + d(xn, yn) for x = {xn}∞n=1, y = {yn}∞n=1 ∈ K. (1.1.2)

Then K is a measurable space by taking its σ-algebra B(K) of Borel sets in this metric.

The proof of Kolmogorov’s theorem will be given in Section 1.6. Now let us formulate an
equivalent statement in terms of characteristic functions of random measures for the special
case Et = R, Et = B(R), for all t ∈ T .

2A Polish space is a separable complete metric space.
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Definition 1.1.7
Let µ be a finite measure on (Rd,B(Rd)). Its characteristic function ϕµ(s) is defined by

ϕµ(s) =
∫
Rd

exp(i 〈s, t〉)µ(dt), s ∈ Rd,

where 〈s, t〉 =
∑d
k=1 sktk is the scalar product of vectors s and t in Rd.

If µ is a probability measure, it obviously coincides with the characteristic function of a
d-dimensional random vector Y with distribution µ. It is known that ϕµ(·) determines the
measure µ uniquely.
Proposition 1.1.2
The family of measures Pt1,...,td on (Rd,B(Rd)), (t1, . . . , td) ∈ T d, d ≥ 1, satisfies the conditions
of symmetry and consistency if and only if for all d ≥ 2, s = (s1, . . . , sd) ∈ Rd and t =
(t1, . . . , td) ∈ T d it holds

1.
ϕPt1,...,td ((s1, . . . , sd)) = ϕPti1 ,...,tid

((si1 , . . . , sid))

for any permutation (1, . . . , d) 7−→ (i1, . . . , id)

2.
ϕPt1,...,td−1

((s1, . . . , sd−1)) = ϕPt1,...,td ((s1, . . . , sd−1, 0))

Exercise 1.1.1
Prove Proposition 1.1.2.
As all stochastic objects are defined up to a set of zero probability it can happen that for

a random function X(t) these "exception sets" are quite different. In such case, it would be
useless to speak of different realizations of X(t). That is why a convention is accepted that
all X(t), t ∈ T are defined simultaneously on one single set Ω0 ⊆ Ω, Ω0 ∈ F of probability
one. In this case, the random function X̃ : Ω0 × T → R is called a modification of X, where
X : Ω× T → R. The difference between X(t) and X̃(t) is that they may take different values
on a set of zero probability. But such a difference can make the realizations of X possess
some "nice" properties such as continuity or differentiability. Later on, if we say that "random
function X has property A" we mean that a modification of X is considered which has this
property A.

Definition 1.1.8
Random functions X = {X(t), t ∈ T} and Y = {Y (t), t ∈ T} defined on the same probability
space (Ω,F ,P) with values in (Et, Et), t ∈ T have equivalent trajectories (or are modifications
of each other)

{ω ∈ Ω : X(ω, t) 6= Y (ω, t) for some t ∈ T} ∈ F and

P ({ω ∈ Ω : X(ω, t) 6= Y (ω, t) for some t ∈ T}) = 0.

It means that the realizations of X and Y coincide with probability one. It is clear that for
all s ∈ T we have {ω ∈ Ω : X(ω, s) 6= Y (ω, s)} ⊂ {ω ∈ Ω : X(ω, s) 6= Y (ω, s) for some s ∈ T}.
Hence, for a complete3 probability space (Ω,F ,P) processes with equivalent trajectories are

3The probability space (Ω,F ,P) is complete if for all A ∈ F : P(A) = 0 it follows that for all B ⊂ A we have
B ∈ F (and hence P(B) = 0 as well).
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stochastically equivalent.

Definition 1.1.9
Random functions X = {X(t), t ∈ T} and Y = {Y (t), t ∈ T}, defined on a common probabi-
lity space (Ω,F .P) with values in (Et, Et) are (stochastically) equivalent, if

{ω ∈ Ω : X(ω, t) 6= Y (ω, t)} ∈ F , t ∈ T and

P ({ω ∈ Ω : X(ω, t) 6= Y (ω, t)}) = 0, t ∈ T.

It is clear that all modifications of X are equivalent to X if (Ω,F .P) is a complete probability
space.
Example 1.1.2
Let X(ω, t) ≡ 0, t ∈ [0; 1] be a random function defined on ([0; 1],B([0; 1]), λ1), where λ1 is the
Lebesgue measure on [0; 1]. Define Y (ω, t) = I{t}(ω) on the same probability space. Then, X
and Y are stochastically equivalent, i.e. Y is a modification of X. Note that all trajectories of
X are continuous, but all trajectories of Y are discontinuous.
Definition 1.1.10
Random functions X = {X(t), t ∈ T} and Y = {Y (t), t ∈ T} (not necessarily defined on the
same probability space) with values in (Et, Et), t ∈ T are equivalent in distribution if their
probability laws are identical: PX = PY on (ST ,BT ).

By Kolmogorov’s theorem, such processes must have the same finite-dimensional distribu-
tions. It is clear that equivalence in the stochastic sense implies equivalence in distribution,
but not vice versa. Equivalence in distribution is often used in coupling arguments which play
an important role in the theory of Markov processes.

Let us return to the question of measurability of a random function X. Let (T,A) be a
measurable space as well. It is known from the definition of a random function that for all
t ∈ T X(t) is F|Et-measurable. But nobody guarantees the measurability of X(ω, t) as a
function of (ω, t).
Definition 1.1.11
Let X = {X(t), t ∈ T} be a random function defined on the probability space (Ω,F ,P) with
values in (E, E) for all t ∈ T . X is said to be measurable if the mapping

X : (ω, t) 7−→ X(ω, t) ∈ E, (ω, t) ∈ Ω× T

is F ⊗A|E-measurable as a mapping of Ω× T onto E.

1.2 Elementary examples
§1. White noise

Definition 1.2.1
A random function X = {X(t), t ∈ T} defined on (Ω,F ,P) is called white noise, if X(t), t ∈ T
are independent and identically distributed.
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As a special case, one has T = Zd or Rd, d ≥ 1. White noise is used to model noise in images,
such as salt-and-pepper noise X(t) ∼ Ber(p), t ∈ T , for binary images or Gaussian white noise
X(t) ∼ N (0, σ2), σ2 > 0, for greyscale images.
Because of mutual independence of X(t) for every t ∈ T all finite-dimensional distributions are
product distributions that obviously satisfy the conditions of Theorem 1.1.2. Hence, the white
noise exists, compare also Theorem 1.1.1.

§2. Gaussian random functions

Another famous simple example of a random function given by all its finite-dimensional distri-
butions explicitly is that of a Gaussian random function.
Definition 1.2.2
The random function X = {X(t), t ∈ T} is called Gaussian if all its finite-dimensional distribu-
tions Pt1,...,tn are Gaussian, i.e. for all n ≥ 1 and all t1, . . . , tn ∈ T the distribution of the random
vector Xt1,...,tn = (X(t1), . . . , X(tn))> is an n-dimensional normal distribution with expecta-
tion µt1,...,tn = (µ(t1), . . . , µ(tn))> and a covariance matrix Σt1,...,tn = (cov(X(ti), X(tj)))ni,j=1:
Xt1,...,tn ∼ N (µt1,...,tn ,Σt1,...,tn). This means that for any vector c ∈ Rn the random variable
〈c,Xt1,...,tn〉 is normally distributed. If Σt1,...,tn is non-degenerate, then Pt1,...,tn has the density

ft1,...,tn(y) = 1
(2π)n/2

√
det Σt1,...,tn

exp
{
−1

2 (y − µt1,...,tn)>Σ−1
t1,...,tn (y − µt1,...,tn)

}
, y ∈ Rn.

Exercise 1.2.1
Show that any Gaussian function X is uniquely defined by its expectation (or mean value) func-
tion µ(t) = EX(t), t ∈ T and its (non-centered) covariance function C (s, t) = E [X(s)X(t)],
s, t ∈ T .
Gaussian random functions are widely used in applications starting with modelling the mi-

crostructure of surfaces in material science (e.g. metal surfaces or paper, see Figure 1.4) up to
models of fluctuations of microwave cosmic background radiation (see Figure 1.3).

Fig. 1.3: WMAP (Wilkinson Microwave Anisotropy Probe) cosmic microwave fluctuations over
the full sky with five years of data.

For the construction of many other random functions, Theorem 1.1.2 cannot be used directly
as their finite-dimensional distribution cannot be written down explicitly in a convenient way.
In such cases, explicit constructions of the form X(t) = g(t, Y1, . . . , Yn), t ∈ T are used, where
g is measurable and Y1, . . . , Yn, n ∈ N are some random elements whose existence has been
already proved. Let us give corresponding examples:
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Fig. 1.4: Paper surface (left) and Simulated Gaussian random field based on the estimated data
EX(t) = 126, cov(X(0), X(t)) = 491 exp

(
− |t|56

)
(right)

§3. Lognormal fields

A random field X = {X(t), t ∈ T} is called lognormal if X(t) = eY (t), where Y = {Y (t), t ∈ T}
is a Gaussian random field.

§4. χ2-fields

A random function X = {X(t), t ∈ Rd} is called χ2-field if X(t) = |Y (t)|2, t ∈ Rd, where
Y = {Y (t), t ∈ Rd} is an n-dimensional vector-valued random field such that Y (t) ∼ N (0, I),
t ∈ Rd. I denotes the identity matrix. It is clear that X(t) is χ2

n-distributed for all t ∈ Rd.

§5. Cosine fields

Let Y1 be a random variable, Y2 a random vector on (Ω,F ,P), dim Y2 = dim T , where Y1
and Y2 are independent. Consider a random field X = {X(t), t ∈ Rd}, d ≥ 1 defined by
X(t) =

√
2 cos(2πY1 + 〈t, Y2〉). For instance, we can put Y1 to be uniformly distributed on [0; 1]

(notation: Y1 ∼ U [0; 1]). Each realization of X is a cosine wave surface. If X1, . . . , Xn are
independent cosine waves with covariance function cov of the Gaussian random field Z, then
by the central limit theorem we have

1√
n

n∑
i=1

Xi(t)
d→ Z(t)

as n→∞, where d→ denotes convergence in distribution. In this case, the distribution of Y2 is
chosen to be the spectral measure µ of cov, confer Definition 2.1.2. This is the so called spectral
method for the simulation of X. For more details on it, see e.g. [Lantuejoul].

§6. Empirical random measures

Let {Yi}i∈N be a sequence of independent identically distributed (iid) d-dimensional random
vectors defined on (Ω,F ,P). Fix some n ∈ N.

Definition 1.2.3
For any Borel set B ∈ B(Rd) define the empirical random measure µn(B,ω) as

µn(B,ω) := 1
n

n∑
i=1

1{Yi(ω) ∈ B}, (1.2.1)
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or shortly, µn(B) = 1
n

∑n
i=1 1{Yi ∈ B}. This is obviously a random function indexed by Borel

sets B. It is used in statistics to estimate the (unknown) distribution PY (B) = P(Yi ∈ B),
B ∈ B(Rd) of Yi. For instance, in the special case of d = 1 and B = (−∞;x], x ∈ R one
gets the well known empirical distribution function F̂n(x) = µn((−∞;x]). It is clear that by
the strong law of large numbers it holds µn(B)→ PY (B) in the almost-sure sense as n→∞,
B ∈ B(Rd). That means µn(B) is a reasonable approximation of PY (·) for sufficiently large n.

§7. Partial sums of a random field Y

Let Y = {Y (t), t ∈ Zd} be a white noise on the lattice Zd, d ≥ 1. Let (µn)n∈N be a sequence of
σ-finite measures on B(Rd).
Definition 1.2.4
The random function S =

{
Sn(B), B ∈ B((0; 1]d), n ∈ N

}
defined by

Sn(B) =
∑
t∈Zd

Y (t)µn((t− 1; t] ∩ nB)

for all B ∈ B((0; 1]d) and n ∈ N is called the process of partial (weighted) sums of Y . Here
(t − 1; t] =

⊗d
j=1(tj − 1; tj), t = (t1, . . . , td)> is a unit cube with left lower vertex t − 1 and

nB = {nb : b ∈ B}.
The measures µn give particular weights to any cell (t− 1; t]. Thus, for B = (0; 1]d and

µn((t; t+ 1] ∩ [0;n]d) =
{ 1
nd/2

if (t; t+ 1] ∩ [0;n]d 6= ∅,
0 otherwise,

we would get
Sn([0; 1]d) = 1

nd/2

∑
t∈Zd∩[0;n]d

Y (t),

which corresponds to partial sums used in the central limit theorem. Under some additional
assumptions we have Sn([0; 1]d) d→ N (·, ·).

§8. Shot noise random fields and moving averages

Let Φ = {xi, i ∈ N} be a homogeneous Poisson point process with intensity λ > 0 (see Ex-
ample 1.1.1, 4.). Let g : Rd → R be a deterministic function, for which

∫
Rd g(x)dx < ∞ and∫

Rd g
2(x)dx <∞ hold. Introduce a random field X = {X(t), t ∈ Rd} by X(t) =

∑
x∈Φ g(t−x),

t ∈ Rd. Due to local finiteness of the point process and the integrability conditions of g it can
be shown that X is a well-defined random field with finite first two moments.
Exercise 1.2.2
Please, show this!
Definition 1.2.5
The random field X introduced above is called a shot-noise field. The function g is called
response function.

Which response functions g : Rd → R are used in applications to model real phenomena
by Poisson shot-noise random fields? A large class of response functions can be constructed
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Fig. 1.5: Construction of a shot-noise process in R

as follows: take g(x) = K( |x|a ), where |x| is the Euclidean norm of x ∈ Rd and K : R → R,
the so-called kernel, is a probability density function with compact support suppK = {x ∈
Rd : K(x) > 0}. For instance, K can be chosen to be the Epanechnikov kernel K(x) =
3
4(1−x2)1{x ∈ [−1; 1]} or the bisquare kernel K(x) = 15

16(1−x2)21{x ∈ [−1; 1]}. Alternatively,
kernels with unbounded support such as the Gaussian kernel K(x) = 1√

2πe
−x2/2 can be used

as well.
Strictly speaking, we have thus defined a special case of shot-noise fields. This definition

can be generalized if we use random response functions (see [40], p. 31) or allow other (non-)
homogeneous point processes for Φ. Formally, a shot-noise field can be written as a stochastic
integral X(t) =

∫
Rd g(t− x)Φ(dx) if Φ(·) is interpreted as a random Poisson counting measure

(see [52], ch. 7). This means that it is a special case of a very general class of moving averages:
X(t) =

∫
E g(t, x)µ(dx), where µ(·) is a random independently scattered measure on some

measurable space (E, E), i.e.

B1, . . . , Bn ∈ E , Bi ∩Bj = ∅, i 6= j =⇒ µ(B1), . . . , µ(Bn) are independent,

and g : Rd × E → R is a deterministic function.
Example 1.2.1 1. µ is the Poisson counting measure Φ.

2. µ is the Gaussian white noise measure: µ(B) ∼ N (0, λd(B)), if (E, E) = (Rd,B(Rd)),
where λd(B) denotes the volume of B.

Of course, one has to make it more precise, in which sense this stochastic integral is under-
stood. Depending on the context, it can be defined in Lp-sense (p ∈ (0; 2]), in probability or
almost surely. More details will be given in Chapter 3.
Example 1.2.2 1. µ - Gaussian: Existence of the integral in the L2-sense:

E
∣∣∣∣∣
n∑
i=1

g(t, ξni )µ(Bn
i )−

∫
E
g(t, x)µ(dx)

∣∣∣∣∣
2

−−−→
n→∞

0.

2. µ - stable: Existence of the integral in probability:

P
(∣∣∣∣∣

n∑
i=1

g(t, ξni )µ(Bn
i )−

∫
E
g(t, x)µ(dx)

∣∣∣∣∣ > ε

)
−−−→
n→∞

0, ε > 0.
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Fig. 1.6: The Epanechnikov kernel (left), Bisquare kernel (middle) and Gaussian kernel (right)

§9. Finite Markov random fields

Let T be the vertex set of a finite non-oriented graph (T, T ), where T is the edge set of the
graph constructed by some neighborhood relation ∼:

∀ s, t ∈ T : (s, t) ∈ T iff s ∼ t.

Then, the neighborhood ∂s of s ∈ T is given by ∂s = {t ∈ T : t 6= s, s ∼ t}. Let E =
{e1, . . . , em} be a finite space, E = 2E .
Definition 1.2.6
The random function X = {X(t), t ∈ T} such that X(t) : Ω → E for all t ∈ T and T, (E, E)
introduced as above is called a (finite) Markov random field with respect to the neighborhood
relation ∼ if for all x = (xt)t∈T ∈ S = ET :

P(X(s) = xs|X(t) = xt, t 6= s) = P(X(s) = xs|X(t) = xt, t ∈ ∂s). (1.2.2)

Relation (1.2.2) is called Markov property.
Obviously, any finite random field X on T,E is a Markov random field with respect to some

neighborhood relation. In applications however, Markov random fields X with respect to small
neighborhoods are sought.

The distribution of a finite random field X = {X(t), t ∈ T} is given by P(X = x), x ∈ S.
As a distribution of a finite vector of dimension |T | it always exists. To give examples of T
and E let T = TN = Zd ∩ [−N ;N ]. In image analysis we have d = 2 (3) and t ∈ TN are pixels
(voxels). We distinguish between binary images (E = {0, 1}, 0=̂ white pixel, 1=̂ black pixel)
and greyscale images (E = {0, . . . , 255}, 0=̂ white pixel, . . ., 255=̂ black pixel). In physics, if
d = 3, a finite random field with index space TN and E = {−1, 1} describes the distribution of
dipole directions (spins) at lattice points of a crystal lattice.

How can the neighborhood relation ∼ be defined on TN? Two canonical ways are the so-called
4- and 8-neigborhoods (write ∼4, ∼8):

• s ∼4 t iff ‖s− t‖1 = 1 (2d neighbors),

• s ∼8 t iff ‖s− t‖∞ = 1 (3d − 1 neighbors),
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where ‖·‖1 is the L1-norm and ‖·‖∞ is the maximum norm. Accordingly, for d = 2 a lattice
point has 4 (resp. 8) neighbors.

Fig. 1.7: 4-neighborhood and 8-neighborhood in Z2

More generally, if T is any finite vertex set with a given metric ρ, then the nearest-neighbor
relation ∼ on T is defined as s ∼ t, s, t ∈ T iff ρ(s, t) is the smallest distance within the class
of all pairs (s, u), u ∈ T, u 6= s or (v, t), v ∈ T, v 6= t. Then ∼ generates the nearest-neighbor
graph out of the vertex set T .

A prominent example of finite Markov random fields yields the Ising model proposed by the
German physicists W. Lenz and E. Ising in the 1920s. It describes ferromagnetic properties of
a crystal lattice TN .
Example 1.2.3 (Ising model):
The Ising model is given by a finite random field X = {X(t), t ∈ TN} on the phase space
S = ETN , E = {−1, 1} with

PX(x) = P(X = x) = P(X(s) = xs, s ∈ TN ) = 1
cx

exp(−H(x)), x = (xt)t∈TN ,

where H(x) ∈ (−∞; +∞] is the energy functional

H(x) = − 1
kto

−mB ∑
s∈TN

xs + J
∑

s,t∈TN
s∼t

xsxt

 .
The parameters have the following meanings:

• t0 > 0 - absolute temperature

• k - Boltzmann constant

• B ∈ R - intensity of the external ferromagnetic field

• m > 0 - material constant

• J ∈ R - interaction parameter (J > 0: ferromagnetic case, J < 0: antiferromagnetic case,
J = 0: no interaction)

cx =
∑
z∈S exp(−H(z)) is a normalizing constant. Normally, the sum

∑
z∈S runs |S| = 2|TN | =

2(2N+1)d components and (for large N and d) is practically not computable. For ∼ one can
take a 4-neighborhood relation.
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§10. Gibbs random fields

Let (T, T ) be a finite non directed graph with neighborhood relation ∼ and E a finite state
space. For any random field X = {X(t), t ∈ T} with state space E, i.e. X(t) : Ω → E, t ∈ T ,
and distribution PX(x) = P(X = x), x ∈ S = ET , PX(x) can be written in the so-called Gibbs
form:

PX(x) = 1
cx

exp(−H(x)),

where H(x) = − log PX(x) − log cx is the energy function, H(x) ∈ (−∞,+∞], and cx =∑
z∈S exp(−H(z)) is the partition function. The definition of H(x) is unique up to an additive

constant. One can achieve uniqueness by setting e.g. H(x0) = 0 for some xo ∈ S.

As all Gibbs fields are Markov with respect to some neighborhood relation ∼ on T , their
consideration in this form adds nothing new to the subject, apart from the problem of the
existence (and uniqueness) of infinite Gibbs random fields, i.e. fields defined as a limit of X as
T expands, for instance, T = TN , TN ↗ Zd as N →∞. Does there exist a random field on Zd
such that it is a weak limit of finite Gibbs random fields on TN as introduced in Examples 6 and
7 of §1.7? In general, this problem is quite complicated. Its solutions can be found in the book
[39]. In particular, for the case of the Ising model it can be shown that this thermodynamic
limit (as N →∞) exists for all parameters J > 0 (see [39], pp. 3-4).

1.3 Moments and covariance
Let X = {X(t), t ∈ T} be a random function, X(t) : Ω→ R, t ∈ T and T be an arbitrary index
space.
Definition 1.3.1
The (mixed) moment µ(j1,...,jn)(t1, . . . , tn) of X of orders j1, . . . , jn ∈ N at index values t1, . . . , tn ∈
T is defined by

µ(j1,...,jn)(t1, . . . , tn) = E
[
Xj1(t1) · . . . ·Xjn(tn)

]
,

provided that this expectation exists and is finite. For that, it is sufficient to require E|X(t)|j <
∞ for all t ∈ T , where j = j1 + . . .+ jn. Special cases are

1. µ(t) = µ(1)(t) = EX(t), t ∈ T - mean value function

2. µ(1,1)(s, t) = E [X(s)X(t)], s, t ∈ T - (non-centered) covariance function

3. C(s, t) = cov(X(s), X(t)) = µ(1,1)(s, t) − µ(1)(s)µ(1)(t), s, t ∈ T - (centered) covariance
function

Exercise 1.3.1
Prove that the covariance function C (s, t) of a random field X

1. is symmetric, i.e. C(s, t) = C(t, s), s, t ∈ T .

2. fulfills C(t, t) = varX(t), t ∈ T .

3. is positive semi-definite, i.e. for all n ∈ N, t1, . . . , tn ∈ T , z1, . . . , zn ∈ R it holds that
n∑
i=1

n∑
j=1

C (ti, tj) zizj ≥ 0.
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As opposed to the restrictions of positive semi-definiteness in Exercise 1.3.1, the mean value
function can be arbitrary. It shows the (deterministic) trend of the random function X.
The correlation coefficient R(s, t) = C(s,t)√

C(s,s)C(t,t)
is sometimes called the correlation function

of X. It holds |R(s, t)| ≤ 1, s, t ∈ T by the inequality of Cauchy-Schwarz.
Exercise 1.3.2
Prove that both non-centered covariance function and correlation function are positive semi-
definite.
Exercise 1.3.3 1. Prove that for any positive semi-definite function K : T × T → R there

exists a centered random function X such that C(s, t) = K(s, t), s, t ∈ T .

2. Let K : T × T → R be a positive semi-definite function and m : T → R be any function
with the property: K(s, t)−m(s)m(t) is positive semi-definite. Show that there exists a
random function X : Ω×T → R such that µ(t) = m(t) and C(s, t) = K(s, t)−m(s)m(t).

Exercise 1.3.4
Give examples of two different random functions X and Y with EX(t) = EY (t), t ∈ T and
E [X(s)X(t)] = E [Y (s)Y (t)], s, t ∈ T .
From the solution of the above exercise it is clear that µ and C (as well as any first k moments

of X) do not specify the distribution of X uniquely.
Definition 1.3.2
For any t1, . . . , tn ∈ T , n ∈ N, let

ϕ(λ) = ϕXt1,...,tn (λ) = E exp{i 〈λ,Xt1,...,tn〉}, λ = (λ1, . . . , λn) ∈ Rn

be the characteristic function of the random vector Xt1,...,tn = (X(t1), . . . , X(tn))> (or, equiv-
alently, of the finite-dimensional distribution Pt1,...,tn of X). For any r = (r1, . . . , rn) ∈ Nn let
|r| =

∑n
j=1 rj . The semi-invariant (cumulant, truncated correlation function) is defined by

sX(t1, . . . , tn, r) = 1
i|r|
· ∂
|r| logϕ(λ)

∂λr11 . . . ∂λrnn

∣∣∣∣
λ=0

.

Sometimes, the notation 〈X(t1)r1 , . . . , X(tn)rn〉 for sX(t1, . . . , tn, r) will be used. In particular,
〈X(t1), . . . , X(tn)〉 = sX(t1, . . . , tn, e) for e = (1, . . . , 1)>.
Exercise 1.3.5
Show that logϕ(λ) ∈ C∞(Rn), and thus sX(t1, . . . , tn, r) is well-defined for all t1, . . . , tn ∈ T ,
r ∈ N, if

E |X(t)|k <∞, t ∈ T, k ∈ N. (1.3.1)
For later considerations, suppose (1.3.1) to hold true. The properties of sX follow directly

from the corresponding properties of characteristic functions:

1. Symmetry: for any permutation σ : (1, . . . , n) 7−→ (σ(1), . . . , σ(n)) it holds

sX(t1, . . . , tn, r) = sX(tσ(1), . . . , tσ(n), rσ(1),...,σ(n)), n ∈ N, t1, . . . , tn ∈ T.

2. Multilinearity: for any a, b ∈ R, n ∈ N, t0, . . . , tn ∈ T it holds

〈aX(t0) + bX(t1), X(t2), . . . , X(tn)〉
= a 〈X(t0), X(t2), . . . , X(tn)〉+ b 〈X(t1), X(t2), . . . , X(tn)〉 .
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3. Let A∪B = {t1, . . . , tn} be a non-empty partition of {t1, . . . , tn} into two disjoint subsets.
If {X(t), t ∈ A} and {X(t), t ∈ B} are independent, then sX(t1, . . . , tn, r) = 0 for all
r ∈ Nn. Hence, semi-invariants characterize the degree of dependence ofX(t1), . . . , X(tn).

4. It holds C(s, t) = sX(s, t, (1, 1)) = 〈X(s), X(t)〉, s, t ∈ T .

Exercise 1.3.6
Prove the properties 1), 2), 3), 4) of the semi-invariant sX .

Let us formulate a generalization of this result:
Theorem 1.3.1
It holds

1.
µ(e)(t1, . . . , tn) =

∑
Pn

∏
{ti1 ,...,tik}∈Pn

〈X(ti1), . . . , X(tik)〉 ,

where Pn is any partition of the set {t1, . . . , tn} into mutually disjoint non-empty blocks,
and {ti1 , . . . , tik} is one of such blocks.

2.
sX(t1, . . . , tn, e) =

∑
Pn

(−1)|Pn|−1(|Pn| − 1)!
∏

{ti1 ,...,tik}∈Pn

µ(e)(ti1 , . . . , tik).

Proof See [39], p. 30. The idea is to compare the coefficients of the Taylor series of ϕ(λ) and
logϕ(λ).

Cumulants are used not only for the description of the dependence structure of the random
vector Xt1,...,tn , but also for the characterization of its distribution.
Corollary 1.3.1
A random function X is Gaussian iff sX(t1, . . . , tn, e) = 0 for all n > 2, t1, . . . , tn ∈ T . This
holds since the multivariate Gaussian distribution is the only one with logϕ(λ) = polynomial
of second order.

Example 1.3.1 ([42]): 1. X ≡ a a.s. ⇐⇒ 〈Xr〉 =
{
a, r = 1,
0, r > 1

2. X ∼ Poi(λ)⇐⇒ 〈Xr〉 = λ, r ∈ N

3. X ∼ Exp(λ)⇐⇒ 〈Xr〉 = (r − 1)!λ−r, r ∈ N

Definition 1.3.3
For any s, t ∈ T consider the increment X(t) −X(s) and suppose that E|X(t)|k < ∞, t ∈ T ,
k ∈ N.

1. γk(s, t) = E [X(t)−X(s)]k is called the mean increment of order k ∈ N.

2. In particular, γ(s, t) = 1
2 γ2(s, t) = 1

2 E [X(t)−X(s)]2 is called the variogram of X.

Variograms are frequently used in geostatistics. One can easily see that the following rela-
tionship holds:

γ(s, t) = C(s, s) + C(t, t)
2 − C(s, t) + 1

2(µ(s)− µ(t))2, s, t ∈ T.



1 Basic notions of the theory of random functions 17

1.4 Stationarity and isotropy
In this section, we introduce the notions of spatial homogeneity of the distribution of random
functions. Let the index space T be a linear vector space with operations + and ·.
Definition 1.4.1
The random function X = {X(t), t ∈ T} is called (strictly) stationary if for any n ∈ N,
τ, t1, . . . , tn ∈ T it holds Pt1+τ,...,tn+τ = Pt1,...,tn , i.e. all finite-dimensional distributions of X
are invariant with respect to shifts in T .
Definition 1.4.2
Let X = {X(t), t ∈ T} be a random function with E|X(t)|2 <∞, t ∈ T . X is called stationary
(in the wide sense) if µ(t) ≡ µ, t ∈ T and C(s, t) = C(s+ τ, t+ τ) (:= C(s− t)), τ, s, t ∈ T .
Notice that both definitions of stationarity do not imply each other. However, it is clear that

if X is strictly stationary with finite second moment, then it is stationary in the wide sense.
Definition 1.4.3
The random function X = {X(t), t ∈ T} is intrinsically stationary of order two if its mean
increments γi(s, t), s, t ∈ T exist up to the order 2, and

1. γ1(s, t) = 0, s, t ∈ T .

2. γ2(s, t) = γ2(s+ τ, t+ τ), s, t, τ ∈ T .

It is clear that intrinsic stationarity of order two (which is widely used in practice) is a lit-
tle bit more general than stationarity in the wide sense, because we require the existence of
moments of increments of X and not of X(t) itself. However, this distinction is of superficial
nature, as most random functions which are of practical interest are stationary in the wide
sense (and hence intrinsically stationary of order two).

Exactly as in the case of stationarity, the notion of isotropy can be introduced in the strict
or wide sense. In order to define it, we need to assume that T = Rd, d ≥ 2. Isotropy can be
easily explained as independence of the probabilistic properties of a random field X of a chosen
observation direction. It is often required that isotropic processes are also stationary. However,
we shall not do it in the following definition, as there are examples of isotropic non-stationary
random fields, see Figure 1.8.

Fig. 1.8: Two realizations of isotropic non-stationary random fields
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Definition 1.4.4
The random field X = {X(t), t ∈ Rd} is said to be isotropic

1. in the strict sense, if for any n ∈ N, t1, . . . , tn ∈ Rd, A ∈ SO(d) 4:

(X(At1), . . . , X(Atn))> d= (X(t1), . . . , X(tn))>.

2. in the wide sense, if for any s, t ∈ Rd, A ∈ SO(Rd):

µ(At) = µ(t), C(As,At) = C(s, t).

Definition 1.4.5
The random field X is motion invariant if it is stationary and isotropic (both either in the
strict or wide sense).
We shall mostly consider stationarity, isotropy and invariance with respect to rigid motions

in the wide sense. This means that µ(t) = µ, t ∈ Rd and C(s, t) = C0(|t− s|) for such random
fields, where C0 : R+ → R is a function of the distance between the points s and t.
Definition 1.4.6
The random function X = {X(t), t ∈ T} on an index space T (which is a linear vector space)
has stationary increments, if for all n ∈ N and t, t1, . . . , tn ∈ T

(X(t2)−X(t1), . . . , X(tn)−X(t1))> d= (X(t2 + t)−X(t1 + t), . . . , X(tn + t)−X(t1 + t))> .

In what follows (here and in §1.5) we suppose that X = {X(t), t ∈ T} is a centered (i.e.
µ(t) = 0, t ∈ T ) random function with values in a Banach5 space E and index space T which
is a Banach space as well. If X is not centered, it can be made so by considering the new
random field Y = {Y (t) = X(t) − µ(t), t ∈ T}. Sometimes we shall assume that X is wide
sense stationary. In this case, its covariance function C(h) = E[X(t)X(t+ h)], h ∈ T satisfies
obvious properties:

1. C(0) = varX(t) ≥ 0

2. Symmetry: C(h) = C(−h), h ∈ T

3. Boundedness: |C(h)| ≤ C(0), h ∈ T

Further properties of stationary covariance functions will be considered in Chapter 2.

1.5 Continuity and differentiability
We consider different notions of continuity and differentiability of random functions which
correspond to the respective convergence types in probability theory. As above, let X be a
centered random function with index space T and phase space E (both being Banach spaces
with norms | · |T and | · |E).
Definition 1.5.1
The random function X = {X(t), t ∈ T} is

4denotes the special orthogonal group in Rd
5A Banach space is a complete normed vector space.



1 Basic notions of the theory of random functions 19

1. stochastically continuous at t ∈ T , if X(s) p−→ X(t) as s → t, where p−→ means the
convergence in probability, i.e.

P (|X(s)−X(t)|E > ε)→ 0, ε > 0 as s→ t.

2. continuous in p-mean (p ≥ 1) at t ∈ T , if X(s) Lp−→ X(t) as s→ t, i.e.

E |X(s)−X(t)|pE → 0, as s→ t.

In particular, the case p = 2 has a special name: continuity in quadratic mean, which
holds if γ(s, t)→ 0 as s→ t.

3. almost surely continuous at t ∈ T , if X(s) a.s.−−→ X(t) as s→ t, i.e.

P
(

lim
s→t

X(s) = X(t)
)

= 1.

In applications, the most interesting case is certainly the a.s. continuity, and an even stronger
property of the continuity of almost all realizations of X. The weakest (and actually less
meaningful) notion is the stochastic continuity:

cont. in p-mean +3 stochastic cont. almost sure cont.ks

As it is shown on the above diagram, a random function is stochastically continuous if it is
continuous a.s. or in p-mean, p ≥ 1.

Let us investigate the properties of these three types of continuity in more detail. As it will
follow from the next lemma, stochastic continuity is defined by the properties of the two-
dimensional distribution Ps,t of X.
Lemma 1.5.1
The following statements are equivalent:

1.
X(s) p−→ Y as s→ t0

2.
Ps,t

ω−→ P(Y,Y ) as s, t→ t0

for t0 ∈ T and a random variable Y . Here ω−→ denotes the weak convergence of probability
measures. For X to be stochastically continuous at t0, set Y = X(t0).

Proof 1 ⇒ 2 : X(s) p−→ Y as s → t0 implies (X(s), X(t))> p−→ (Y, Y )> as s, t → t0. Thus
Ps,t

ω−→ P(Y,Y ) as s, t→ t0, since convergence in probability implies weak convergence.
2⇒ 1 : For any ε > 0, take a function gε : R→ [0; 1], which is continuous on R, gε(0) = 0 and
gε(x) = 1 if x /∈ Bε(0). For any s, t ∈ T it holds

E gε(|X(s)−X(t)|E)
= P(|X(s)−X(t)|E > ε) + E [ gε(|X(s)−X(t)|E) · 1{|X(0)−X(t)|E ≤}] ,
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hence

P(|X(s)−X(t)|E > ε) ≤ E gε(|X(s)−X(t)|E)

=
∫
E×E

gε(|x− y|E)Ps,t (d(x, y))→
∫
E×E

gε(|x− y|E)P(Y,Y )(d(x, y)) = 0

as s, t → t0, since P((Y,Y ) is concentrated on {(x, y) ∈ E × E : x = y} and gε(0) = 0. Hence
{X(s)}s→t0 is a fundamental sequence in probability, and then X(s) p−→ Y as s→ t0.

It can happen thatX is stochastically continuous whereas all its realizations are discontinuous
(in the sense that X does not have an a.s. continuous modification).
Exercise 1.5.1
Show this property for the homogeneous Poisson process on the real line.
The explanation of this fact is easy: the probability to have a discontinuity at a concrete

t ∈ T is zero; hence discontinuities happen at different t ∈ T for all realizations of X.
Exercise 1.5.2
Let T be compact. Prove that if X is stochastically continuous on T (i.e. for all t ∈ T ), then
it is uniformly stochastically continuous on T , which means that for all ε, η > 0 there exists a
δ > 0 such that for all s, t ∈ T with |s− t|T < δ, it holds that

P(|X(s)−X(t)|E > ε) < η.

Let us turn to the continuity in quadratic mean. In order to state further results, suppose
that E = R and EX2(t) <∞, t ∈ T . Since X is centered, it holds C(s, t) = E[X(s)X(t)].
Lemma 1.5.2
For any t0 ∈ T and some random variable Y with EY 2 < ∞, the following statements are
equivalent:

1.
X(s) L2

−→ Y as s→ t0

2.
C(s, t)→ EY 2 as s, t→ t0

Remark 1.5.1 1. For the mean quadratic continuity of X at t0 just set Y = X(t0). Then,
EY 2 = C(t0, t0), i.e. C must be continuous at (t0, t0).

Fig. 1.9: The function gε(x)
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2. If X is not centered, it is enough to require µ(s) → µ(t0) as s → t0 alongside with
C(s, t)→ C(t0, t0) as s, t→ t0 for the L2-continuity of X at t0 ∈ T .

Proof of Lemma 1.5.2. 1 ⇒ 2 : First prove the following general fact: If limn→∞Xn
L2
= X

and limn→∞ Yn
L2
= Y for some sequences {Xn}n∈N and {Yn}n∈N of random variables X and Y ,

then E[XmYn]→ E[XY ] as n,m→∞. Indeed, it holds

|E[XmYn]−E[XY ]|
= |E[(Xm −X +X)(Yn − Y + Y )]−E[XY ]|
≤ E |(Xm −X)(Yn − Y )|+ E |(Xm −X)Y |+ E |(Yn − Y )X|

≤
√

E(Xm −X)2 E(Yn − Y )2 +
√

EY 2 E(Xm −X)2 +
√

EX2 E(Yn − Y )2 → 0

as m,n → ∞ by the inequality of Cauchy-Schwarz. Hence, from X(s) L2
−→ Y as s → t0 and

X(t) L2
−→ Y as t→ t0 it follows

C(s, t) = E[X(s)X(t)]→ EY 2

as s, t→ t0.
2⇒ 1 : Use the relation in Definition 1.3.3 for γ(s, t):

E[X(s)−X(t)]2 = 2γ(s, t) = C(s, s) + C(t, t)− 2C(s, t)
→ 2EY 2 − 2EY 2 = 0

(1.5.1)

as s, t→ t0. Hence {X(s)}s→t0 is a fundamental sequence in the mean quadratic sense, and it
follows X(s) L2

−→ Y as s→ t0.

A mean-square continuous random function X can still have discontinuous realizations. Still
in all cases of practical relevance (i.e., except for some "pathologic" random functions X)
mean-square continuous random functions have an a.s. continuous modification. Later on, this
statement will be made more precise.
Exercise 1.5.3
Construct a stationary shot-noise process with a.s. discontinuous realizations which is conti-
nuous in quadratic mean.
Let us consider the special case of a stationary centered random function X. In this case,

the property in Definition 1.3.3 reads

γ(s, t) = γ(s− t) = C(0)− C(s− t), s, t ∈ T

or
γ(h) = C(0)− C(h), h ∈ T, (1.5.2)

where C(0) = varX(t). This allows us to state the following
Corollary 1.5.1 1. A stationary random function X is mean-square continuous iff its co-

variance function is continuous at the origin, i.e. limh→0C(h) = C(0).

2. If C(h) is continuous at the origin, then it is continuous everywhere on T .
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Proof 1. This follows directly from Remark 1.5.1, 1) and Lemma 1.5.2 with C(h) = C(s, t),
s− t = h.

2. Prove that limh→0C(h + h0) = C(h0) for all h0 ∈ T if it holds for h0 = 0. Indeed, for
any h ∈ T it holds

|C(h+ h0)− C(h0)| = |E[X(t+ h)X(t− h0)]−E[X(t)X(t− h0)]|

≤ E |(X(t+ h)−X(t))X(t− h0)| ≤
√

2γ(h)
√

EX2(t− h0)

=
√

2(C(0)− C(h))C(0)→ 0

as h→ 0 by the inequality of Cauchy-Schwarz and relation (1.5.2).

Now let us turn to the property of a.s. continuity. If we are looking for a condition imposed
on the finite-dimensional distributions of X assuring the a.s. continuity of its realizations, it is
clear that any such condition can guarantee only the existence of a modification of the random
function X with a.s. continuous paths. There are many such sufficient conditions (see e.g
[13], [19], v. 1., pp. 192-193, for Gaussian random functions see [1], pp. 11-19 and [11], pp.
170-171). Let us give only one example of those (attributed to N.A. Kolmogorov) in the case
of X being a stochastic process defined on T = [a; b] ⊂ R.
Theorem 1.5.1
The stochastic process X = {X(t), t ∈ [a; b]} is a.s. continuous if for some α, c, δ > 0 and
sufficiently small h it holds that

E|X(t+ h)−X(t)|α < c|h|1+δ, t ∈ (a; b).

Proof See [11], pp. 63-65.

The above condition of X is a condition on its two-dimensional distributions Pt,t+h.
Definition 1.5.2
The random function X = {X(t), t ∈ T} is differentiable at t ∈ T in direction h stochastically,
in p-mean (p ≥ 1) or almost surely, if there exists

lim
l→0

X(t+ hl)−X(t)
l

:= X ′h(t)

in the corresponding sense, i.e. in probability, in Lp or with probability one.
One says that X is differentiable on T if it is differentiable at any t ∈ T . The differentiability

of order k is defined accordingly in the iterative way.

By Lemmas 1.5.1 and 1.5.2 it is easy to see that the stochastic differentiability is defined by the
properties of the three-dimensional distributions of X (as the joint distribution of X(t+hl)−X(t)

l

and X(s+hl′)−X(s)
l′ should weakly converge), whereas the differentiability in quadratic mean is

regulated by the properties of the covariance function C(s, t) (hence, of the two-dimensional
distributions of X).
Exercise 1.5.4
Show that
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1. the Wiener process is not even stochastically differentiable at any t ∈ [0;∞).

2. the homogeneous Poisson process on R is stochastically differentiable on R, but not in
p-mean, p ≥ 1.

Let us dwell on the mean-quadratic differentiability of centered random functions X =
{X(t), t ∈ T}.
Lemma 1.5.3
The random functionX = {X(t), t ∈ T} is differentiable in quadratic mean at t ∈ T in direction
h if its covariance function C(s, t) is twice differentiable at (t, t) in direction h, i.e. if there
exists

C ′′hh(t, t) = ∂2C(s, t)
∂sh∂th

∣∣∣∣
s=t
.

Moreover, X ′h(t) is mean-square continuous at t ∈ T , if

C ′′hh(s, t) = ∂2C(s, t)
∂sh∂th

is continuous at s = t. Here C ′′hh(s, t) is the covariance function of X ′h = {X ′h(t), t ∈ T}.

Proof Due to Lemma 1.5.2, it suffices to show the existence of the limit

lim
l,l′→0

E
[
X(t+ lh)−X(t)

l
· X(s+ l′h)−X(s)

l′

]
for s = t. Indeed, we have

E
[
X(t+ lh)−X(t)

l
· X(s+ l′h)−X(s)

l′

]
= 1
ll′
[
C(t+ lh, s+ l′h)− C(t+ lh, s)− C(t, s+ l′h) + C(t, s)

]
= 1
l

[
C(t+ lh, s+ l′h)− C(t+ lh, s)

l′
− C(t, s+ l′h)− C(t, s)

l′

]
→ C ′′hh(s, t)

as l, l′ → 0. All statements of the Lemma immediately follow from this relation.

Corollary 1.5.2
If X = {X(t), t ∈ T} is a wide sense stationary centered random function with covariance
function C(·, ·), then

1. X is differentiable in quadratic mean in direction h ∈ T iff C ′′hh(0) exists and is finite.

2. If C(τ) is twice differentiable in direction h ∈ T at τ = 0 then it is twice differentiable in
this direction for all τ ∈ T . Then, it holds C ′h(0) = 0.

3. If C ′′hh(τ) is continuous at τ = 0, then it is continuous for any τ ∈ T .

4. −C ′′hh(τ) is the covariance function of X ′h, i.e. it holds −C ′′hh(τ) = E[X ′h(t)X ′h(t+ τ)].

5. If X is differentiable in quadratic mean in direction h, then X and X ′h are uncorrelated,
i.e. E[X(t)X ′h(t)] = 0, t ∈ T .
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Proof Following the guidelines of the proof of Lemma 1.5.3, we get for s, t ∈ T

lim
l,l′→0

E
[
X(t+ lh)−X(t)

l
· X(s+ l′h)−X(s)

l′

]
= lim

l,l′→0

1
l

[
C(t− s+ (l − l′)h)− C(t− s+ lh)

l′
− C(t− s− l′h)− C(t− s)

l′

]
= −C ′′hh(t− s).

(1.5.3)

This proves 1) for s = t and 2), 4) for τ = t − s. The property C ′h(0) = 0 follows from the
symmetry property C(−τ) = C(τ), τ ∈ T .
3) Since −C ′′hh is the covariance function of X ′h due to 4), the continuity of C ′′hh(τ), τ ∈ T is
guaranteed by the continuity of C ′′hh(0) (see Corollary 1.5.1).
5) Similarly as in (1.5.3), it can be shown that

E[X(t)X ′h(t+ τ)] = C ′h(τ),

for t, τ ∈ T . The rest of the proof follows from 2) (C ′h(0) = 0).

Remark 1.5.2
The properties of L2-differentiability and a.s. differentiability are disjoint in the following sense:
One can construct examples of stochastic processes that are mean-squared differentiable, but
have discontinuous realizations, and vice versa, processes with a.s. differentiable realizations
might have discontinuous C ′h(τ) at τ = 0 and hence be not mean-squared differentiable.
Exercise 1.5.5
Give the corresponding examples!
Remark 1.5.3
If C ′′hh(0) exists for a stationary stochastic process, then the condition of Theorem 1.5.1 is
fulfilled with α = 2 and δ = 1. Hence, X will have an a.s. continuous modification. Under
further regularity conditions, it can be shown that X ′h(t) exists in a.s. sense for almost all
t ∈ [a; b] and is a.s. integrable on [a; b]. See also [11], pp. 125, 171.

1.6 Proof of the Theorem of Kolmogorov
Let us prove Theorem 1.1.2. Here we give only an idea of the proof following [9], Appendix 1.

Proof According to page 4 let (Et, Et)t∈T be a family of Borel spaces, and

Et1,...,tn = Et1 × . . .× Etn ,

Et1,...,tn = Et1 ⊗ . . .⊗ Etn ,

for all n ∈ N, t1, . . . , tn ∈ T , ti 6= tj , i 6= j. Let {Pt1...tn} be a family of measures on
(Et1,...,tn , Et1,...,tn) satisfying the properties of symmetry and consistency as on page 4. We
show that there exists a unique probability measure µ(·) on (S,BT ) such that the Pt1,...,tn are
"projections" of µ onto (Et1,...,tn , Et1,...,tn). These "projections" are understood in the following
sense: Let F(T ) be the family of all finite subsets of T , consisting of index sets J ∈ F(T ),
J = {t1, . . . , tn}. For (Et1,...,tn , Et1,...,tn) we use the notation (EJ , EJ). Analogously, PJ denotes
Pt1,...,tn . This notation is correct due to the symmetry property of the measures Pt1,...,tn .
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Let πT,J : S → EJ be the coordinate projection of a function {y(t), t ∈ T} ∈ S onto coor-
dinates with indexes in J , i.e. πT,J y = (y(t1), . . . , y(tn)) or πT,J {y(t), t ∈ T} = {y(t), t ∈ J},
if J = {t1, . . . , tn}. Then, "projection" of µ means that

µ ◦ π−1
T,J(Bt1 × . . .×Btn) = PJ(Bt1 × . . .×Btn)

for any n ∈ N, J = {t1, . . . , tn} ∈ F(T ), Bti ∈ Eti , i = 1, . . . , n.

If such a probability measure µ on (S,BT ) is found, then the random function X with this
distribution µ is given by the coordinate projection on the canonical space: We take Ω = S,
F = BT , P = µ and set X(t, ω) = ω(t) for ω ∈ S and t ∈ T . Let us transfer measures PJ from
(EJ , EJ) onto the space (S,BT,J) with σ-Algebra BT,J = π−1

T,J EJ ⊂ BT in the following way: A
new measure µJ is defined on (S,BT,J) by

µJ(B̃) = PJ(B),

where B = Bt1 × . . .×Btn ∈ EJ , J = {t1, . . . , tn} and B̃ = B ×
∏
t∈T\J Et ∈ BT,J . It is evident

that B ∈ EJ iff B̃ defined as above belongs to BT,J .

So, our goal is to find a measure µ on (S,BT ) such that µ = µJ on any BT,J , J ∈ F(T ). Equiva-
lently, let us define µ on the "cylindrical" algebra CT =

⋃
J∈F(T ) BT,J by letting µ(B) = µJ(B),

if there exists a J ∈ F(T ) such that B ∈ BT,J . This definition yields a finitely additive function
on CT . By Caratheodory’s Theorem, µ can be uniquely extended to a measure on BT = σ(CT )
if µ is σ-additive on CT . So, let us show the countable additivity, which is equivalent to showing
finite additivity and continuity in ∅, i.e. for any sequence {Cn} ⊂ CT , Cn ↘ ∅ (Cn+1 ⊂ Cn,⋂∞
n=1Cn = ∅) it must hold µ(Cn) → 0 as n → ∞. Thus, prove that if µ(Cn) ≥ ε0 for some

ε0 > 0 and all large enough n then

Cn 9 ∅ as n→∞. (1.6.1)

Since Cn ∈ CT it means that there exists a Jn ∈ F(T ) such that Cn ∈ BT,Jn .

Without loss of generalization we now assume that Jn ⊂ Jn+1. First prove the statement
(1.6.1) for spaces Et = [0; 1], Et = B([0; 1]) equipped with the Euclidean metric d(·, ·). Af-
ter that, generalize this proof for arbitrary Borel spaces. Reduce the consideration to sets
Cn = π−1

T,Jn
Bn, where the Bn are compact in EJn , Jn ∈ F(T ).

First formulate the following results (without proof), which are helpful in the sequel:
Lemma 1.6.1
Let Et, t ∈ T be separable metric spaces with metrics dt(·, ·) and Borel σ-algebras Bt. Then,
the space SJ = {functions y on J : y(t) ∈ Et}, J ∈ F(T ) equipped with the metric dJ(x, y) =
maxt∈J dt(x(t), y(t)), x, y ∈ SJ is a separable metric space with "cylindrical" σ-algebra BJ equal
to the Borel σ-algebra B(SJ). If Et, t ∈ T are complete (Polish), then SJ is complete (Polish)
as well.
Lemma 1.6.2
Let E be a metric space with measure µ on the Borel σ-algebra B(E). Then it holds

µ(B) = sup
A⊂B

A closed

µ(A) = inf
A⊃B
A open

µ(A), B ∈ B(E).
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By Lemma 1.6.1, it holds BJn = B(SJn). By Lemma 1.6.2, for any Bn ∈ BJn there exists
a closed set Kn ⊂ Bn in (SJn , dJn) such that µJn(Bn \Kn) < 2−(n+1)ε0, n ∈ N. Since SJn is
compact, so is Kn. Then, for Cn = π−1

T,Jn
Bn and K̃n = π−1

T,Jn
Kn, it holds

µ(Cn \ K̃n) = µJn(Bn \Kn) < 2−(n+1)ε0, n ∈ N.

Introduce the sets Ln =
⋂n
i=1 K̃i. It holds Ln ↘ ∅ since Ln+1 ⊂ Ln and Ln ⊂ K̃i ⊂ Cn.

Furthermore,

µ(Cn \Kn) = µ(Cn ∩ (
n⋃
i=1

K̃i)) = µ(
n⋃
i=1

(Cn \ K̃i))

≤
n∑
i=1

µ(Ci \ K̃i) <
n∑
i=1

2−(i+1)ε0 < ε0/2

and thus
ε0 ≤ µ(Cn) = µ(Ln) + µ(Cn \ Ln) ≤ µ(Ln) + ε0/2.

Hence, it follows µ(Ln) ≥ ε0/2 for all n ∈ N. Since the basis Dn =
⋂n
i=1 π

−1
Jn,Ji

Ki of the cylinder
Ln = π−1

T,Jn
Dn is compact, we can further consider only Cn = π−1

T,Jn
Bn for compact sets Bn in

SJn . Define J =
⋃∞
n=1 Jn. On SJ , introduce the metric

dJ(x, y) =
∞∑
n=1

2−n dJn(x|Jn , y|Jn)
1 + dJn(x|Jn , y|Jn) .

Similarly to the result of Lemma 1.6.1, one can show that the metric space (SJ , dJ) is a Polish
space with "cylindrical" σ-algebra BJ being equal to B(SJ), which is the usual Borel σ-algebra.
SJ is compact. Then, the sets Ĉn = π−1

J,Jn
Bn, n ∈ N are compact in SJ as closed subsets of a

compact set (since πJ,Jn is continuous). It holds

Cn = π−1
T,Jn

Bn = π−1
T,Jπ

−1
J,Jn

Bn = πT,J Ĉn.

Since Cn ⊂ Cm, n ≥ m it follows Ĉn ⊂ Ĉm, n ≥ m and
⋂∞
n=1Cn = π−1

T,J(
⋂∞
n=1 Ĉn).

A sequence of contracting compacts has at least one point in its intersection, and is hence
non-empty, i.e.

⋂∞
n=1 Ĉn 6= ∅ and

⋂∞
n=1Cn 6= ∅. This is a contradiction to the assumption⋂∞

n=1Cn = ∅.

Now let Et ∈ B([0; 1]), Bt = St ∩ B([0; 1]) and St 6= [0; 1] for at least one t ∈ T . Set Lt = [0; 1],
t ∈ T , LJ =

∏
t∈J Lt, J ∈ F(T ). Introduce the measures

µ̃J(B) = µJ(B ∩ SJ)

on B(LJ). These measures satisfy the conditions of symmetry and consistency for any J ∈
F(T ). As above, there exists a measure µ̃ on (LT ,LT ), LT =

⊗
t∈T B([0; 1]) with projection µ̃J

onto (LJ ,B(LJ)), J ∈ F(T ) and a random function X̃ on (Ω,F ,P), where Ω = LT , F = LT ,
P = µ̃, with the following distribution: X̃(t, ω) = ω(t), ω ∈ LT .

Now let Et 6= [0; 1] for at least one t ∈ T . We define the random function X : T × Ω→ Et as

X(t, ω) =
{
X̃(t, ω) for X̃(t, ω) ∈ Et,
at for X̃(t, ω) /∈ Et,
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where at ∈ Et is some point of Et 6= ∅. For all t ∈ T it holds that

{ω : X(t, ω) 6= X̃(t, ω)} = {ω : ω(t) ∈ [0; 1] \ Et} = Ct.

Ct is an elementary cylinder and hence

P(Ct) = µ̃(Ct) = µ{t}({[0; 1] \ Et} ∩ Et) = 0.

Moreover,

Pt1,...,tn(Bt1 × . . .×Btn) = P(X(ti) ∈ Bti , i = 1, . . . , n)
= P(X̃(ti) ∈ Bti , i = 1, . . . , n) = µ̃J(BJ) = µJ(BJ),

where BJ = Bt1 × . . .×Btn . Hence, µ = PX is the measure on BT we looked for.

Now, the extension of the above result to the case of arbitrary spaces (Et, Et), which are
Borel spaces, follows from the next lemma.
Lemma 1.6.3
Let (Et, Et)t∈T and (Gt,At)t∈T be families of isomorphic measurable spaces: (Et, Et) ∼ (Gt,At)
for all t ∈ T . Then, for all J ⊂ T , it holds (EJ ,BJ) ∼ (GJ ,AJ), where BJ and AJ are cylindrical
σ-algebras on EJ =

∏
t∈J Et, GJ =

∏
t∈J Gt.

1.7 Additional exercises
1. Prove the existence of a random field with the following finite dimensional distributions

and specify the measurable spaces (Et1...tn , Et1...,tn):
a) The finite dimensional distributions are multivariate Gaussian.
b) The marginals are Poisson and Xt, Xs are independent for t 6= s.

2. Give an example for a family of probability measures {Pt1...tn} which do not fulfill the
conditions in the theorem of Kolmogorov.

3. Give additional examples of a non-continuous random function which has a continuous
modification.

4. A random process W defined on B(Rd) such that, for all sets A,B ∈ B(Rd) with λd(A)
and λd(B) finite,
• W (B) ∼ N (0, |B|),
• A ∩B = ∅ ⇒W (A ∪B) = W (A) +W (B) almost surely,
• A ∩B = ∅ ⇒W (A) and W (B) are independent,

is calledGaussian white noise indexed by Borel sets. Define the fieldX = {Xt, t ∈ [0;∞)d}
by Xt = W ([0; t]) where [0; t] is the paraxial rectangle with lower left corner 0 and upper
right corner t. Show (for d = 2) that X is a Gaussian random field with EXt = 0 and
cov (Xs, Xt) =

∏d
j=1 min {sj , tj}.

Note: The process X is called Brownian sheet or multiparameter Brownian motion. For
d = 1 it is the Brownian motion.
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5. Let η1, η2, . . . be non-negative iid random variables and X1, X2, . . . non-negative iid ran-
dom variables, where ηj and Xj are independent for all j. Define the process N =
{Nt, t ∈ [0;∞)} by

Nt (ω) = sup

n ∈ N :
n∑
j=1

ηj (ω) ≤ t

 .
The process Y = {Yt, t ∈ [0,∞)} is given by

Yt (ω) = y0 + ct−
Nt(ω)∑
j=1

Xj (ω) , t ≥ 0

with positive constants y0 and c. Draw a sketch of a trajectory of Y .

Note: The process Yt is the classical Cramér-Lundberg model in insurance mathemat-
ics. It describes the surplus at time t of an insurance portfolio, where y0 is the initial
capital, c is the premium intensity and {Xj}j≥1 is the sequence of claim sizes. Nt is
called the claim number process, whereas {ηj}j≥1 are claim inter-arrival times.

6. Let Φ be a homogeneous Poisson point process in Rd with intensity λ > 0.
a) Write down the finite-dimensional distributions of Φ for disjoint bounded Borel sets

B1, . . . , Bn.
b) Compute the expectation EΦ (B) and the variance var Φ (B) for bounded Borel sets

B and interpret why λ is called the intensity of Φ.

7. Let Φ be a homogeneous Poisson process in Rd of intensity λ > 0.
a) Independent thinning: Each point of Φ is retained with probability p ∈ (0; 1) and

deleted with probability 1−p, independently of other points. Prove that the thinned
process Φ̃ is a homogeneous Poisson process of intensity λp.

b) Superposition: The superposition of two independent Poisson processes Φ1 with
intensity λ1 and Φ2 with intensity λ2 is the union Φ̃ = Φ1 ∪ Φ2. Prove that Φ̃ is a
homogeneous Poisson process with intensity λ1 + λ2.

Hint: The void probabilities of a point process are defined by vB = P (Φ (B) = 0) for all
Borel sets B. A simple point process is characterized by the void probabilities vB as B
ranges through the Borel sets.

8. Consider the shot-noise field Xt =
∑
v∈Φ g (t− v) where Φ is a homogeneous Poisson

process of intensity λ and g : Rd → R is a deterministic function fulfilling the integrability
conditions on p. 31. Prove that
a) EXt = λ

∫
Rd g (t− z) dz

b) cov (Xt, Xs) = λ
∫
Rd g (t− z) g (s− z) dz.

Hint: Campbell’s theorem can be useful: Let Φ be a homogeneous Poisson process in Rd
with intensity λ and f : Rd → R a non-negative measurable function. Then it holds that

E
∑
v∈Φ

f (v) = λ

∫
Rd
f (z) dz.
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Further, it holds that

E
∑
v,w∈Φ
v 6=w

f (v) g (w) = λ2
∫
Rd
f (z) dz

∫
Rd
g (z) dz

9. Consider the Ising model given in Example 1.2.3.
a) Prove that the Ising model has the Markov property with respect to the 4-neighborhood

relation ∼4. Does the Ising model possess the Markov property with respect to the
8-neighborhood relation ∼8?

b) For any Γ ⊂ TN the joint distribution of the system of random variables {Xt, t ∈ Γ}
is denoted by PΓ

TN
, i.e. for Γ = {t1, . . . , tn} and xt1 , . . . , xtn = ±1 it holds that

PΓ
TN

(xt1 , . . . , xtn) = P (Xt1 = xt1 , . . . , Xtn = xtn). For any such Γ the expectation
σΓ = E

∏
t∈ΓXt is called the mixed moment.

Prove that the probabilities PΓ
TN

can be expressed in terms of the mixed moments
σΓ as follows:

PΓ
TN

(xt1 , . . . , xtn) = (−1)k

2n
∑

Γ′⊂Γ
CΓ′σΓ′ ,

where k is the number of values xti equal to −1 and CΓ′ =
∏
t∈Γ\Γ′ xt.

c) Assume that J = 0, i.e. there is no interaction between particles. Prove that for
any Γ ⊂ TN the mixed moment σΓ is given by

σΓ =

exp
(
mB
kt0

)
− exp

(
−mB
kt0

)
exp

(
mB
kt0

)
+ exp

(
−mB
kt0

)
|Γ| .

10. The process X = {Xt, t ∈ [0;∞)} is defined as follows: X0 takes values +1 and −1 with
probability 1/2 each and Xt = X0 ·(−1)Y ([0;t]) for t > 0 where Y is a homogeneous Poisson
process on [0,∞) with intensity λ > 0, independent of X0. See Figure 1.10 (left) for a
trajectory of X.
a) Compute the expectation function of X and its covariance function.
b) Assume that the process X̃, if the kth point of Y occurs, attains a random value Vk

and retains that value till the next point of Y occurs, i.e. X0 = V0 and Xt = VY ([0;t])
for t > 0 where V0, V1, . . . are iid random variables with V0 ∼ N

(
0, σ2). Figure 1.10

(right) shows a trajectory of X̃. Specify its marginal distribution. Is it a Gaussian
process?

11. One-dimensional random walk:
a) Let Y denote a homogeneous Poisson process on [0;∞) with intensity λ. Let

X1, X2, . . . be i.i.d. random variables, independent of Y with EX1 = 0 and varX1 =
σ2. Define the random process Z on [0;∞) by Zt =

∑Yt
i=1Xi. Compute the expec-

tation function and the covariance function of Z.
b) Consider the process Z̃t = Yt − λt. Compare the expectation, the covariance and

the trajectories of Z and Z̃.
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(a) Trajectory of the process X in Exercise 10a. (b) Trajectory of the process X̃ in Exercise 10b.

Fig. 1.10: Illustration for Exercise 10a and 10b.

Hint: Wald’s identity could be useful: Let N be a random variable with P (N ∈ N) = 1 and
let (Xn)n∈N be a sequence of i.i.d. random variables independent of N . Assume that EN
and EX0 exist. Then E

∑N
n=1Xn exists and is given by E

∑N
n=1Xn = EN EX0. Further,

if varX1 and varN exist, it holds that var
(∑N

n=1Xn

)
= varX1EN + (EX1)2 var (N).

12. a) Compute all cumulants of a N
(
µ, σ2)-distributed random variable.

b) Prove that the cumulants 〈Xn〉 and the moments µn of a random variable X with
E |X|n <∞ are related by the following recursive formula:

〈Xn〉 = µn −
n−1∑
i=1

(
n− 1
i− 1

)〈
Xi
〉
µn−i

13. Give an example for a random field which is stationary in the wide sense but not strictly
stationary.

14. Consider the Shot-Noise process Xt =
∑
v∈Φ g (t− v).

a) Prove that Xt is stationary in the wide sense.
b) Find conditions on the function g such that the process Xt is weakly isotropic.

15. The cosine field X on Rd can be defined by

X (t) = 1√
d

d∑
k=1

(Yk cos (aktk) + Zk sin (aktk))

with i.i.d. centered random variables Y1, . . . , Yd, Z1, . . . , Zd and positive constants a1, . . . , ad.
Prove that the cosine field X is weakly stationary.

16. Let X =
{
Xt, t ∈ R+} be a process with the following properties:

• X0 = 0 almost surely
• X has independent increments
• there is σ2 > 0 such that Xt −Xs ∼ N

(
0, σ2 |t− s|

)
, s, t > 0.
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This process is called Wiener process. For σ2 = 1 it is called standard Wiener process.
Prove that there exists an almost surely continuous version of the Wiener process.

17. Construct a stationary shot-noise process with almost surely discontinuous realizations
which is continuous in quadratic mean.

18. Give an example of a random process which is not stochastically continuous.

19. Let T = N0 and E be a countable phase space. The process X = {Xt, t ∈ T} is called
a (discrete-time) Markov chain if it satisfies the Markov property: for any n ≥ 1, any
t, t1, . . . , tn ∈ T with t1 < . . . < tn < t, and any i1, . . . , in, j ∈ E,

P (Xt = j |Xt1 = i1, . . . , Xtn = in ) = P (Xt = j |Xtn = in ) .

The initial distribution α = (αj , j ∈ E) is given by αj = P (X0 = j) and the transition
probabilities pij (s, t) are given by pij (s, t) = P (Xt = j |Xs = i) for t ≥ s, and i, j ∈
E. The chain X is called homogeneous, if pij (s, t) depends on s and t only through
t − s. Then it is enough to know α and the 1-step transition matrix P = (pij) with
pij = P (Xn+1 = j |Xn = i), n ≥ 0. The n-step transition matrix P (n) is given by P (n) =(
p

(n)
ij

)
with the n-step transition probabilities p(n)

ij = P (Xn = j |X0 = i). The Chapman-
Kolmogorov equation states that P (n+m) = P (n)P (m) for any n,m ∈ N.
a) Prove the Chapman-Kolmogorov equation.
b) Give an example for a stochastic process with T = N0 and countable phase space E

which satisfies the Chapman-Kolmogorov equation but does not fulfill the Markov
property.



2 Correlation theory of stationary random
fields

In this chapter, properties of the first moments of (mostly stationary) random functions and
especially random fields are considered. First, let us dwell on the (characteristic) properties
and construction principles of covariance functions of random functions as positive semi-definite
functions.

2.1 Positive semi-definite functions

Here we give a slightly more general definition of positive semi-definiteness than that of Exercise
1.3.1, which allows for complex-valued functions.

Definition 2.1.1 1. A function C : Rd × Rd → C is called positive semi-definite, iff

• C(x, y) = C(y, x), x, y ∈ Rd

• for any n = 2, 3, . . . and x1, . . . , xn ∈ Rd, z1, . . . , zn ∈ C it holds∑n
i,j=1C(xi, xj)zizj ≥ 0, i.e. this expression is real and non-negative. Here zj means

the complex conjugate of zj ∈ C.

2. A function f : Rd → C is called positive semi-definite if the function C : Rd × Rd → C
given by C(x, y) = f(x− y) is positive semi-definite.

3. A function fo : R+ → C is called positive semi-definite if the function C : Rd × Rd → C
given by C(x, y) = fo(|x− y|), x, y ∈ Rd is positive semi-definite.

As it is shown in Exercise 1.3.1, the class of all positive semi-definite functions on Rd and
the class of covariance functions of (complex-valued) random fields on Rd are identical.

The following characterization result was proved for d = 1 in 1932 − 1934 independently by
Bochner and Khinchin.

Theorem 2.1.1 (Bochner-Khinchin):
A continuous at the origin o ∈ Rd function f : Rd → C is positive semi-definite if and only if it
can be represented as a characteristic function of a finite measure µf on (Rd,B(Rd)) (see Def.
1.1.7):

f(x) = ϕµf (x) =
∫
Rd

exp(i 〈x, t〉)µf (dt), x ∈ Rd. (2.1.1)

For simplicity, let us prove this result in the special case (d = 1). For the general case, see [5].
First of all, let us mention that a positive semi-definite function is continuous iff it is continuous
at the origin.

32
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For the proof of Theorem 2.1.1, we need to introduce the so-called Fourier transform F : let
Lp(R) be the space of all functions h : R→ C with

∫
R |h(x)|p dx <∞, p ≥ 1. Define

F (h)(s) =
∫
R
eixsh(x)dx, h ∈ L1(R), s ∈ R.

(see, e.g. [32]). If g = F (h), then the inverse Fourier transform is defined by

F−1(g)(t) = 1
2π

∫
R
e−itxg(x)dx, t ∈ R. (2.1.2)

If additionally h ∈ L2(R), then
F−1(F (h))(x) = h(x) (2.1.3)

for almost all x with respect to the Lebesgue measure. Thus, F : L2(R)→ L2(R) is a one-to-one
mapping satisfying the following Parseval’s identity:

〈F (h), F (l)〉L2(R) = 2π 〈h, l〉L2(R) , h, l ∈ L2(R), (2.1.4)

where 〈h, l〉L2(R) =
∫
R h(x)l(x)dx is the scalar product in L2(R). If h ∈ L1(R), then F (h) ∈

C(R) (which follows easily from Lebesgue’s Theorem on dominated convergence).

Proof of Theorem 2.1.1. Necessity is trivial, see Exercise 2.6 of §2.6.
Sufficiency: First, we shall assume that a positive semi-definite continuous function f : R→ C
belongs to L1(R). Introduce h(x) = F−1(f)(x) and prove that µ(dx) = h(x)dx is a positive
finite measure on R from (2.1.1). After that, we shall relax the condition f ∈ L1(R) and prove
(2.1.1) for any positive semi-definite continuous f by using a smoothing argument.
If f ∈ L1(R), then f ∈ L2(R), since f is a covariance function of some centered complex-
valued stationary random process X : Ω × R → C, i.e. f(t) = CX(t) = E

[
X(0)X(t)

]
,

and then |f(t)| ≤ f(0), t ∈ R, which follows from |CX(t)| ≤ CX(0) = varX(0). Hence,∫
R |f(x)|2dx ≤ f(0) ·

∫
R |f(x)|dx <∞ for f ∈ L1(R).

Take h = F−1(f) and prove that
a). h(x) ≥ 0, x ∈ R
b). Formula (2.1.3), which reads here f(x) = F (h)(x) =

∫
R e

itxh(t)dt holds for all x ∈ R, and
not for almost all x ∈ R.

Proof of a). Since f is a covariance function of the above random process X, it is easy to
see that e−itxf(t) is a covariance function of e−itxX(t), which is again centered and stationary:

cov
(
e−itxX(t), e−isxX(s)

)
= E

[
e−itxX(t)e−isxX(s)

]
= e−i(t−s)xf(t− s), s, t ∈ R.

Hence, it suffice to show that for any continuous covariance function C : R → C (which is
positive semi-definite), C ∈ L1(R), it holds that

∫
RC(x)dx ≥ 0, x ∈ R. If this holds true, then

h(x) = 1
2π

∫
R
e−itxf(x)dx ≥ 0, x ∈ R

for C(x) = e−itxf(x), x ∈ R. Since C is continuous and positive semi-definite, it holds∫ N

−N

∫ N

−N
C(t− s)dtds = lim

n→∞

n−1∑
k=−n

n−1∑
l=−n

C(tk(n)− tl(n))
(
N

n

)2
≥ 0, N ∈ N (2.1.5)
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as a limit of integral sums on [−N ;N ]2, where N
n is the side length of the squares

[kNn ; (k+1)Nn ]×[lNn ; (l+1)Nn ] building the decomposition of [−N ;N ]2 and tj(n) ∈ [jNn ; (j+1)Nn ]
are arbitrary fixed points.

Transforming the integral on the left-hand side of (2.1.5), we get by substitution

0 ≤ 1
2N

∫ N

−N

∫ N

−N
C(t− s)dtds = 1

4N

(∫ 2N

0
C(u)

∫ 2N−u

−2N+u
dvdu+

∫ 0

−2N
C(u)

∫ u+2N

−u−2N
dvdu

)

=
∫ 2N

−2N

(
1− |u|2N

)
C(u)du =

∫
R

(
1− |u|2N

)
1{u ∈ [−2N ; 2N ]}C(u)du

−−−−→
N→∞

∫
R
C(u)du

by Lebesgue’s Theorem on dominated convergence, since(
1− |u|2N

)
1{u ∈ [−2N ; 2N ]} −−−−→

N→∞
1,

∣∣∣∣(1− |u|2N

)
1{u ∈ [−2N ; 2N ]}C(u)

∣∣∣∣ ≤ |C(u)| ∈ L1(R) for all N ∈ N

and the Jacobian ∂(t,s)
d(u,v) = 1/2.

Proof of b). Show that
f(x) =

∫
R
eitxh(t)dt (2.1.6)

holds for all h ∈ L1(R), x ∈ R. It is known that ϕY (s) = e−ε
2s2/2 for a random variable

Y ∼ N (0, ε2), ε > 0. Since ϕY (s) = F (fY )(s) for the density fY (x) = 1
ε
√

2πe
−x2/2ε2 , x ∈ R, use

Parseval’s identity (2.1.4) for f and fY :

f(0)←−−−
ε→0

∫
R

1√
2πε

e−x
2/2ε2f(x)dx = 〈fY , f〉L2(R) = 2π

〈
F−1(fY ), F−1(f)

〉
L2(R)

=
∫
R
e−(εx)2/2h(x)dx −−−→

ε→0

∫
R
h(x)dx,

with h = F−1(f), since f is continuous. By the dominated convergence theorem we get∫
R h(x)dx = f(0), i.e. h ∈ L1(R) and formula (2.1.6) holds for x = 0. Then F (h) ∈ C(R).
Since both left- and right-hand sides of (2.1.6) are continuous functions of x on R, formula
(2.1.6) holds for any x ∈ R.

Now suppose that f /∈ L1(R). Take fε(t) = f(t)e−(εt)2/2, ε > 0. Then, fε is continuous
positive semi-definite, since e−(εs)2/2 = F (fY ) for Y ∼ N (0, ε2), and then the product of f and
F (fY ) should inherit the same properties (see Theorem 2.1.5). Moreover, fε ∈ L1(R). Then,
fε(t)/fε(0) = fε(t)/f(0) = ϕZ(t) = F (hε) is a characteristic function of some random vector
Z with density hε ≥ 0, i.e. fε(t)/f(0) =

∫
R e

itxhε(x)dx, by the first part of our proof. It holds
fε(t)/f(0)→ f(t)/f(0), t ∈ R, as ε→ 0, where {fε(t)/f(0)}ε>0 is a sequence of characteristic
functions and f(t)/f(0) is continuous at zero. Then, by a very well known fact f(t)/f(0) is a
characteristic function of some probability distribution Ψ:

f(t)/f(0) =
∫
R
eitxΨ(dx),
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hence, µf (dx) = f(0) ·Ψ(dx) is the needed finite measure in (2.1.1).

Definition 2.1.2
The measure µf from representation (2.1.1) is called a spectral measure of f . If µf has a density
h with respect to the Lebesgue measure on Rd, i.e. µf (dx) = h(x)dx, then h is called spectral
density of f .
Remark 2.1.1
If µf is a symmetric measure, i.e. µ(A) = µ(−A), A ∈ B(Rd), where −A = {−x : x ∈ A}, then
f(x) is real, since

f(x) =
∫
Rd
ei〈t,x〉µf (dx) =

∫
Rd−1×R+

ei〈t,x〉µf (dx) +
∫
Rd−1×R−

ei〈t,x〉µf (dx)

=
∫
Rd−1×R+

cos (〈t, x〉)µf (dx) + i

∫
Rd−1×R+

sin (〈t, x〉)µf (dx)

+
∫
Rd−1×R+

cos (〈t, x〉)µf (dx)− i
∫
Rd−1×R+

sin (〈t, x〉)µf (dx)

= 2
∫
Rd−1×R+

cos (〈t, x〉)µf (dx)

by substitution x 7→ −x in the integral
∫
Rd−1×R−

The next theorem due to Riesz (1932-1934) will characterize all measurable positive semi-
definite functions.
Theorem 2.1.2 (Sasvári (1994)):
If f is positive semi-definite and measurable, then f = fc+f0, where fc is positive semi-definite
and continuous (and hence Bochner’s theorem can be applied) and f0 is positive semi-definite
and equals zero almost everywhere on Rd with respect to the Lebesgue measure.

Proof See [47].

It follows from Theorem 2.1.4 that any function which cannot be turned into a continuous
one by changing it in a set of points of Lebesgue measure zero cannot be positive semi-definite.
The most popular function f0 in applications is the so-called nugget effect:

f0(s) =
{
a s = 0,
0 s 6= 0

for a > 0.
Exercise 2.1.1
Show that the function f0(x) = a1Zd(x) is positive semi-definite. Construct the corresponding
stationary random field.

2.1.1 Isotropic case

In the course of the next sections, we follow [49] and [48]. Consider covariance functions of
stationary isotropic random fields in Rd: they have the form C(x, y) = C0(|x − y|), where | · |
is the Euclidean norm in Rd.
It is worth noting that the function C0 : R+ → R has the following property:
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|C0(h)| ≤ C0(0) > 0, h ∈ R+, which follows directly from the definition of the positive semi-
definiteness of C0.
Let

Jν(r) =
∞∑
j=0

(−1)j

j!Γ(ν + j + 1)

(
r

2

)ν+2j
, r ∈ R

be the Bessel function of the first kind of order ν ≥ −1/2.
The following characterization result can be obtained by passing to polar coordinates in Bochner’s
theorem:
Theorem 2.1.3 (Schoenberg, 1938):
A continuous rotation-invariant function f : Rd → R is positive semi-definite iff f(x) = f0(|x|),
x ∈ Rd with f0 : R+ → R given by:

f0(s) =
∫ ∞

0

( 1
rs

)ν
Jν(rs)µ(dr), (2.1.7)

where µ is a finite measure and ν = (d−2)
2 .

Proof See [50] or [1], p. 116-117.

It follows from Theorem 2.1.2 that measurable isotropic covariance functions are discontin-
uous at most in zero.
Example 2.1.1
Since J−1/2(r) =

√
2
πr cos(r), J0(r) = 2

π

∫∞
0 sin(r cosh(t)) dt, J1/2(r) =

√
2
πr sin(r), r ∈ R, we

get e.g. in three dimensions (d = 3):

C(x, y) = C0(|x− y|) =
∫ ∞

0

sin(sr)
sr

µ(dr)
∣∣∣
s=|x−y|

from (2.1.7), because

C0(s) =
∫ ∞

0

√
1
sr

√
2
πsr

sin(sr)µ(dr)

=
√

2√
π

∫ ∞
0

sin(sr)
sr

µ(dr),

where the constant factor
√

2√
π
can be included into the measure µ.

For isotropic measurable positive semi-definite functions, a stronger version of Riesz theorem
is available:
Theorem 2.1.4
If f is a rotation-invariant, measurable positive semi-definite function f : Rd → C, d ≥ 2, then

f(x) = fc(x) + a · 1{x = 0},

where a ≥ 0 and fc is positive semi-definite and continuous.

Proof See [21].
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2.1.2 Construction principles of positive semi-definite functions
Theorem 2.1.5
Let Ci : Rd × Rd → C, i = 0, 1, 2, . . . , Cν : Rd × Rd → C, ν ∈ E be positive semi-definite
functions. A function C : Rd × Rd → C is positive semi-definite iff

1. Scaling: C(x, y) = C0(ax, ay), x, y ∈ Rd, a ∈ R

2. Linear combination: C(x, y) =
∑n
i=1 aiCi(x, y), x, y ∈ Rd

3. Multiplication: C(x, y) = C1(x, y) · C2(x, y), x, y ∈ Rd

4. Substitution: C(x, y) = C0(g(x), g(y)), where C0 : Rd × Rd → C is positive semi-definite
and g : Rd → Rd is an arbitrary mapping.

5. Kernel approach: C(x, y) = 〈g(x), g(y)〉L, where L is a Hilbert space over C with scalar
product 〈·, ·〉L and g : Rd → L is an arbitrary mapping

6. Pointwise limit: C(x, y) = limn→∞Cn(x, y), x, y ∈ Rd

7. Integration: C(x, y) =
∫
E Cν(x, y)µ(dν), where µ is a finite measure over some space E

and Cν(x, y) are positive semi-definite functions. In particular,
Series expansions: C(x, y) =

∑∞
i=0 aiCi(x, y) for a counting measure µ

8. Scale mixture: C(x, y) =
∫∞
0 C0(sx, sy)µ(ds) for some finite measure µ on [0;∞) and a

positive semi-definite function C0

9. Convolution: C(x, y) = f(x − y), x, y ∈ Rd, where f(h) =
∫
Rd f1(h − s)f2(s)ds, h ∈ Rd

and f1, f2 : Rd → C are positive semi-definite and continuous.

Proof 1. This follows directly from Definition 2.1.1. See also Exercise 2.6.
2., 3. To see this, stationary random fields have to be constructed with covariances

∑n
i=1 aiCi(x, y),

C1(x, y) · C2(x, y).
4. Use Definition 2.1.1 directly: for any n ∈ N, zi ∈ C, i = 1, . . . , n and xi ∈ Rd, i = 1, . . . , n
one has

n∑
i,j=1

C(xi, xj)zizj =
n∑

i,j=1
C0(g(xi), g(xj))zizj ≥ 0,

since C0 is positive definite.
5. Use Definition 2.1.1: for any n ∈ N, zi ∈ C, xi ∈ Rd, i = 1, . . . , n one has

n∑
i,j=1

C(xi, xj)zizj =
n∑

i,j=1
〈g(xi), g(xj)〉L

=
〈

n∑
i=1

g(xi),
n∑
j=1

g(xj)
〉

L

=
∥∥∥∥∥
n∑
i=1

g(xi)
∥∥∥∥∥

2

L

≥ 0.

6. This follows directly from Definition 2.1.1.
7. This follows from 6), since

∫
E Cν(x, y)µ(dν) is a limit of its integral sums, each of which is a

linear combination of positive semi-definite functions Cνi(x, y), i = 1, . . . , n, which is positive
semi-definite by 2). The same reasoning works for series expansions.
8. For any s ∈ [0;∞), C0(sx, sy) is positive semi-definite by 1). Then use 7).
9. See [47].
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Examples and Remarks

1. In Theorem 2.1.5, 5) take L = L2
µ

(
Rd
)
, g : x ∈ Rd 7−→ g(x) = ei〈t,x〉, t ∈ Rd, where µ is

a finite measure on Rd. Then

C(x, y) =
〈
ei〈t,x〉, ei〈t,y〉

〉
L

=
∫
Rd
ei〈t,x〉e−i〈t,y〉µ(dt)

=
∫
Rd
ei〈t,x−y〉µ(dt) = ϕµ(x− y),

which is positive semi-definite by Bochner’s theorem.

2. By means of property 2) and 3), covariance functions for space-time random fields X =
{X(x, t), x ∈ Rd, t ∈ R} can be constructed by C ((x, s), (y, t)) = Cx(x, y) + Ct(s, t),
x, y ∈ Rd, s, t ∈ R, where Cx is a space covariance and Ct is a time covariance component.
The same holds for C ((x, s), (y, t)) = Cx(x, y) · Ct(s, t), x, y ∈ Rd, s, t ∈ R (the so-called
separable space-time models).

3. By means of property 7) functions like eC(x,y), coshC(x, y) etc. of a positive semi-definite
function C are also positive semi-definite as they can be represented as Taylor series with
positive coefficients, e.g. eC(x,y) =

∑∞
n=0

(C(x,y))n
n! , x, y ∈ Rd.

2.1.3 Sufficient conditions for positive semi-definiteness

In Bochner’s theorem, necessary and sufficient conditions are not so easy to verify. Here we
give a series of sufficient conditions for positive semi-definiteness that are relatively easy to
check in many concrete cases.
Theorem 2.1.6 (Pólya-Askey):
If a function f : R+ → R is continuous with limt→∞ f(t) = 0, f(0) = 1, (−1)kf (k)(t) convex
for k = [d/2] ([a] is the integral part of a), then f (‖x‖) is positive semi-definite in Rd.

Proof See [2].

A sharper criterion gives the following result:
Theorem 2.1.7 (Gneiting, 1999):
Let f : R+ → R be continuous with f(0) = 1, limt→∞ f(t) = 0, (−1)k dk

dtk

(
−f ′

(√
(t)
))

convex

for k =
[
d−2

2

]
, then f (‖x‖) is positive semi-definite in Rd, d ≥ 2.

Proof See [20].

2.1.4 Examples

In this section some important classes of positive semi-definite functions are introduced. They
are all rotation invariant and hence can serve as covariance functions of stationary and isotropic
random fields in Rd, where d is indicated in the examples. As the lemma below shows, these
models are valid for dimensions ≤ d, but the converse statement is not always true(see example
1.5).
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Lemma 2.1.1
If ϕ : R+ → R is such that gd(t) = ϕ(|t|d), t ∈ Rd, d ≥ 2 is positive semi-definite, then
gd−1(t) = ϕ(|t|d−1), t ∈ Rd−1 is positive semi-definite as well; here |.|d is the Euclidean norm
in Rd.

Proof Let X = {X(t) : t ∈ Rd} be a random field with covariance function gd. Then for any
hyperplane ξ ⊂ Rd the random field X = {X(t) : t ∈ ξ} is a random field over ξ with the same
covariance function gd restricted on ξ. Taking ξ = {(x1, . . . , xd−1, 0) : xi ∈ R, i = 1, . . . , d− 1)}
finishes the proof.

The next result of Schoenberg shows when the converse statement holds:

Theorem 2.1.8 (Schoenberg):
Let ϕ : R+ → R be a continuous function. Then ϕ(|.|d) is positive semi-definite for all d iff
ϕ(h) =

∫∞
0 e−rh

2
µ(dr) for some finite measure µ on [0,∞), i.e., ϕ is scale mixture of the normal

density.

Proof See [50]

Remark 2.1.2
It is known that Laplace-Stieltjes transforms of finite measures ϕ(h) =

∫∞
0 e−hrµ(dr), h ∈ R+

are completely monotone, i.e., (−1)nϕ(n)(h) ≥ 0 for all h > 0 and n ∈ N0 = {0, 1, 2, 3 . . . } (see
e.g. [56]). Hence, under assumptions of Theorem 2.1.8, ϕ(h) is a Laplace-Stieltjes transform of
a measure µ evaluated at h2, which means that ϕ(

√
h) should be completely monotone.

This implies, in particular, that ϕ(h) ≥ 0, h ∈ R+. It follows from this property that for any
function ϕ which is not non-negative ϕ(||x||) can not be positive semi-definite for all dimensions
d ∈ N.

In the following examples only the function ϕ : R+ → R of ϕ(|.|d) is given.

1. Bessel family:

ϕ(h) = b(ah)−νJν(ah), ν ≥ d−2
2 , a, b > 0

here Jν is the Bessel function of the 1st kind of order ν. For ν = d−2
2 , this function (up

to scaling factors, cf. Theorem 2.1.4, 1), 2)) is clearly positive semi-definite as ϕ(h) =
2νΓ(ν + 1)h−νJν(h) is a special case of Theorem 2.1.3, where µ(.) = δ{1}(.). For ν > d−2

2
this statement is less trivial (cf. [58], p. 367). The spectral density of ϕ(h) is given by

f(h) = b(a2 − h2)ν−
d
2

2νπ
d
2 a2νΓ(ν + 1− d

2)
I(h ∈ [0, a])

A special case (for ν = 1
2 , i.e. d = 3) yields the so-called hole effect model ϕ(h) = b sin(ah)

ah .
This model is valid only in Rd, d ≤ 3; whereas models of Bessel family are valid in Rd (iff
ν = d−2

2 ).
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2. Cauchy family:

ϕ(h) = b

(1 + (ah)2)ν , a, b, ν > 0.

Up to scaling, this function is positive semi-definite by Theorem 2.1.8 with µ(dr) =
crν−1e−rdr for some constant c.

3. Stable family:

ϕ(h) = be−(ah)ν , ν ∈ (0, 2]

This function is positive semi-definite since it is equal to the characteristic function of a
symmetric ν-stable random variable cf. e. g. [46], p. 20. It is valid in Rd for all d ≥ 1.
Moreover it can be shown that for ν > 2 ϕ is not positive semi-definite in any dimension
d (cf. [49], p.19).
A special case (ν = 2) of the stable family is a Gaussian model: ϕ(h) = be−ah

2 . Its
spectral density is equal to f(h) = b

√
a

2 he−
ah2

4 .

4. Whittle-Matérn family:

ϕ(h) = b(ah)νKν(h), ν, a, b > 0

It is valid in any dimension d. Here Kν is a modified Bessel function of third kind:

Kν(z) = π
2 sin(πν)(ei

π
2 νJ−ν(zei

π
2 )− e−i

π
2 νJν(ze−i

π
2 )), z ∈ R, ν 6∈ N.

For ν = n ∈ N it should be understood in the sense of a limit as ν → n (see [38], p. 69).

The spectral density of ϕ is given by

f(h) = b
2Γ(ν + d

2)
Γ(d2)Γ(ν)

(ah)d−1

(1 + (ah)2)ν+ d
2
I(h > 0).

If ν = 2d+1
2 then ϕ ∈ C2d(R+) and hence a random field with covariance function ϕ is d

times differentiable in mean-square sense.
If ν = 1

2 then the exponential model ϕ(h) = be−ah is an important special case. The same
exponential covariance belongs to the stable family for ν = 1.

5. Spherical model is valid in Rd, d ≤ 3.
It is given by ϕ(h) = b(1 − 3

2
h
a + 1

2
h3

a3 ) I(h ∈ [0, a]), a, b > 0, which is (for d = 3)
proportional to the volume of Ba

2
(0) ∩ B a

2 (x0), where xo ∈ R3, |x0| = h. This is exactly
the way how it can be generalized to higher dimensions:

ϕ(x) = Vd(Ba
2
(0) ∩Ba

2
(x)), x ∈ Rd.

The advantage of spherical models is that they have a compact support.
Some more covariance models are given in exercises: see Section 2.3.
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2.2 Variograms

In this section we consider variograms of (intrinsically) stationary real-valued random fields of
order two: they can be written as γ(h) = 1

2E(X(t)−X(t+ h))2 for any t ∈ Rd.

Definition 2.2.1
A function f : Rd → R is conditionally negative definite, if it holds

∑n
i,j=1 zizjf(xi − xj) ≤ 0

for any n ∈ N, points {xi}ni=1 ⊂ Rd and weights {zi}ni=1 ⊂ C such that
∑n
i=1 zi = 0.

Proposition 2.2.1 (Properties of variograms):
Let γ be a variogram an (intrinsically) stationary random field X. Then

1. γ(0) = 0, γ(h) ≥ 0, h ∈ Rd

2. γ(h) = γ(−h), h ∈ Rd (γ is an even function)

3. If X is wide sense stationary then

γ(h) = C(0)− C(h), h ∈ Rd (2.2.1)

where C(.) is the covariance function of X and thus γ(h) is bounded: |γ(h)| < 2C(0),
h ∈ Rd.

4. γ is conditionally negative definite.

5. If X is wide sense stationary and C(∞) := lim|h|→∞C(h) = 0, then there exists γ(∞) =
lim|h|→∞ γ(h) = C(0) and C(h) = γ(∞)− γ(h), h ∈ Rd.

6. A continuous function γ : Rd → R with γ(0) = 0 is a variogram if e−λγ(.) is a positive
semi-definite function for all λ > 0.

7. γ(h) ≤ c|h|2, if X is mean square continuous, lim|h|→∞
γ(h)
|h|2 = 0, if X is mean square

differentiable.

Proof Apart from obvious properties 1), 2), 3) (3) follows from 1.3.3 on page 16), let us show:
4) Take any n ∈ N, {ti}ni=1 ∈ Rd, {zi}ni=1 ⊂ C :

∑n
i=1 zi = 0. Let us show that

0 ≤ V ar
(

n∑
i=1

ziX(ti)
)

= −
n∑

i,j=1
zizjγ(ti − tj)

Then γ will be conditionally negative definite. First V ar (
∑n
i=1 ziX(ti)) exists since

n∑
i=1

ziX(ti) =
n∑
i=1

zi(X(ti)−X(t0))

as
∑n
i=1 zi = 0 for any t0 ∈ Rd and the variance of increments exists. Then
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V ar

(
n∑
i=1

ziX(ti)
)

= V ar

(
n∑
i=1

(X(ti)−X(t0))
)

1)= E
∣∣∣∣∣
n∑
i=1

zi(X(ti)−X(t0))
∣∣∣∣∣
2

2)=
n∑

i,j=1
zizj(γ(ti − t0) + γ(tj − t0)− γ(ti − tj)) =

n∑
i=1

ziγ(ti − t0)

 n∑
j=1

zj


︸ ︷︷ ︸

0

+
n∑
i=1

zi︸ ︷︷ ︸
0

n∑
j=1

zjγ(tj − t0)−
n∑

i,j=1
zizjγ(ti − tj) = −

n∑
i,j=1

zizjγ(ti − tj).

1) since E [X(ti)−X(t0)] = 0, ∀i
2)since γ(ti − tj) = 1

2E (X(ti)−X(t0)−X(tj) +X(t0))2 = 1
2(2γ(ti − t0) + 2γ(tj − t0) −

2Cov(X(ti)−X(t0), X(tj)−X(t0))) = γ(ti−t0)+γ(tj−t0)−Cov(X(ti)−X(t0), X(tj)−X(t0))
and hence Cov(X(ti)−X(t0), X(tj)−X(t0)) = γ(ti − t0) + γ(tj − t0)− γ(ti − tj).

5) Follows easily from 3). Exercise!
6) This characterization result is due to Schoenberg (1938): See the proof there [50].
7) See the proof in [58], p. 397-400.
Let us show here only the relation γ(h) ≤ C · |h|2.
If X is mean square continuous, then γ(h) is a continuous function on Rd. By Minkowski
inequality, it holds √

γ(h1 + h2) ≤
√
γ(h1) +

√
γ(h2), h1, h2 ∈ Rd,

since √
2γ(h1 + h2)

=
√

E [X(t+ h1 + h2)−X(t+ h1) +X(t+ h1)−X(t)]2

≤
√

E [X(t+ h1 + h2)−X(t+ h1)]2

+
√

E [X(t+ h1)−X(t)]2 =
√

2γ(h1) +
√

2γ(h2).

Then we can easily show by induction that γ(nh) ≤ n2γ(h) for any n ∈ N and h ∈ Rd, or, in
other words,

γ(h)
|h|2

≤
γ(hn)
|hn |2

(2.2.2)

(replacing h by h
n).

Fix any 0 6= h0 ∈ Rd. Let c = maxh:|h0|≤|h|≤2|h0|
(
γ(h)
|h|2

)
, which is finite, since γ(h)

|h2| is con-
tinuous. For any h ∈ Rd : |h| > |h0| there exists such n ∈ N : n|h0| ≤ |h| ≤ 2n|h0|, or
|h0| ≤

∣∣∣hn ∣∣∣ ≤ 2|h0|. Hence, γ(h)
|h|2 ≤ c. From 2.2.2, i.e., γ(h) ≤ c|h|2 for h : |h| > |h0|.
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Remark 2.2.1 1. It follows from Proposition 2.2.1, 3), 5) that if the variogram γ of an
intrinsically stationary random field X is unbounded, γ(h)→∞ as |h| → ∞, then X can
not be wide sense stationary.
See the corresponding examples which follow.

2. Since X is real-valued, Bochner’s theorem together with formula (2.2.1) yields

γ(h) = C(0)− C(h) =
∫
Rd

(1− ei〈h,x〉)µ(dx) = Re

(∫
Rd

(1− ei〈h,x〉)µ(dx)
)

=
∫
Rd

(1− cos〈h, x〉)µ(dx), h ∈ Rd.

Example 2.2.1 1. Consider the case d ≡ 1, X(t) = X0 + tX1, where t ∈ R, X0 and X1
are random variables, EX1 = 0, EX2

1 = σ2
1 ∈ (0,∞). The process X = {X(t), t ∈ R}

is intrinsic stationary of order two since X(t) − X(s) = (t − s)X1, s, t ∈ R and hence
E(X(t)−X(s)) = 0, E(X(t)−X(s))2 = (t− s)2σ2

1, t, s ∈ R.
Then γ(h) = 1

2E(X(t+h)−X(t))2 = σ2

2 h
2 →∞, as h→∞. X is obviously not wide sense

stationary, since X0 may not be integrable. But even for X0 such that EX0 = 0, EX2
0 =

σ2
0 ∈ (0,∞) and X0, X1 are independent, it holds Cov(X(s), X(t)) = E[X(s)X(t)] =

E[(X0 +sX1)(X0 +tX1)] = EX2
0 +(s+t)E[X0X1]+stEX2

1 = σ2
0 +stσ2

1, which contradicts
the stationarity in wide sense.

2. Let X = {X(t), t ∈ Rd} with X(t) = 〈ϕ, t〉, t ∈ Rd, where ϕ ∼ N(0, Id) is a multivariate
standard distributed random vector. Then X is intrinsic stationary of order two, but not
wide sense stationary, since X(t) ∼ N(0, |t|2), X(t) − X(s) = X(t − s), t, s ∈ Rd and
hence

C(s, t) = Cov(X(s), X(t)) = E

 d∑
i,j=1

ϕiϕjsitj

 =
d∑

i,j=1
E[ϕiϕj ]sitj

=
d∑
i=1

siti = 〈s, t〉, s, t ∈ Rd

with ϕi-iid∼ N(0, 1); γ(h) = 1
2E[X(t+ h)−X(t)]2 = 1

2E[X(h)]2 = |h|2
2 , h ∈ Rd.

Here we have γ(h)→∞ as |h| → ∞ as well.

This example can be extended to the case of a field X = {X(t), t ∈ E} over a Hilbert
space E with a scalar product 〈., .〉 and orthonormal basis {ei}∞i=1 :

X(t) = 〈
∞∑
i=1

Niei, t〉 =
∞∑
i=1

Niti,

t ∈ E where {Ni}∞i=1 is an iid sequence of N(0, 1)-random variables, and∑∞
i=1Niti converges in the mean square sense E|

∑m
i=nNiti|2 =

∑m
i=n t

2
i → 0 as n,m→∞,

since
∑∞
i=1 t

2
i <∞ as t ∈ E.

3. Fractional Brownian field
Let X = {X(t), t ∈ Rd} be a centered Gaussian Random field with covariance function



44 2 Correlation theory of stationary random fields

C(s, t) = 1
2(|s|2H + |t|2H − |s− t|2H), s, t ∈ Rd, H ∈ (0, 1].

It is called a fractional Brownian field with Hurst index H. For H = 1
2 , we get the usual

Brownian field. It is easy to see that X is intrinsic stationary of order two, since in this
case γ(h) = 1

2 |h|
2H , h ∈ Rd. Hurst index H is also a parameter related to the smoothness

of the paths of X: the smaller H, the more rough are its realisations. In particular, for
d = 1 and H = 1 X is a random line:

X(t) = X1t, X1 ∼ N(0, 1),

cf. Examples 1), 2).

Exercise 1 Show that the increments of the fractional Brownian field X

a) are stationary

b) dependent (except for the case d = 1, H = 1
2 of the Wiener process.): for 1 > H > 1

2
they are positively correlated, for O < H < 1

2 they are negatively correlated.

Exercise 2 Show that X is H-selfsimilar, i.e., X (λt) d= |λ|HX(t) for all λ ∈ R and t ∈ R,
hence, X(s) = 0 a.s.

Exercise 3 Show that X is long-range dependent for 1
2 < H < 1 :

∞∑
n=1

E (X(1)[X(n+ 1) − X(n)])︸ ︷︷ ︸
the covariance on increments at point n:

= +∞

Cov((X(1)−X(0), X(n+ 1)−X(n)), since they are stationary.

Exercise 4 Show that there exists a version of X with a.s. Hölder-Continuous paths of any
order γ < H, H ∈ (0, 1).

Exercise 5 Show that paths of X are nowhere differentiable for 0 < H < 1.

Let us prove 5): by stationarity and self-similarity,

X(t) − X(s)
t− s

d= X(t− s)
t− s

d= |t− s|H X(1)
t− s

d=t>s (t− s)H−1 X(1) a.s.−−→
t↓s
∞

since H ∈ (0, 1).

2.3 Stochastic integration
In this section we introduce stochastic integrals of non-random functions with respect to an
independently scattered random measure on an abstract space E. We shall need these inte-
grals to prove spectral representations of (wide sense) stationary random fields in section 2.4
(Theorems of Karhunen and Cramér).
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2.3.1 Independently scattered random measures

Let us introduce the notion of a random measure on a semiring K(E) of subsets of a space E.

Definition 2.3.1
A family K(E) of subsets of a space E is called a semiring if for all A,B ∈ K(E)

a) ∅ ∈ K(E)

b) A ∩B ∈ K(E)

c) If additionally A ⊂ B then B \ A = ∪ni=1Bi, where n ∈ N and Bj ∈ K(E), j = 1, . . . , n
are pairwise disjoint.

Let (Ω,F ,P) be a probability space.

Definition 2.3.2 1. Let ν be a σ-finite measure on K(E). W = {W (A) : A ∈ K(E)} is
called an (independently scattered signed) random measure if

a) W (A), A ∈ K(E) is a (complex-valued) random variable on (Ω,F ,P), which is
square integrable: E|W (A)|2 <∞. Later on we write W (A) ∈ L2(Ω,F ,P).

b) E
[
W (A)W (B)

]
= ν(A ∩B), A,B ∈ K(E).

2. ν is called the structure measure (deriving, control measure) of W . It is given by ν(A) =
E|W (A)|2, A ∈ K(E).

3. If EW (A) = 0, A ∈ K(E), then W is called centered.

Later on we consider only centered random measures (for simplicity).

Proposition 2.3.1 (Properties of random measures):
A family of complex-valued random variables W = {W (A), A ∈ K(E)} is a random measure
iff

a) W (A) ∈ L2(Ω,F ,P), A ∈ K(E)

b) E(W (A)W (B)) = 0, A,B ∈ K(E), A ∩B = ∅
orthogonality (uncorrelatedness) of increments, independent scattering property).

c) W (A) a.s=
∑∞
i=1W (Ai), for A, {Ai} ⊂ K(E), A = ∪∞i=1Ai, Ai

⋂
Aj = ∅, i 6= j. The

series
∑∞
i=1W (Ai) converges in L2(Ω,F ,P) -sense (mean square convergence, property

of σ-additivity).

Proof: Necessity: Property b) of Proposition 2.3.1 is a special case of property b), Definition
2.3.2 for disjoint sets A,B. Let us show that c) holds. First let us show finite additivity of
W : W (A ∪ B) a.s= W (A) + W (B), A,B ∈ K(E), A ∩ B = ∅. For this, it suffices to prove
E|W (A ∪B)−W (A)−W (B)|2 = 0.
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We have E|W (A ∪B)−W (A)−W (B)|2

= E
[
(W (A ∪B)−W (A)−W (B))(W (A ∪B)−W (A)−W (B))

]
= E|W (A ∪B)|2︸ ︷︷ ︸

ν(A∪B)

+ E|W (A)|2︸ ︷︷ ︸
ν(A)

+ E|W (B)|2︸ ︷︷ ︸
ν(B)

−E
[
W (A ∪B)W (A)

]
︸ ︷︷ ︸

ν(A)

−E
[
W (A ∪B)W (B)

]
︸ ︷︷ ︸

ν(B)

−E(W (A)W (A ∪B))︸ ︷︷ ︸
ν(A)

−E(W (A)W (B))︸ ︷︷ ︸
ν(∅)=0

−E(W (B)W (A ∪B))︸ ︷︷ ︸
ν(B)

−E(W (B)W (A))︸ ︷︷ ︸
ν(∅)=0

= ν(A ∪B)− ν(A)− ν(B) = 0

⇒W (A ∪B) a.s= W (A) +W (B).

By induction we can show the finite additivity:

E|W (A)−
n∑
i=1

W (Ai)|2 = ν(A)−
n∑
i=1

ν(Ai) (2.3.1)

for A1, . . . , An ∈ K(E), Ai ∩ Aj = ∅, i 6= j. Hence for A =
⋃n
i=1Ai, it holds W (A) a.s.=∑n

i=1W (Ai). Now if

A =
∞⋃
i=1

Ai, Ai ∩Aj = ∅, i 6= j,

then the convergence of
∞∑
i=1

W (Ai) = W (A)

in the L2(Ω,F ,P)-sense follows from (2.3.1) because of

ν(A) =
∞∑
i=1

ν(Ai).

Sufficiency: Take any A,B ∈ K(E) and prove b) of Definition 2.3.2. First we notice that
A = (A \B)︸ ︷︷ ︸

C1

∪ (A ∩B)︸ ︷︷ ︸
C2

, B = (B \A)︸ ︷︷ ︸
C3

∪(A ∩B), where

C2 ∈ K(E), C1 = ∪mi=1C1i, C3 = ∪nj=1C3j , C1i, C3j ∈ K(E),

and are disjoint. Then

E(W (A)W (B)) = E(W (C1 ∪ C2)W (C3 ∪ C2)) = E

(W (C2) +
m∑
i=1

W (C1i))(W (C2) +
n∑
j=1

W (C3j))


c)ofProp.2.3.1= E|W (C2)|2 Def.2.3.2,2)= ν(C2) = ν(A ∩B),

since all C1i, C3j are disjoint.

Let us give an example of random measures.
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Example 2.3.1
(Gaussian random measure)
Here we set W (A) ∼ N(0, ν(A)), A ∈ K(E)(cf. Example 1.2.1,2 for a special case).
In Definition 2.3.2, we postulated the existence of W with stated properties. Now we have
to prove its existence by giving an explicit construction of a random measure W on some
probability space (Ω,F ,P) with properties a), b) of Definition 2.3.2.
Theorem 2.3.1
Let ν be a σ-finite measure on K(E). Then there exists a probability space (Ω,F ,P) and
a centered (independently scattered) random measure {W = W (A), A ∈ K(E)} defined on
(Ω,F ,P) and {A ∈ σ(K(E)) : ν(A) <∞} such that ν is the control measure of W .

Proof Let A = σ(K(E)). By Carathéodory’s theorem, we can extend the measure ν to a
σ-finite measure on A. Let us construct the required probability space (Ω,F ,P) by setting
Ω = E, F = A. For the construction of P , we have to distinguish two non-trivial cases:

1. ν(E) ∈ (0,∞): set P (B) = ν(B)
ν(E) , B ∈ F . And let

W (A,ω) =
√
ν(E)IA(ω), ω ∈ Ω, A ∈ A.

We have
W (A, .) ∈ L2(Ω,F ,P),

E(W (A)W (B)) = (
√
ν(E))2

∫
Ω
IA(ω)IB(ω)P (dω) = ν(E)P (A∩B) = ν(A∩B), A,B ∈ A.

Hence W is a (non-centered) independently scattered random measure.

2. ν(E) =∞ (the case ν(E) = 0 is trivial). Since ν is σ-finite, there exists a tiling

E =
∞⋃
i=1

Ei, Ei ∩Ej = ∅, i 6= j,

with ν(Ej) <∞. Let

P (A) =
∞∑
n=1

ν(A ∩En)
ν(En)2n , A ∈ F .

It is clear that P (.) is a probability measure on F , since

P (E) =
∞∑
n=1

1
2n = 1.

For any B ∈ A : ν(B) <∞ define

W (B,ω) =
∞∑
n=1

√
2nν(En)IBn(ω),
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where Bn = B∩En, n ∈ N . This series converges in L2(Ω,F ,P): since {Bn} are disjoint,
it holds

E|
∞∑
n=m

√
2nν(En)IBn(ω)|2 =

∞∑
n=m

2nν(En) EIBn2(ω)

=
∞∑
n=m

2nν(En)P (Bn) =
∞∑
n=m

2nν(En) ν(Bn)
ν(En)2n =

∞∑
n=m

ν(Bn)−−−→
m→0

0,

because ν(B) =
∑∞
n=1 ν(Bn) <∞. Since the scalar product < ., . >L2(Ω,F ,P) is continuous

in its arguments, it holds

< W (A),W (B) >L2(Ω,F ,P)= E
[
W (A) ·W (B)

]
=
∞∑
n=1

2nν(En)E(IAnIBn) =
∞∑
n=1

2nν(En)P (An ∩Bn)

=
∞∑
n=1

ν(An ∩Bn) = ν(A ∩B),

where An = A ∩ En, Bn = B ∩ En, n ∈ N. Hence W is a non-centered independently
scattered random measure.
In order to get a centered random measure W , it does not suffice to subtract EW (A)
from W (A), since this will destroy the property b) of Definition 2.3.2. The right way is
to enlarge the probability space (Ω,F ,P) as follows:
Let Z be a random variable on a new probability space (Ω′,F ′,P ′) such that EP ′Z = 0,
varP ′Z = 1, where EP ′ and varP ′ are calculated w.r.t. measure P ′. LetW be the random
measure constructed as above on (Ω,F ,P). Take (Ω̃, F̃ , P̃) = (Ω,F ,P)⊗ (Ω′,F ′,P ′) and
define W̃ on it by W̃ (A, ω̃) = W (A,ω)Z(ω′) for A ∈ {A : ν(A) < ∞}, ω̃ = (ω, ω′) ∈
Ω×Ω′. It can be easily seen thatW is a centered independently scattered random measure
on (Ω̃, F̃ , P̃ ).

2.3.2 Stochastic integral
Let us introduce the stochastic integral ∫

E
f(t)W (dt),

where W is a centered independently scattered random measure on K(E) with control mea-
sure ν and f : E → C is a deterministic function. For this, W should be continued to the
algebra generated by K(E) and then to A = σ(K(E)).
Let ν be finite, i.e. ν(E) <∞. Consider the algebra Ã = {

⋃m
i=1Bi for some m ∈ N, Bi ∈ K(E),

i = 1, . . . ,m}.
W can be continued from K(E) to Ã by setting W (A) a.s.=

∑m
i=1W (Ai), if A = ∪mi=1Ai ∈ Ã,

Ai ∈ K(E), Ai ∩Aj = ∅, i 6= j. This definition is correct, since for any other representation of
A by A =

⋃n
j=1Bj , Bi ∩Bj = ∅, i 6= j, Bj ∈ K(E), it holds

m∑
i=1

W (Ai) =
m∑
i=1

n∑
j=1

W (Ai ∩Bj) =
n∑
j=1

m∑
i=1

W (Bj ∩Ai) =
n∑
j=1

W (Bj), a.s.
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Definition 2.3.3
A function f : E→ C is simple if

f(x) =
n∑
i=1

aiIAi(x) (2.3.2)

for any n ∈ N, ai ∈ C, Ai ∩Aj = ∅, i 6= j,
⋃n
i=1Aj = E, i = 1, . . . , n.

Definition 2.3.4
The integral of a simple function f from (2.3.2) w.r.t. the (orthogonal) measure W is given by

I(f) : =
∫

E
f(x)W (dx) =

n∑
i=1

aiW (Ai).

Lemma 2.3.1
The above definition of I(f) is correct, i.e. does not depend on the representation (2.3.2) of f .

Proof Let

f(x) =
n∑
i=1

aiIAi(x) =
m∑
j=1

bjIBj (x) ai, bj ∈ C,

Ai ∩Ak = ∅, i 6= k, Bj ∩Bl = ∅, j 6= l,
n⋃
i=1

Ai = E,
m⋃
j=1

Bj = E.

If Ai ∩Bj 6= ∅, then it follows that ai = bj . Hence,

n∑
i=1

aiW (Ai) =
n∑
i=1

ai

m∑
j=1

W (Ai ∩Bj) =
m∑
j=1

∑
i:Ai∩Bj 6=∅

aiW (Ai ∩Bj)

=
m∑
j=1

∑
i:Ai∩Bj 6=∅

bjW (Bj ∩Ai) =
m∑
j=1

n∑
i=1

bjW (Bj ∩Ai) =
m∑
j=1

bjW (Bj), since W (∅) = 0.

Hence, I(f) does not depend on the representation of f as a simple function.

Lemma 2.3.2 (Properties of I):
Let f and g be two simple functions. Then,

1. Isometry:

< I(f), I(g) >L2(Ω,F ,P)= E(I(f)I(g)) =< f, g >L2(E,ν)=
∫

E
f(x)g(x)ν(dx)

2. Linearity: I(af + bg) a.s.= aI(f) + bI(g), a, b ∈ C
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Proof 1. Let

f =
n∑
i=1

aiI(Ai), g =
m∑
j=1

bjI(Bj), ai, bj ∈ C,

Ai ∩Ak = ∅, i 6= k Bj ∩Bl = ∅, j 6= l,
n⋃
i=1

Ai =
m⋃
j=1

Bj = E. Consider

< I(f), I(g) >L2(Ω,F ,P)= E(I(f)I(g))) = E(
n∑
i=1

m∑
j=1

aibjW (Ai)W (Bj))

=
n∑
i=1

m∑
j=1

aibjν(Ai ∩Bj) =
n∑
i=1

m∑
j=1

aibj

∫
E
IAi∩Bj (x)︸ ︷︷ ︸
IAi(x)IBI (x)

ν(dx) =
∫

E

n∑
i=1

aiIAi(x)
m∑
j=1

bjIBj (x)ν(dx)

=
∫

E
f(x)g(x)ν(dx) =< f, g >L2(E,ν) .

2. By 1) we get

‖I(af + bg)− aI(f)− bI(g)‖2L2(Ω,F ,P)

=< I(af + bg)− aI(f)− bI(g), I(af + bg)− aI(f)− bI(g) >L2(Ω,F ,P)

=< I(af + bg), I(af + bg) >L2(Ω,F ,P) −a < I(f), I(af + bg) >L2(Ω,F ,P)

− b < I(g), I(af + bg) >L2(Ω,F ,P) −a < I(af + bg), I(f) >L2(Ω,F ,P) −b < I(af + bg), I(g) >L2(Ω,F ,P)

+ aa < I(f), I(f) >L2(Ω,F ,P) +bb < I(g), I(g) >L2(Ω,F ,P) −b < I(af + bg), g >L2(Ω,F ,P)

+ ab < I(f), I(g) >L2(Ω,F ,P) +bb < I(g), I(g) >L2(Ω,F ,P)
1)=< af + bg, af + bg >L2(E,ν) −a < af + bg, f >L2(E,ν) −b < af + bg, g >L2(E,ν)

− a < f, af + bg >L2(E,ν) +aa < f, f >L2(E,ν) +ab < f, g >L2(E,ν) −b < g, af + bg >L2(E,ν)

+ ba < g, f >L2(E,ν) +bb < g, g >L2(E,ν)= 0

by linearity of the scalar product < ., . >L2(E,ν). Hence, I(af + bg)− aI(f)− bI(g) a.s.= 0

Definition 2.3.5
The integral of a function f ∈ L2(E, ν) with respect to the random measure W is given by
I(f) = limn→∞ I(fn), where {fn}n∈N is a sequence of simple functions s.t.

fn
L2(E,ν)−−−−−→
n→∞

f,

and the limit lim I(fn) is understood in the mean quadratic sense, i.e., in L2(Ω,F ,P):

E|I(fn)− I(f)|2 = ‖I(fn)− I(f)‖2L2(Ω,F ,P) → 0 as n→∞.

Since the set of simple functions is dense in L2(E, ν), such a sequence {fn}n∈N always exists.
Lemma 2.3.3 1. Definition 2.3.5 is correct, i.e., I(f) exists and does not depend on the

choice of the approximating sequence {fn}n∈N of f .
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2. For any f, g ∈ L2(E, ν) it holds

a) < I(f), I(g) >L2(Ω,F ,P)=< f, g >L2(E,ν)

b) I(af + bg) = aI(f) + bI(g), a, b ∈ C

c) If gn
L2(E,ν)−→ g as n→∞, then I(gn) L

2(Ω,F ,P)−→ I(g) as n→∞, where {gn}n∈N,
g ∈ L2(E, ν) are not necessarily simple.

Proof 1. Let {fn}n∈N , {gn}n∈N be simple functions s.t. fn
L2(E,ν)−→ f as n→∞, gn

L2(E,ν)−→ f
as n→∞. First let us prove that I(f) exists. By Lemma 2.3.2, it holds

‖I(fn)− I(fm)‖L2(Ω,F ,P) = ‖I(fn − fm)‖L2(Ω,F ,P) = ‖fn − fm‖L2(E,ν)−−−−−→n,m→∞
0,

because {fn} is a fundamental sequence in L2(E, ν) due to

fn
L2(E,ν)−−−−−→
n→∞

f.

Then {I(fn)}n∈N is a fundamental sequence in L2(Ω,F ,P), and since L2(Ω,F ,P) is a
complete space, ∃ a limit limn→∞ I(fn) def= I(f).
Now let us show that

lim
n→∞

I(fn) = lim
n→∞

I(gn) = I(f).

Suppose that

lim
n→∞

I(fn) = ξ, lim
n→∞

I(gn) = η,

and show that ξ a.s.= η. It holds

‖I(fn)− I(gn)‖L2(Ω,F ,P) = ‖I(fn − gn)‖L2(Ω,F ,P)
Lemma 2.3.2= ‖fn − gn‖L2(E,ν) ≤ ‖fn − f‖L2(E,ν) + ‖gn − f‖L2(E,ν)−−−→n→∞

0,

hence I(fn) − I(gn) L2(Ω,F ,P)−→ 0 as n → ∞, otherwise I(fn) − I(gn) L2(Ω,F ,P)−→ ξ − η as
n→∞, hence ξ a.s.= η.

2. Let fn
L2(E,ν)−→ f as n→∞, gn

L2(E,ν)−→ g as n→∞.

a) By Lemma 2.3.2, 1) and since the scalar product is continuous we have< I(f), J(g) >L2(Ω,F ,P) =

lim
n,m→∞

< J(fn), J(gm) >L2(Ω,F ,P) = lim
n,m→∞

< fn, gm >L2(E,ν)=< f, g >L2(E,ν) .
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b) I(af + bg) = lim
n→∞

I
(
afn + bgn)

) Lemma 2.3.2,2= lim
n→∞

(
aI(fn) + bI(gn)

)2
= a lim

n→∞
I(fn) + b lim

n→∞
I(gn) = aI(f) + bI(g).

c) It holds ‖I(g)− I(gn)‖L2(Ω,F ,P) = ‖I(g− gn)‖L2(Ω,F ,P)
1)= ‖g− gn‖L2(E,ν) → 0 as n→∞,

since gn
L2(Ω,F ,P)−→ g as n→∞. Then I(gn) L

2(Ω,F ,P)−→ I(g) as n→∞.

Now let us consider the case of a σ-finite ν, i.e., there exists a family of pairwise disjoint sets

{En} ⊂ E :
∞⋃
n=1

En = E, En ∈ K(E), ν(En) <∞, n ∈ N.

Then, it follows from general measure theory that f ∈ L2(E,A, ν) iff fn = f |En∈ L2(En,An, νn)
(where An = σ(K(En)) and νn is a (Lebesgue) continuation of ν |K(En) from K(En) =
K(E) ∩ En onto An) and∫

E
|f(x)|2ν(dx) =

∞∑
n=1

∫
En
|fn(x)|2νn(dx) <∞, (2.3.2)

where the value of
∫

E |f(x)|2ν(dx) does not depend on the choice of {En}n∈N.

Definition 2.3.6
For f ∈ L2(E, ν), set the integral J(f) w.r.t. the random measure W to be

J(f) =
∞∑
n=1

Jn(fn), where fn = f |En and Jn(fn) =
∫

En
fn(x)W (dx)

is the integral introduced in Definition 2.3.5.

Lemma 2.3.4 1. Definition 2.3.6 is correct i.e. J(f) exists and does not depend on the
choice of the sets {En}n∈N.

2. Stochastic integral J preserves the scalar product (isometry):
for any f, g ∈ L2(E, ν) it holds

〈
J(f), J(g)

〉
L2(Ω,F ,P) =

〈
f, g

〉
L2(E,ν)

3. The random measureW can be continued from Ã to {A ∈ A : ν(A) <∞} by the formula
W (A) = J(IA).

4. If W is a centered random measure, then E(J(f)) = 0 for all f ∈ L2(E, ν).

Proof 1. Let us show that the series
∑∞
n=1 Jn(fn) converges. First, it holds

< Jn(fn), Jm(fm) >L2(Ω,F ,P)= 0, m 6= n.

Indeed, this statement is trivial for simple fn and fm, because

< W (A),W (B) >L2(Ω,F ,P)= 0 for A ∈ σ(K(En)), B ∈ σ(K(Em)).
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For general fn ∈ L2(En, νn) and fm ∈ L2(Em, νm) it suffices to approximate them, by a
sequence of simple functions and use the continuity of < ., . >. Hence,

‖
n∑
i=1

Ji(fi)−
m∑
i=1

Ji(fi)‖2L2(Ω,F ,P) =
max{m,n}∑

i=min{m,n}+1
‖Ji(fi)‖2L2(Ω,F ,P)

=
max{m,n}∑

i=min{m,n}+1
‖fi‖2L2(Ei,νi) =

max{m,n}∑
i=min{m,n}+1

∫
Ei
|fi(x)|2νi(dx)→ 0 as n,m→∞,

since the series (2.3.2) converges. Then,
∑∞
n=1 Jn(fn) converges as well.

Now let us show that J(f) does not depend on {Ei}i∈N. Let

E =
∞⋃
i=1

E′i, E′i ⊂ K(E), E′i ∩E′j = ∅, i 6= j ν(E′i) <∞, i ∈ N

Denote fi,j = f |Ei∩E′j
, i, j ∈ N. Then fi = f |Ei=

∑∞
j=1 fi,j , i ∈ N.

Since
∑n
j=1 fi,j

L2(Ei)−→ fi as n→∞, it holds

Ji(fi) =
∞∑
j=1

Ji(fi,j)

by Lemma 2.3.3, 2c). Consider the integral Jij on

L2(Ei ∩E′j , ν) : Jij(g) =
∫

Ei∩E′j
g(x)ν(x), g ∈ L2(Ei ∩E′j , ν)

Evidently, it holds Jij(g) = Ji(g) = J ′j(g) for g ∈ L2(Ei ∩E′j , ν), where J ′j is the integral
on L2(E′j , ν). Then, we get

∞∑
i=1

Ji(fi) =
∞∑

i,j=1
Jij(fij),

∞∑
j=1

J ′j(fj) =
∞∑
j,i=1

J ′ij(fij),

where Jij = J ′ij on L2(Ei ∩ E′j , ν). Since < Jij(tij), Jkl(fkl) >L2(Ω,F ,P)= 0 for (i, j) 6=<
k, l >, we get

J(f) =
∞∑
i=1

Ji(fi) =
∞∑

i,j=1
Jij(fij) =

∞∑
j,i=1

Jij(fij) =
∞∑
j,i=1

J ′ij(fij)

=
∞∑
j=1

J ′j(fj) = J ′(f), because

∞∑
i,j=1
‖Jij(fij)‖2L2(Ω,F ,P) =

∞∑
i,j=1
‖fij‖2L2(Ei∩E′j ,ν) =

∫
E
|f(x)|2ν(dx) <∞,

here J ′(f) is the stochastic integral of f constructed with the help of tiling {E′j}j∈N of E.
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2. Since E =
⋃∞
i=1 Ei with ν(Ei) <∞, i ∈ N, for any f, g ∈ L2(E, ν) it holds

f =
∞∑
i=1

fi, g =
∞∑
i=1

gi, where fi = f |Ei , gi = g |Ei , i ∈ N.

The above series converge in L2(E, ν)-sense. By the continuity of the scalar product and
Lemma 2.3.3, 2) we have

< J(f), J(g) >L2(Ω,F ,P)=<
∞∑
i=1

Ji(fi),
∞∑
j=1

Jj(gj) >L2(Ω,F ,P)= lim
n,m→∞

<
n∑
i=1

Ji(fi),
m∑
j=1

Jj(gj) >L2(Ω,F ,P)

= lim
n,m→∞

n∑
i=1

m∑
j=1

< Ji(fi), Jj(gj) >L2(Ω,F ,P)
Lemma 2.3.3= lim

n,m→∞

n∑
i=1

m∑
j=1

< fi, gj >L2(E,ν)

= lim
n,m→∞

<
n∑
i=1

fi,
m∑
j=1

gj >L2(E,ν)=< f, g >L2(E,ν),

where < Ji(fi), Jj(gj) >L2(Ω,F ,P)=< fi, gj >L2(E,ν) δij , since Ei ∩Ej = ∅, i 6= j.

3. Take a random measure W̃ on A defined by W̃ (A) = J(IA), A ∈ A : ν(A) < ∞. It
is an independently scattered random measure by linearity of the integral and isometry
property, since for any B,C ∈ {A ∈ A : W (A) <∞} it holds

< W (B),W (C) >L2(Ω,F ,P)=< J(IB), J(IC) >L2(Ω,F ,P)=< IB, IC >L2(E,ν)= ν(B ∩ C).

Show that W̃ is continuation of W from K(E) onto {A ∈ A : ν(A) < ∞}. For any B ∈
K(E) we have ν(B) <∞, B =

⋃∞
i=1Bi, where Bi = B ∩Ei, i ∈ N, ν(B) =

∑∞
i=1 ν(Bi).

Furthermore, we have

IB =
∞∑
i=1

IBi ∈ L2(E, ν) and thus J(IB) =
∞∑
i=1

Ji(IBi).

Since Ji(IBi) = W (Bi), i ∈ N, (because Bi ∈ K(Ei)), we get

W̃ (B) = J(IB) =
∞∑
i=1

W (Bi) = W (B), B ∈ K(E),

(all series converge in L2-sense).

4. Follows for ν(E) < ∞ from the fact, that for centered W it holds EJ(fn) = 0 obviously
for any simple fn, n ∈ N. Suppose that fn

L2(E,ν)−→ f as n → ∞, hence, by Lemma 2.3.3,
we get J(fn) L

2(Ω,F ,P)−→ J(f) as n→∞, and hence

|EJ(f)| = |EJ(f)−EJ(fn)| ≤ E|J(f)− J(fn)| ≤
√

E|J(f)− J(fn)|2

= ‖J(f)− J(fn)‖L2(Ω,F ,P) −→ 0 as n→∞
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by the Lyapunow inequality. Then, EJ(f) = 0 in case ν(E) <∞.
If ν is σ-finite, the usual reasoning with

f =
∞∑
i=1

fi, fi = f |Ei , i ∈ N, EJi(fi) = 0, i ∈ N

proves the general cases since

EJ(f) =
∞∑
i=1

EJi(fi) = 0.

2.4 Spectral representation for stationary random functions

Let X = {X(t), t ∈ T} be a (centered) complex-valued random function defined on (Ω,F ,P)
with EX2(t) <∞, t ∈ T and covariance function C(s, t) = E[X(s)X(t)], s, t ∈ T . Let us discuss
necessary and sufficient conditions, under which X has the following spectral representation:

Definition 2.4.1

X(t) =
∫

E
f(t, x)W (dx), t ∈ T (2.4.1)

for some f(t, ·) ∈ L2(E,A, ν), t ∈ T , where W is a independently scattered centered random
measure on (Ω,F ,P) with control measure ν (ν is σ-finite on (E,A)) on {A ∈ A : ν(A) <∞}.
Here spaces T and E can be any abstract spaces, and equality (2.4.1) is understood in L2-sense,
i.e. a.s..

Theorem 2.4.1 (Karhunen):
The random function X introduced above has spectral representation (2.4.1) iff its covariance
function C(s, t) admits the factorization

C(s, t) =
∫

E
f(s, x)f(t, x)ν(dx), s, t ∈ T (2.4.2)

Here, the spectral measure W in (2.4.1) is given on an extension (Ω̃, F̃ , P̃) of the original
probability space (Ω,F ,P). It can be put (Ω̃, F̃ , P̃) if the system of functions {f(·, t) : t ∈ T}
is complete in L2(E,A, ν), i.e., for g ∈ L2(E,A, ν) it follows from < f(t, ·), g >L2(E,A,ν)= 0,
t ∈ T that g = 0 ν-a.e..

Proof

1. Necessity: If X has representation (2.4.1) then by isometry property (cf. Lemma 2.3.4,
2)) we get

C(s, t) = E[X(s), X(t)] =< X(s), X(t) >L2(Ω,F ,P)=< f(s, ·), f(t, ·) >L2(E,ν)

=
∫

E
f(s, x)f(t, x)ν(dx), s, t ∈ T.
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2. Sufficiency: First let us consider the easier case of (Ω̃, F̃ , P̃) = (Ω,F ,P), i.e. the system
{f(t, ·) : t ∈ T} is full. Consider the mapping ψ from the space of functions onto (E, ν)
into L2(Ω,F ,P) given by ψ : f(t, ·) 7→ X(t, ·). Let us show that we can extend ψ onto
L2(E,A, ν). First, set

ψ

(
n∑
i=1

aif(ti, ·)
)

=
n∑
i=1

aiX(ti, ·)

by linearity for any n ∈ N, ai ∈ C, ti ∈ T , i = 1, . . . , n.
Let us show that ψ does not depend on the concrete representation of

n∑
i=1

aif(ti, ·).

Namely, prove that

n∑
i=1

aiX(ti, ·)
a.s=

m∑
j=1

bjX(sj , ·) (2.4.3)

for any m ∈ N, bj ∈ C, sj ∈ T , j = 1, . . . ,m such that

n∑
i=1

aif(ti, ·) =
m∑
j=1

bjf(sj , ·).

ψ is an isometry between the space of all linear combinations

L(f) =
{

k∑
i=1

cif(yi, ·) : k ∈ N, ci ∈ C, yi ∈ T, i = 1, . . . , k
}

and

L(X) =
{

k∑
i=1

ciX(yi, ·) : k ∈ N, ci ∈ C, yi ∈ T, i = 1, . . . , k
}
.

because

〈
n∑
i=1

aif(ti, ·),
m∑
j=1

bjf(sj , ·)
〉
L2(E,ν)

=
n∑
i=1

m∑
j=1

aibj

∫
E
f(ti, x)f(sj , x)ν(dx)

by(2.4.2)=
n∑
i=1

m∑
j=1

aibjC(ti, sj) = E

 n∑
i=1

m∑
j=1

aibjX(ti, ·)X(sj , ·)


=
〈

n∑
i=1

aiX(ti, ·),
m∑
j=1

bjX(sj , ·)
〉
L2(Ω,F ,P)

.

Hence,

‖
n∑
i=1

aiX(ti, ·)−
m∑
j=1

bjX(tj , ·)‖L2(Ω,F ,P) = ‖
n∑
i=1

aif(ti, ·)−
m∑
j=1

bjf(sj , ·)‖L2(E,ν) = 0
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and (2.4.3) is proved. Since {f(t, ·) : t ∈ T} is full, we have that closure L(f) of L(f)
in L2(E, ν) is equal to the whole L2(E, ν). As an isometry ψ can be extended to the
mapping

ψ : L(f)︸ ︷︷ ︸
=L2(E,ν)

−→ L(X), where L(X) = closure of L(X) in L2(Ω,F ,P).

Now define W (B) = ψ(IB) for any B ∈ A : ν(B) <∞. W is an independently scattered
random measure on (Ω,F ,P) with control measure ν, since

< W (A),W (B) >L2(Ω,F ,P)=< ψ(IA), ψ(IB) >L2(Ω,F ,P)=< IA, IB >L2(E,ν)= ν(A ∩B),
A,B ∈ A : ν(A) <∞, ν(B) <∞.

The measure W is centered, since W (A) ∈ L(X) for any A ∈ A : ν(A) <∞, and it holds
Eξ = 0 for any ξ ∈ L(X) due to EX(t) = 0, t ∈ T .
Take the stochastic integral J(·) on L2(E, ν) w.r.t.W . By Lemma 2.3.4, 2) J is an isometry
from L2(E, ν) onto L2

W ⊂ L2(Ω,F ,P). Show that ψ ≡ J (and thus Imψ L(f) = L2
W ).

Since ψ(IB) = J(IB) by their definition for B ∈ A : ν(B) <∞, and linear combinations of
indicators are dense in L2(E,A, ν), we get ψ ≡ J as mappings L2(E, ν) −→ L(f) = L2

W .
Then, X(t) = J(f(t, ·)), t ∈ T is the spectral representation we sought for.
Now let us return to the special case of (Ω̃, F̃ , P̃) 6= (Ω,F ,P), i.e. {f(t, ·) : t ∈ T} is not
full. In this case, L(f) ⊂ L2(E, ν), L(f) 6= L2(E, ν). Take the orthogonal complement of
L(f) in L2(E, ν) (denote it by L(f)⊥) and consider a basis

{g(s, ·) : s ∈ T ′} ⊂ L2(E, ν), where T ′ ∩ T = ∅.

Introduce the function

C1(s, t) =
∫

E
g(s, x)g(t, x)ν(dx), s, t ∈ T ′.

Since
n∑

i,j=1
aiajC1(ti, tj) =

∫
E

∣∣∣∣∣
n∑
i=1

aig(ti, x)
∣∣∣∣∣
2

ν(dx) ≥ 0,

C1 is positive semi-definite. Hence, there exists a probability space (Ω′,F ′,P ′) and a
centered (complex-valued) Gaussian random functionX ′ = {X ′(t) : t ∈ T ′} on (Ω′,F ′,P ′)
such that X ′ has the covariance function

C1 : C1(s, t) = E
[
X ′(s)X ′(t)

]
, s, t ∈ T ′.

Introduce the extension of (Ω,F ,P) by (Ω̃, F̃ , P̃ ) = (Ω,F ,P)× (Ω′,F ′,P ′).
For any t ∈ T , s ∈ T ′, X(t) and X ′(s) are independent on (Ω̃, F̃ , P̃ ), where for ω̃ =
(ω, ω′) ∈ Ω̃ we set X(t, ω̃) = X(t, ω), X ′(s, ω̃) = X ′(s, ω′). Introduce the (centered)
random function
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X̃ = {X̃(t) : t ∈ T ∪ T ′} by

X̃(t, ω̃) =
{

X(t, ω̃, t ∈ T
X ′(t, ω̃′, t ∈ T ′

It holds

C̃(s, t) = E
[
X̃(s)X̃(t)

]
=


C(s, t), s, t ∈ T
C1(s, t), s, t ∈ T ′

0, s ∈ T , t ∈ T ′ or s ∈ T ′, t ∈ T

Hence,

C̃(s, t) =
∫

E
h(s, x)h(t, x)ν(dx), with

h(t, x) =
{
f(t, x), t ∈ T
g(t, x), t ∈ T ′,

x ∈ E, since < f(t, ·), g(s, ·) >L2(E,ν)= 0 for t ∈ T , s ∈ T ′.
Furthermore, L(h) = L2(E, ν), because {h(t, ·) : t ∈ T ∪ T ′} is full in L2(E, ν). Then we
can use the first part of the proof in 2) and write

X̃(t) =
∫

E
h(t, x)W (dx), t ∈ T ∪ T ′,

where W is an independently scattered random measure defined on (Ω̃, F̃ , P̃). For t ∈ T ,
we get

X(t, ω) = X̃(t, ω̃) =
∫

E
h(t, x)W (dx) =

∫
E
f(t, x)W (dx).

Corollary 2.4.1 (Cramér):
Let {X(t) : t ∈ Rd} be a centered complex-valued (wide sense) stationary random field on
(Ω,F ,P) which is continuous in the mean square sense. Let ν be its spectral measure from
Bochner’s theorem. Then, there exists an independently scattered centered random measure
W = {W (A) : A ∈ B(Rd)} on (Ω,F ,P) with control measure ν such that

X(t) =
∫
Rd
ei<t,x>W (dx), t ∈ Rd. (2.4.4)

Proof Since X is mean square continuous, its covariance function

C0(h) = E
[
X(s)X(s+ h)

]
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is continuous at the origin. Hence, by Bochner’s theorem, we get

C0(h) =
∫
Rd
ei<h,x>ν(dx)

for a finite (spectral) measure ν on BRd , in other words

C(s, t) = E
[
X(s)X(t)

]
= C0(s− t) =

∫
Rd
ei<s−t,x>ν(dx) =

∫
Rd
ei<s,x> · ei<t,x>ν(dx).

Put f(t, x) = ei<t,x>, t, x ∈ Rd, E = Rd. Since the set of functions {ei<t,·> : t ∈ Rd} is full
in L2(Rd,BRd), we can apply Theorem 2.4.1 and get (2.4.4).

Remark 2.4.1 1. If W is Gaussian, then so is X, and vice versa.

2. If X is real-valued, the spectral representation (2.4.1) can be written in its real form:

X(t) =
∫
Rd−1×R+

cos < t, x > W1(dx) +
∫
Rd−1×R+

sin < t, x > W2(dx), t ∈ Rd,

whereW1 andW2 are independent real-valued independently scattered random measures.

3. The random measure W in (2.4.1) is called a spectral process corresponding to X.
The proof of 1) is obvious due to the convolution stability of the usual distribution. The

proof of 2) is more involved and will not be given here.
How spectral representations (2.4.1) can be used in direct applications?
Example 2.4.1 (Simulation of Gaussian random fields):
In order to simulate a centered second order stationary Gaussian random field X with spectral
measure ν within an observation window A ⊂ Rd, A bounded Borel set, it is enough to consider
sums

X̃n(t) =
mn∑
i=1

ei<t,xi>W (Ani ), t ∈ A, (2.4.5)

where
A =

mn⋃
i=1

Ani ⊂ Rd

is sufficiently large to approximate

X(t) =
∫
Rd
ei<t,x>W (dx) by XA(t) =

∫
A
ei<t,x>W (dx)

in the mean square sense with a desired accuracy ‖X(t)−XA(t)‖L2(Ω,F ,P) < ε, Ani ∩Anj = ∅,
i 6= j are bounded Borel sets in Rd, xi ∈ Ai, W (Ani ) are independent random variables such
that W (Ani ) ∼ N(0, ν(Ani )), i = 1, . . . ,mn. Then, X̃n(t) is always a Gaussian random field s.t.

X̃n(t) L
2(Ω,F ,P)−→

∫
A
ei<t,x>W (dx), as n→∞,

i.e., the covariance function Cn of X̃n tends to the covariance function CA of XA as n→∞.
If A is a cube [−k; k]d, then Ani can be chosen to be shifts of [0, 1

n ]d and xi can be taken to
be the diagonal crossing point of Ai. If the choice of xi and t is appropriate, a fast Fourier
transformation for the fast computation of the sums in (2.4.5) can be used.
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2.5 Orthogonal expansions for random functions

In this section, we would like to prove the following representation of a centered random function
X = {X(t), t ∈ T} on a Hausdorff (compact) index space T satisfying some conditions:

X(t) =
∞∑
i=1

ξiψi(t), (2.5.1)

where {ξi}i∈N are centered uncorrelated random variables (i.e., Eξ2
i < ∞, Eξi = 0, E(ξiξj) =

λiδij , λi ≥ 0, i, j ∈ N) and {ψi}i∈N is an orthonormal system of L2(T, ν) with ν a finite measure
on the Borel-σ-Algebra BT .
This convergence is understood in L2(Ω,F ,P), and it is uniform in t on T .
The representation (2.5.1) is known under the name of Karhunen-Loéve (named after Kari
Karhunen and Michel Loéve). In order to prove it, some technical devices are at hand.

2.5.1 Mercer’s Theorem

Let T be a compact Hausdorff space equipped with a finite measure ν defined on BT .
Let a function K : T × T → R be symmetric (i.e., K(s, t) = K(t, s), s, t ∈ T ) and positive
semi-definite.
Then it is called a kernel. Let K be continuous in both arguments. Introduce the operator AK
on L2(T,BT , ν) by

[AKg](t) =
∫
T
K(t, s)g(s)ν(ds), t ∈ T, g ∈ L2(T,BT , ν)

The following Theorem goes back to James Mercer (1905), who proved it in the case of
T = [a; b] ⊂ R.

Theorem 2.5.1
If the kernel K is continuous, then AK has an orthonormal basis of eigenfunctions {ψi}i∈N
corresponding to eigenvalues {λi}i∈N, λi ≥ 0 ∀i ∈ N in L2(T,BT , ν), and

K(s, t) =
∞∑
j=1

λjψj(s)ψj(t), s, t ∈ T, (2.5.2)

where this convergence is absolute and uniform on T .

The proof of this result can be found in [33]. It is based on the following idea:
it is enough to show that AK is a compact operator in L2(T,BT , ν). Then, the spectral theorem
by Hilbert-Schmidt for compact operators on Hilbert Spaces is applied.

Corollary 2.5.1
Under the assumptions of Theorem 2.5.1, it holds

∫
T
K(t, t)ν(dt) =

∞∑
i=1

λi.

Proof The statement follows from (2.5.2) and orthonormality of {ψi}i∈N.
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Suppose that the eigenvalues {λi}i∈N of TK are given in decreasing order:
λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ 0.
By definition of ψj and λj , it holds∫

T
K(s, t)ψj(s)ν(ds) = λj · ψj(t), t ∈ T

as well as ∫
T
ψi(t)ψj(t)ν(dt) = δij , i, j ∈ N

Corollary 2.5.2
IfK : T×T → R is a covariance function of a (real-valued) random functionX = {X(t) : t ∈ T},
and K is continuous on T , then it has expansion (2.5.2), because it is a kernel.
It is not easy to get the expansion (2.5.2) analytically, because the problem of computing the
eigenfunctions of TK is not trivial. There are, however, some special cases, where it can be
done explicitly.
Example 2.5.1 1. Let T = [0; 1], ν be the Lebesgue measure on [0; 1], K(s, t) = min{s, t}

be the covariance function of the Wiener process X = {X(t) : t ∈ [0; 1]}.
Let us show that

ψj(t) =
√

2 sin(π(j + 1
2)t), t ∈ [0; 1]

with

λj = 1
(j + 1

2)2π2 , j ∈ N.

Since

K(s, t) = sI{s ≤ t}+ tI{s > t} (2.5.3)

is continuous, Theorem 2.5.1 can be applied to it. Let us solve the equation

∫ 1

0
K(s, t)ψ(s)ds = λ · ψ(t).

Indeed we have by (2.5.3)

λψ(t) =
∫ t

0
sψ(s)ds+ t

∫ 1

t
ψ(s)ds. (2.5.4)

Assume that ψ ∈ C2[0; 1], λ > 0 and differentiate both sides of the above equation twice.
We get the boundary value problem


ψ′′(t) = − 1

λψ(t)
ψ(0) = 0
ψ′(1) = 0,





62 2 Correlation theory of stationary random fields

because

λψ′(t) =
∫ 1

t
ψ(s)ds, t ∈ [0; 1] and ψ′(1) = 0 follows from it.

ψ(0) = 0 follows from (2.5.2) with s = t = 0. Solving the equation ψ′′(t) = − 1
λψ(t), we get ψ(t) =

c · cos
(
− t√

λ
+ a

)
, where ψ(0) = 0 ⇒ a = π

2 , i.e.

ψ(t) = c sin
(

t√
λ

)
, ψ′(t) = c√

λ
cos

(
t√
λ

)
,

ψ′(1) = c√
λ

cos
( 1√

λ

)
= 0 ⇒ 1√

λ
= π

(
j + 1

2

)
, j ∈ N0,

thus

ψj(t) = cj · sin
(
π

(
j + 1

2

)
t

)
, j ∈ N0.

The constant cj can be found from

∫ 1

0
ψ2
j (t)dt = 1, j ∈ N0.

The eigenvalue λj can be obtained from (2.5.4).

2. Let T = [0; 1]d, ν is the Lebesgue measure on [0; 1]d, and

K(s, t) =
d∏
i=1

min{si, ti}, s = (s1 . . . sd)T , t = (t1 . . . td)T ∈ [0; 1]d (2.5.5)

be the covariance function of the Brownian sheet (which is a centered Gaussian process
with this covariance function). The Brownian sheet can bee seen as a multidimensional
generalization of the univariate Wiener process. Introduce the multiindex j = (j1 · · · jd)T ,
ji ∈ N.

Exercise 2.5.1
Show that the eigenfunctions of AK with given in (2.5.5) are

ψj(t) = 2
d
2

d∏
i=1

sin
(
π

(
ji + 1

2

)
ti

)
, j = (j1 . . . jd) ∈ Nd, t = (t1 . . . td)T ∈ [0; 1]d

with eigenvalues

λj =
d∏
i=1

1
(ji + 1

2)2π2 .
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2.5.2 Reproducing Kernel Hilbert Spaces
Let X = {X(t) : t ∈ T} be a (real-valued) random function defined on (Ω,F ,P). T being a
compact separable Hausdorff space. It is often useful to assume that T is compact w.r.t. the
topology induced by the following (pseudo) metric on T :

ρ(s, t) =
√

E|X(s)−X(t)|2.

It satisfies all properties of a metric except for

ρ(s, t) = 0 ⇒ s = t.

Obviously, there can exist random functions X with X(s) a.s.= X(t), but s 6= t (e. g. if X is
periodic). This pseudometric ρ is called a canonical metric for X. Let X be centered:
EX(t) ≡ 0, t ∈ T , and EX2(t) <∞, t ∈ T .
Let

C(s, t) = E[X(s)X(t)], s, t ∈ T

be the covariance function of X which is positive definite and continuous on T × T . Let us
construct the reproducing kernel Hilbert space H of C (or X) using the following step-by-step
procedure:

1. Introduce the space

E = {g : T → R : g(·) =
n∑
i=1

aiC(si, ·), ai ∈ R, si ∈ T, i = 1, . . . , n, n ∈ N}

with the scalar product

< f, g >H=
n∑
i=1

m∑
j=1

aibjC(si, tj) (2.5.6)

on E, where f, g ∈ E:

f(·) =
n∑
i=1

aiC(si, ·), g(·) =
m∑
j=1

bjC(tj , ·).

Since C is positive definite, it holds

< g, g >H≥ 0, < g, g >H= 0 ⇔ g ≡ 0, g ∈ E,

i.e. < ·, · >H is indeed a scalar product.
Lemma 2.5.1
The scalar product < ·, · >H has the so-called reproducing kernel property on E, i.e.,

< g,C(t, ·) >H= g(t), t ∈ T, g ∈ E.
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Proof We write

< g,C(t, ·) >H=
〈

n∑
i=1

aiC(si, ·), C(t, ·)
〉
H

=
n∑
i=1

aiC(si, t) = g(t), t ∈ T

for

g(·) =
n∑
i=1

aiC(si, ·) ∈ E.

2. Introduce the norm ‖g‖H = √< g, g >H on E.

Definition 2.5.1
The closure of E w.r.t. the norm ‖ · ‖H is called the reproducing kernel (Hilbert) space:

H = E.

Lemma 2.5.2 1. The convergence gn
‖·‖−→ g, as n→∞, gn ∈ E, in the norm ‖ · ‖H implies

the pointwise convergence of functional sequences on T :

gn(t) −→ g(t), as n→∞, t ∈ T.

2. H = E is indeed a separatly Hilbert space.

Proof 1. Let {gn} converge to g in ‖ · ‖H , gn ∈ E, n ∈ N, then it is a Cauchy sequence:

∀ε > 0 ∃N : ∀n,m > N ‖gn − gm‖H < ε.

By the reproducing kernel property of < ·, · >H , we have

|gn(t)−gm(t)| = | < gn−gm, C(t, ·) >H | ≤ ‖gn−gm‖H ·‖C(t, ·)‖H = ‖gn−gm‖H ·
√
C(t, t), t ∈ T

using Cauchy-Schwarz inequality and the definition (2.5.6) for ‖C(t, ·)‖H . Then, {gn(t)},
t ∈ T is a Cauchy sequence converging to g(t).

2. The only property we have to prove here is that H is separable. This property follows
from the separability of T and the continuousness of C.

Exercise 2.5.2
Please prove it!
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Remark 2.5.1
Since < ·, · >H is continuous on H and by Lemma 2.3.1, 1) reproducing kernel property extends
to the whole space H :

< g,C(t, ·) >H= g(t), t ∈ T, g ∈ H.

Example 2.5.2 (Cameron-Martin space):
Let T = [0; 1], and X be the Wiener process on T with covariance function C(s, t) = min{s, t}.
Show that the reproducing kernel Hilbert space H of X, is given by

H =
{
g : [0, 1]→ R : ∃ g′(t) a.e. on [0; 1], g(t) =

∫ t

0
g′(s)ds and

∫ 1

0
(g′(t))2dt <∞

}
(2.5.7)

with the scalar product

< f, g >H=
∫ 1

0
f ′(t)g′(t)dt

First, if

f(t) =
n∑
i=1

aiC(si, t) =
n∑
i=1

ai min{si, t} ∈ E,

g(t) =
m∑
j=1

bjC(tj , t) =
m∑
j=1

bj min{tj .t} ∈ E

then

f ′(t) =
n∑
i=1

ai(min{si, t})′ =
n∑
i=1

aiI[0;si](t), t ∈ [0; 1]

g′(t) =
m∑
j=1

bjI[0,tj ](t)

and

< f, g >H=
n∑
i=1

m∑
j=1

aibj min{si, tj} =
n∑
i=1

m∑
j=1

aibj

∫ 1

0
I[0,si](t)I[0;tj ](t)dt

=
∫ 1

0

n∑
i=1

aiI[0;si](t)
m∑
j=1

bjI[0;tj ](t)dt =
∫ 1

0
f ′(t)g′(t)dt.

Since g(t) =
∫ t

0 g
′(s)ds for any g ∈ H as above, we get the reproducing kernel property:

< g,C(t, ·) >H=
∫ 1

0
g′(s)I[0,t](s)ds =

∫ t

0
g′(s)ds = g(t), t ∈ [0; 1]

Hence, H defined above is indeed the reproducing kernel Hilbert space of X, cf. the following
Exercise 2.5.3
Show that H given in (2.5.7) is indeed a Hilbert space and show that H = E in the norm ‖·‖H .
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Lemma 2.5.3
Let the covariance function C be continuous and let {ϕn}n∈N be an orthonormal basis in the
reproducing kernel Hilbert space H for C. Then, each ϕn is a continuous function on T , and

C(t, t) =
∞∑
n=1

ϕ2
n(t), t ∈ T, (2.5.8)

whereas the convergence of this series is uniform in t ∈ T .

Proof By the kernel reproducing property and Cauchy-Schwarz-inequality, we get ∀n ∈ N and
s, t ∈ T

|ϕn(s)− ϕn(t)| = | < ϕn(·), C(s, ·) >H − < ϕn(·), C(t, ·) >H |
= | < ϕn(·), C(s, ·)− C(t, ·) >H | ≤ ‖ϕn‖H︸ ︷︷ ︸

=1

·‖C(s, ·)− C(t, ·)‖H =

=
√
< C(s, ·), C(s, ·) >H −2 < C(s, ·), C(t, ·) >H + < C(t, ·), C(t, ·) >H

=
√
C(s, s)− 2C(s, t) + C(t, t)

=
√

E[X(s)−X(t)]2 = ρ(s, t)

by relation (1.5.1) on p. 21 and the definition of the canonical metric. Then ϕn(·) is continuous
on T , if so is C. Expanding C(t, ·) in a Fourier series w.r.t.{ϕn}n∈N and using the reproducing
kernel property, we get

C(t, ·) =
∞∑
n=1

< C(t, ·), ϕn(·) >H ·ϕn(·) =
∞∑
n=1

ϕn(·) · ϕn(t), t ∈ T (2.5.9)

where the series converges in the ‖ · ‖H -norm. For s = t, we get the pointwise convergence
in the formula (2.5.8) by the reproducing kernel property. Now we have to show that this
convergence is uniform in t ∈ T . The convergence of

∑N
n=1 ϕ

2
n(t) to C(t, t) as N → ∞ is

obviously monotone, by Dini’s theorem it is uniform in t ∈ T .

Remark 2.5.2
Compare formula (2.5.9) with representation (2.5.2) in Mercer’s theorem!

2.5.3 Canonical isomorphism
Let {X(t) : t ∈ T} be a centered random real-valued function with a continuous covariance
function C introduced in Section 2.5.2. Consider the subspace X ⊂ L2(Ω,F ,P), where X =
span{X(t), t ∈ T} is the closure of the linear hull of X in L2(Ω,F ,P) equipped with the scalar
product < ξ, η >L2(Ω,F ,P)= E(ξη). Let H be the reproducing kernel Hilbert space of X. Let
us show that H is isomorph to X. For any

g(·) =
n∑
i=1

aiC(ti, ·) ∈ E

define the mapping ∆ : E 7→ ∆(E) ⊂ X, by
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∆(g) =
n∑
i=1

aiX(ti).

Evidently, ∆ is an isometry:

‖g‖2H =
n∑

i,j=1
aiajC(ti, tj) = ‖

n∑
i=1

aiX(ti)‖2L2(Ω,F ,P) = ‖∆(g)‖2L2(Ω,F ,P), g ∈ E.

Consequently, ∆ extends by limiting procedure to H = E and the whole of X.
So constructed, ∆ is called the canonical isomorphism. If {ϕn}n∈N is an orthonormal basis in
H, then ξn = ∆(ϕn) ∈ L2(Ω,F ,P) yields a sequence {ξn}n∈N of uncorrelated random variables
with Eξn = 0, Eξ2

n = 1, which forms an orthonormal basis of X. In particular, we have ∀t ∈ T

X(t) =
∞∑
n=1

< X(t), ξn >L2(Ω,F ,P) ξn =
∞∑
n=1

< C(t, ·), ϕn >H ·ξn =
∞∑
n=1

ϕn(t) · ξn

by the isometry property of ∆ and the reproducing kernel property of < ·, · >H , where the
series converges to X(t) in L2(Ω,F ,P). We proved the following result:

Proposition 2.5.1
If {ϕn}n∈N is an orthonormal basis in H, then there exists a sequence {ξn}n∈N of pointwise
uncorrelated random variables with Eξn = 0, Eξ2

n = 1 such that

X(t) =
∞∑
n=1

ϕn(t)ξn (2.5.10)

in the L2-sense. Hence, ξn = ∆(ϕn), n ∈ N.

Remark 2.5.3
If X is Gaussian then all elements of X are Gaussian random variables as well, and so are
{ξn}n∈N. Hence, we get ξn ∼ N(0, 1), ξn independent, n ∈ N.

Evidently, the choice of random variables ξn heavily depends on the basis {ϕn}n∈N. This is
a major difficulty in this theory to find an appropriate basis {ϕn}n∈N in H.
Mercer’s theorem can help us to find such a basis {ϕn}, which leads to the so-called Karhunen-
Loéve expansion of X.

2.5.4 Karhunen-Loéve expansion

By Corollary 2.5.2, let {ψn}n∈N be an orthonormal basis of eigenfunctions of the Fredholm
operator AC (given by ACg(t) =

∫
T C(s, t)g(s)ν(ds), g ∈ L2(T,BT , ν)) with non-increasing

eigenvalues λ1 ≥ λ2 ≥ λ3 · · · ≥ 0 in L2(T,BT , ν).

Lemma 2.5.4
The reproducing kernel Hilbert space of C is given by

H =
{
g : g(t) =

∞∑
n=1

anϕn(t), t ∈ T,
∞∑
n=1

a2
n <∞, ϕn =

√
λn · ψn, n ∈ N

}

with the orthonormal basis {ϕn}n∈N and scalar product



68 2 Correlation theory of stationary random fields

< f, g >H=
∞∑
n=1

anbn, f =
∞∑
n=1

anϕn, g =
∞∑
n=1

bnϕn, f, g ∈ H.

Proof Let us show that < ·, · >H has the reproducing kernel property: by Mercer’s theorem,
we get

< g(·), C(t, ·) >H=
〈 ∞∑
n=1

anϕn,
∞∑
n=1

ϕn(t) · ϕn

〉
H

=
∞∑
n=1

anϕn(t) = g(t), t ∈ T.

By Mercer’s theorem, {ϕn}∞n=1 forms a basis in H. By the definition of < ·, · >H , it is
orthonormal. It remains to show that H is a Hilbert space (trivial exercise!).

Remark 2.5.4
For

g =
∞∑
n=1

anϕn︸ ︷︷ ︸∑∞
n=1 an

√
λnψn

∈ H,

we have an =< g,ϕn >H . At the same time, we have

√
λn · an =< g, ψn >L2(T,BT ,ν)=

∫
T
g(t)ψn(t)ν(dt),

hence

an =
√
λn < g, ψn >H= 1√

λn
· < g, ψn >L2(T,BT ,ν) for λn > 0.

Hence, H consists of (L2,BT , ν)-integrable functions for g with the property

‖g‖2H =
∞∑
n=1

a2
n =

∞∑
n=1

1
λn

(∫
T
g(t)ψn(t)ν(dt)

)2
<∞

and is equipped with the inner product

< f, g >H=
∞∑
n=1

1
λn

∫
T
f(t)ψn(t)ν(dt) ·

∫
T
g(t)ψn(t)ν(dt).

Now take ϕn =
√
λnψn in Proposition 2.5.1 to get the following.

Corollary 2.5.3 (Karhunen-Loéve Expansion):
For any centered X = {X(t), t ∈ T} on a compact T with continuous covariance function C,
there exists a family {ξn}∞n=1 of uncorrelated random variables with Eξn = 0, Eξ2

n = 1 such
that

X(t) =
∞∑
n=1

√
λnξnψn(t), (2.5.11)

where {ψn}∞n=1 is an orthonormal basis of eigenfunctions of the corresponding Fredholm
operator with kernel C in L2(T,BT , ν), λn are the eigenvalues corresponding to ψn, and the
above expansion holds in L2(Ω,F ,P).
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Remark 2.5.5 1. If X(., ω) ∈ L2(T,BT , ν), it holds

ξn = 1√
λn

∫
T
X(t) · ψn(t)ν(dt), n ∈ N

Indeed, this formula follows by applying < ·, ψn >L2(T,BT ,ν) on both sides of (2.5.11) and
using the orthonormality of {ψn}n∈N.

2. Karhunen-Loéve expansions hold also for complex-valued random functions with evident
(minor) changes.

Example 2.5.3 (Wiener process):
By Example 2.5.1, 1), the Wiener process X = {X(t) : t ∈ [0, 1]} has the Karhunen-Loéve
expansion

X(t) =
√

2
π

∞∑
n=0

1
n+ 1

2
sin
([
n+ 1

2

]
πt

)
ξn, t ∈ [0, 1] (2.5.12)

where {ξn}∞n=1 are i.i.d. N(0, 1)-random variables. Later on, it will be shown that this
convergence holds even a.s. and uniformly on [0, 1].
Now, let us prove that:

Theorem 2.5.2
For Gaussian a.s. continuous random functions, the series (2.5.10) converges a.s. uniformly on
T , whereas {ξn} are i.i.d. N(0, 1)-distributed random variables.

For the proof of this theorem, we need the following:
Lemma 2.5.5 (Itô-Nisio, 1968):
Let {Yn}n∈N be a sequence of independent symmetric random elements with values in a sepa-
rable real Banach space B, equipped with the mass topology. For

Sn =
n∑
i=1

Yi

{Sn}n∈N converges a.s. iff there exists a random element S such that

F (Sn) P−−−→
n→∞

F (S)

for any F ∈ B∗, where B∗ is the dual space to B.
(Without proof).

Proof of Theorem 2.5.2
We know that

m∑
n=1

ϕn(t)ξn

converges to Gaussian X(t) in L2-sense, whereas X(·) is a.s. continuous. Take Yi = ϕi(t)ξi.
Since ξi are i.i.d., Yi are independent. For any functional F ∈ (L2(T,BT , ν))∗, we have to show
that

F (Sn) P−−−→
n→∞

F (X(t)).
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Show that this holds in L2-sense:

‖F (Sn)− F (X(t))‖L2(Ω,F ,P) ≤ ‖F‖ · ‖Sn −X(t)‖L2(T,BT ,ν)
n→∞−→ 0.

Then applying Lemma 2.5.5, we get that Sn a.s. convergences to some random variables
S, and S = X(t). Now let us show that this convergence is uniform. Introduce the Banach
space C(T ) of all continuous functions on T with sup-norm. Clearly, X(·), ξnϕn(·) ∈ C(T ) by
Lemma 2.5.3.
Define

Sn(·) =
n∑
k=1

ξkϕk(·)

and show by Lemma 2.5.5 that

Sn(·) a.s−−−→
n→∞

X(·) in C(T ).

It suffices to show that

F (Sn(·)) L1
−−−→
n→∞

F (X(·)) for any F ∈ C∗(T ).

It is known that

F (g) =
∫
T
gdµ,

where µ is a finite signed Borel measure on (T,BT ). Hence, we get

E|F (Sn(·))− F (X(·))| = E|
∫
T

(Sn(t)−X(t))µ(dt)| ≤
∫
T

E|Sn(t)−X(t)||µ|(dt)

≤
∫
T
‖Sn(t)−X(t)‖L2(Ω,F ,P)|µ|(dt) =

∫
T

√√√√ ∞∑
j=n+1

ϕ2
j (t)|ν|(dt)

by Lyapunov’s inequality, where |µ| is the total variation measure of µ. By Lemma 2.5.3,

∞∑
j=n+1

ϕ2
j (t)−−−→n→∞

0

uniformly in t ∈ T , hence

F (Sn(·)) P−−−→
n→∞

F (X(·)),

and we are done.

Remark 2.5.6
We stress that the above decompositions hold only for compact T . If T is not compact (say,
for stationary complex-valued X) then the formally written "Karhunen-Loéve expansion" may
coincide within the spectral representation of X, as the following example shows:
Consider a second-order stationary complex-valued random field X = {X(t) : t ∈ Rd} with
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continuous covariance function C(s, t) = C0(s− t), s, t ∈ Rd such that it has a discrete spectral
measure µ in Bochner’s theorem:

µ(.) =
∞∑
j=1

δλj (.) · µj , λj ∈ Rd, µj > 0, j ∈ N.

Consider the set of functions
{
ei<s,λj>

}
j∈N

as a "basis" in Mercer’s theorem (which formally
does not hold here, together with its generalizations to non-compact spaces; cf. [16]). Then,
the formally written Karhunen-Loéve expansion of X would yield

X(t) =
∞∑
j=1

√
µjξje

i<t,λj>, t ∈ Rd

where {ξj} are uncorrelated random variables with Eξj = 0, Eξ2
j = 1, j ∈ N. This expansion

coincides however with the spectral representation (2.4.4) of X with random measure

W (.) =
∞∑
j=1

√
µjξjδλj (.).

Remark 2.5.7 (Simulation of Gaussian random functions):
If the Karhunen-Loéve expansion of a Gaussian random function X = {X(t) : t ∈ T} with a.s.
continuous realizations on a compact T is known, it can be used to simulate X on T as follows.
By Theorem 2.5.2,

X(t) a.s.=
∞∑
j=1

√
λjξjψj(t), t ∈ T

where {ξj} are i.i.d. N(0, 1) random variables, λj > 0 and ψj(.) some known functions.
Then, one can simulate X(t) by taking its approximation

X̂N (t) =
N∑
j=1

√
λjξjψj(t), t ∈ T ;

it holds

X̂N (t) a.s−−−−→
N→∞

X(t)

uniformly in t ∈ T . For instance, this method can be used to simulate the Brownian sheet;
cf. Exercise 2.5.1. However, the convergence of X̂N to X may be rather slow, so that the
performance of the simulation is poor: indeed, since ξj are i.i.d. N(0, 1), we get

δN (t) = ‖X(t)− X̂N (t)‖2L2(Ω,F ,P) = ‖
∞∑

j=N+1

√
λjξjψj(t)‖2L2(Ω,F ,P)

= E|
∞∑

j=N+1

√
λjξjψj(t)|2 =

∞∑
j=N+1

λjψ
2
j (t), t ∈ T.

The rate of convergence of this sum to zero as N →∞ depends heavily on the choice of {ψj}j∈N.
For instance, in case of the Brownian motion (cf. Example 2.5.3) for t ∈ [0, 1]
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δN (t) = 2
π2

∞∑
j=N+1

sin2((j + 1
2)πt)

(j + 1
2)2 ≤ 2

π2

∞∑
j=N+1

1
j2 ≤

2
π2

∫ ∞
N+1

1
x2dx

= 2
π2 (−1) 1

x

∣∣∣∣∞
N+1

= 2
π2(N + 1) = 0(N−1), N →∞.

Exercise 2.5.4
Show that for the Wiener process X = {X(t) : t ∈ [0, 1]} the following (alternative to (2.5.12))
Karhunen-Loéve representation holds:

X(t) = t · ξ0 +
√

2
∞∑
n=1

sin(πnt)
πn

ξn, t ∈ [0, 1], (2.5.13)

where {ξn}n=0,1,... is an i.i.d. sequence of N(0, 1)-distributed random variables. To do this,
consider the Brownian bridge ϕ = {ϕ(t) : t ∈ [0, 1]} defined as a centered Gaussian process
with covariance function C(s, t) = min{s, t} − st and a.s. continuous paths. It can be proven
(please check this!) that

ϕ(t) d= X(t)− t ·X(1), t ∈ [0, 1],

so that ϕ(0) = ϕ(1) = 0 a.s. which justifies the name "Bridge". Then,

X(t) d= ϕ(t) + t ·X(1) = ϕ(t) + t · ξ0, t ∈ [0, 1],

where ξ0 ∼ N(0, 1). Use this representation of X to prove (2.5.13) by finding the Karhunen
-Loéve representation of ϕ. For that, show as in Example 2.5.1, 1) that

λj = (π2j2)−1, ψj(t) =
√

2 sin(πjt), j ∈ N

Exercise 2.5.5 (Ornstein-Uhlenbeck-process):
The Ornstein-Uhlenbeck-process X = {X(t) : t ∈ R} is a stationary centered Gaussian process
with covariance function

C(s, t) = e−|s−t|, s, t ∈ R

1. Show that
X(t) d= e−tw(e2t), t ∈ R,

where w = {w(t) : t ≥ 0} is a Wiener process.

2. Show that the spectral density f of X coincides with the Cauchy density:

f(x) = 1
π(1 + x2) , x ∈ R

3. Find the Karhunen-Loéve expansion for X on [−a, a], a > o using representation 1).
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2.6 Additional exercises

Exercise 6 Prove that the characteristic function of any random variable is a valid covariance
function, i.e. it is positive definite.

Exercise 7 Prove Pólya’s criterion: If C : [0;∞) → R is such that C (0) = 1, C (t) is conti-
nuous and convex, and lim

t→∞
C (t) = 0, then C is a positive definite function.

Exercise 8 Are the following functions C : R→ R valid covariance functions?

a) C (t) ≡ 0

b) C (t) ≡ 1

c) Nugget effect: C (t) =
{

1, t = 0
0, t 6= 0

d) C (t) =
{

1, t = 0
1/2, t 6= 0

e) C (t) = sin (t)

f) C (t) =
{

exp (− |t|) , t ∈ Z
0, otherwise

Exercise 9 Prove the following statement: A function C : R → C is real, continuous, and
positive definite, if and only if it is the cosine transform of measure F on [0;∞), i.e.

C (x) =
∫

[0,∞)
cos (xt) dF (t) for all x ∈ R.

Compute the spectral density f for the following covariance functions C : R→ R:

1. C (x) = exp
(
−x2)

2. C (x) = exp (− |x|)

3. C (x) =
{

1− |x|2 ,−2 ≤ x ≤ 2
0, otherwise

Exercise 10 Prove that cos(x) is a valid covariance function on R.

Exercise 11 There are several definitions for a stable random variable. Namely, a random
variable X is said to have a stable distribution, if one of the following properties holds:

1. For each n ∈ N there exist constants cn > 0, dn ∈ R such that X1 + . . .+Xn
d= cnX + dn,

where X1, . . . , Xn are independent copies of X.
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2. There are parameters α ∈ (0, 2], σ ≥ 0, β ∈ [−1, 1] and µ > 0 such that the characteristic
function φ(t) = E exp(itX) of X has the form

φ(t) =

exp
(
−σα|t|α(1− iβsgn(t) tan πα

2 ) + iµt
)

if α 6= 1
exp

(
−σ|t|(1 + iβ 2

π sgn(t) log |t|) + iµt
)

if α = 1.

Show that 2) implies 1). (In fact the two definitions are equivalent.)

Exercise 12 (The parameters of a stable random variable) According to the upper definition
we can denote stable distributions by Sα(σ, β, µ). The parameter α is often called the index of
stability because it can be shown that the norming constants cn in Exercise 1 are of the form
cn = n1/α with α ∈ (0, 2] (see Feller, 1967).

1. The parameter µ is a shift parameter. This is backed by the following property. Let
X ∼ Sα(σ, β, µ) and let c ∈ R be a constant. Show that X + c ∼ Sα(σ, β, µ+ c).

2. The parameter σ is called the scale parameter. The reason lies in the following: Let
X ∼ Sα(σ, β, µ) and let c ∈ R \ {0}. Show that

cX ∼
{
Sα(|c|σ, βsgn(c), cµ) if α 6= 1,
S1(|c|σ, βsgn(c), cµ− 2

π c log |c|σβ) if α = 1.

3. The parameter β is a skewness parameter. Show that, for any 0 < α < 2 it holds

X ∼ Sα(σ, β, 0) if and only if −X ∼ Sα(σ,−β, 0).

Exercise 13

1. Show that X ∼ Sα(σ, β, µ) is symmetric about zero if and only if β = 0 and µ = 0.

2. Show that the random variable X ∼ N(µ, σ2) is stable with α = 2.

3. Show that the Cauchy random variable X with probability density function fX(x) =
γ

π(x2+γ2) , γ > 0 is stable. What is the value of α?

Exercise 14

1. Find a simple formula for the variogram γ(s, t) of a random field X = {X(t), t ∈ Rd}
with mean value function µ(t) and covariance function C(s, t), s, t ∈ Rd, d ≥ 1.

2. Now assume that X, defined on a compact T ⊂ Rd and diamT := sup
s,t∈T

d(s, t) <∞ with

the canonical pseudo-metric d(s, t) :=
√

2γ(s, t) < ∞. The smoothness of the random
field X is closely related to the behavior of γ(s, t) for points s, t ∈ Rd with infinitesimal
small distance. We now try to find a sufficient condition for the a.s. continuity of the
field X. It is known that Gaussian random fields are a.s. continuous and bounded with
probability one if there exists a δ > 0 such that∫ ∞

δ
p(e−u2) du <∞,
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where p2(u) = sup
|s−t|≤u

2γ(s, t). Show that the existence of a constant K ∈ (0,∞) and

α, η > 0 such that
γ(s, t) ≤ K

| log |s− t||1+α

for all s, t with |s− t| < η is a sufficient condition for the a.s. continuity of X.

Exercise 15 Let ν be a finite measure, given on (Rd,B(Rd)), d ≥ 1. Let Y,X1, X2, . . . be
independent random elements on a probability space (Ω,F ,¶) such that Y ∼ Poi(ν(Rd))
and X1, X2, . . . i.i.d. d-dimensional F|B(Rd)-measurable random vectors such that ¶X1(B) =
ν(B)/ν(Rd), B ∈ B(Rd). We introduce the Poisson random measure W : B(Rd)× Ω by

W (B,ω) =
Y (ω)∑
j=1

1B(Xj(ω)), B ∈ B(Rd).

Show that the Poisson random measure given on a semiring of bounded Borel sets in Rd is an
orthogonal non-centered random measure.

Exercise 16 Let {Wt, t ∈ R} be a complex-valued L2-process such that
i) E|Ws −Wt|2 → 0 for any s ∈ R with s ↓ t,
ii) it has independent increments, i.e. E(Wt2 −Wt1)(Wt3 −Wt2) = 0 for any t1 < t2 < t3.

We introduce the family of random variables W ((a, b]) := W (b) − W (a) on the semiring
K = {(a, b], −∞ < a ≤ b < ∞}, where (a, a] = ∅. Show that W is an orthogonal random
measure on K.

Exercise 17 Let E be a measurable space, and ν a σ-finite measure given on a semiring K(E)
of subsets of E. Show that simple functions of the form f : E → C, f =

∑m
i=1 ci1Bi , where

ci ∈ C, Bi ∈ K(E), i = 1, . . . ,m,
⋃m
i=1Bi = E, Bi ∩Bj = ∅ for i 6= j, are dense in L2(E, ν).

Exercise 18 Show Lemma 2.3.4 4): Let E be a measurable space, and ν a σ-finite measure
given on a semiring K(E) of subsets of E. Let W be a centered orthogonal random measure,
i.e. EW (A) = 0, A ∈ K(E). Show that EJ(f) = 0 for f ∈ L2(E, ν).
Exercise 19 An illustrative example of the Karhunen Theorem (1)

1. Show that the Wiener process W = {W (t), t ∈ [0, 2π]} has the representation

W (t) = 1√
2π

∞∑
k=−∞

1− e−ikt

ik
zk, t ∈ [0, 2π],

where the zk are uncorrelated centered random variables with unit variance and the series
converges in the mean-square sense for every t ∈ [0, 2π]
(for k = 0 we set (1− e−ikt)/ik = −t). Use the following steps:
Step 1: Determine the values f(t, k), t ∈ [0, 2π], k ∈ Z of the function f in the represen-

tation of the covariance function of the stochastic process, which are given as the
coefficients of the Fourier series of 1[0,t](u).

Step 2: Determine the value of the covariance function C(s, t), s, t ∈ [0, 2π], which arises
by taking the space E = Z, the counting measure ν on Z, i.e. ν({k}) = 1, k ∈ Z
and the function f from step 1. Hint: Apply the Parseval equality.
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Step 3: Apply the Karhunen Theorem.

Exercise 20 An illustrative example of the Karhunen Theorem (2)
Show that the Wiener process W = {W (t), t ∈ [0, 1]} has the representation

W (t) =
∞∑
k=1

Sk(t)zk, t ∈ [0, 1],

where the Sk(t), t ∈ [0, 1], k ≥ 1 are the Schauder functions and the zk are uncorrelated centered
random variables with unit variance and the series converges in the mean-square sense for every
t ∈ [0, 1]. Use the same steps as in the preceding exercise.
Exercise 21
Let W be a Gaussian white noise based on Lebesgue measure, and use it to define a random
field on Rd+ = {(t1, . . . , td) : ti ≥ 0} by setting

W (t) = W ([0, t]),

where [0, t] is the rectangle
∏d
i=1[0, ti]. Wt is called the Brownian sheet on Rd+, ormultiparameter

Brownian motion. If d = 1, it is the standard Brownian motion.

(a) Show that W is a centered Gaussian field on Rd+ with covariance

E(WsWt) = min(s1, t1)× · · · ×min(sd, td).

(b) Suppose d > 1, and fix d−k of the index variables ti. Show thatW is a scaled k-parameter
Brownian sheet in the remaining variables.

(c) Find the Karhunen-Loève expansion for W on [0, 1]d.

Exercise 22
Let T ∈ N and X = {X(t), t ∈ [0, T ]} be a real-valued process on [0, T ] with EX(t) = 0 and
EX(t)2 <∞ for all t ∈ [0, T ].

(a) Suppose that C(s, t) = cos(2π(t−s)). Show that the Karhunen-Loève expansion has only
two summands and determine the terms of the expansion.

(b) Suppose that C(s, t) = (1 − |t − s|)1{0 ≤ t − s ≤ 2T}. Determine the Karhunen-Loève
expansion.

(c) Suppose that C(s, t) =
∑∞
n=0

1
1+n2 cos

(
n2π
T (t− s)

)
. Find the eigenvalues and eigenfunc-

tions of the Fredholm operator A from Exercise 1.

Exercise 23 Let {X(t), t ∈ [0, 1]} be the Brownian motion with covariance function C(s, t) =
min{s, t} for s, t ∈ [0, 1]. Show that

H = {g : [0, 1]→ R cont. : ∃ g′(t) for almost all t ∈ [0, 1], g(s) =
s∫

0

g′(t) dt,
1∫

0

(
g′(t)

)2
dt <∞}

is the corresponding reproducing kernel Hilbert space.
Exercise 24 Let X = {Xt, t ∈ R} be a random polynomial with Xt = Y0 + Y1t+ . . .+ Ynt

n,
Yi ∼ N (0, 1) i.i.d., i = 0, . . . , n. Determine the expected value, the variance, the covariance
function and the characteristic function of Xt.

Exercise 25
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(a) Calculate the spectral density of a random process X = {Xt, t ∈ R} with
– triangular covariance function C(h) = (1− |h|)1{|h| ≤ 1},
– covariance function C(h) = 1

8e
−|h| (3 cos(h) + sin |h|).

(b) Show that the spectral density of the Ornstein-Uhlenbeck process with covariance function
C(s, t) = exp{−α|t− s|}, s, t ∈ R, α > 0, is given by

f(u) = 1
π

α

1 + α2u2 , u ∈ R,

and verify that it can be interpreted as a Gamma(1/2)-mixture of Gaussian distributions,
i. e.

f(u) =
∫ ∞

0

(
tα2

π

) 1
2

e−tα
2u2 1√

π
e−tt

1
2−1dt, u ∈ R.

(c) Calculate the spectral density of a random field X = {Xt, t ∈ R2} with Gaussian covari-
ance function C(h) = e−‖h‖

2
2 .

Exercise 26
Let T be a separable and compact Hausdorff space. Let H be a Hilbert space of functions
g : T → R which admits a reproducing kernel. Show that the reproducing kernel is uniquely
determined by the Hilbert space H.

Exercise 27
Show that under the same assumptions of Exercise 3, the reproducing kernel of a reproducing
kernel Hilbert space is positive semi-definite.
Exercise 28
A stochastic process {B(t), t ∈ [0, 1]} is called a Brownian bridge if

• the joint distribution of B(t1), B(t2), ..., B(tn), t1, ..., tn ∈ [0, 1], n ∈ N is Gaussian with
EB(t) = 0 for all t ∈ [0, 1],

• the covariance function of B(t) is given by

C(s, t) = min{s, t} − st,

• the sample path function of B(t, w) is continuous in t with probability one.

(a) Find the Karhunen-Loève expansion of the Brownian bridge.

(b) Show that B(t) = W (t)− tW (1) = (1− t)W
(

t
1−t

)
, t ∈ [0, 1], where {W (t), t ∈ [0, 1]} is

the Brownian motion.

(c) Find a representation of the Brownian bridge based on the Karhunen-Loève expansion of
the Brownian motion. Compare this representation with the Karhunen-Loève expansion
of the Brownian bridge.

Exercise 29
A stochastic process {X(t), t ≥ 0} is called Ornstein-Uhlenbeck process if it is a centered
Gaussian process with covariance function C(s, t) = exp{−α|t − s|}, s, t ≥ 0, α > 0. Show
that X is a transformed Brownian motion and determine the corresponding (transformed)
Karhunen-Loève expansion.
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Starting with a more detailed treatment of the basics of Gaussian random functions, we shall
introduce more general classes of random functions such as stable, infinitely divisible and self-
similar (fractal) random functions.

3.1 Gaussian random fields
In Definition 1.2.2, Gaussian random functions were introduced by giving all their finite-
dimensional distributions, which are multivariate normal ones. It has been shown that the
probability law of Gaussian random functions is fixed by their mean value and covariance func-
tions. In this section, we are going to consider some of the properties of Gaussian random
functions such as a.s. boundedness, a.s. continuity of realisations, differentiability, etc. in more
detail. However, we shall not be able to cover many important aspects of their theory, on which
excellent specialized monographs already exist (cf. [1], [15], [37], [44]).
First of all, consider the properties of paths of Gaussian random functions. Then, let us deepen
some of the examples of Gaussian random functions which we already encountered in Chapters
1 and 2.

3.1.1 Properties of paths of Gaussian random functions

Let X = {X(t) : t ∈ T} be a real-valued random function on a topological space T .
Definition 3.1.1
X is called separable, if there exists a countable dense subset D ⊂ T and a fixed event A with
P (A) = 0 such that

{ω ∈ Ω : X(t) ∈ B, t ∈ I ∩D} \ {ω ∈ Ω : X(t) ∈ B, t ∈ I} ⊂ A

for any closed subset B ⊂ R and open I ⊂ T .
It can be proven (cf. [43]) that any random function X with index space T being a metrical

space and values in a compact set K ⊂ R has a separable modification. Later on, we assume
that X be always separable. Separability is introduced in order to study the properties of
sup
t∈I

X(t), the set I being on open subset of T . Indeed, we first need to prove that sup
t∈I

X(t) is

a random variable, i.e. is F|BR-measurable. This holds true, since

sup
t∈I

X(t) a.s.= sup
t∈I∩D

X(t)

due to separability ofX, and sup
t∈I∩D

is measurable, since this supremum is taken over a countable

set of random variables X(t), t ∈ I ∩D. Now assume that T is a compact metric space with
distance function ∆ on T . Then, for separable X, sup

t∈T
X(t) a.s.= sup

t∈D
X(t) is a valid random

78
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variable. Let X be a (real-valued separable) Gaussian random function on T . Considering a.s.
boundedness and continuity of X, first let us show that the choice of the metric ∆ is irrelevant,
since it can be always replaced by the canonical metric

ρ(s, t) =
√

E(X(s)−X(t))2, s, t ∈ T.

Lemma 3.1.1
Let X be a random function as above with sup

t∈T
EX2(t) <∞, which is a.s. continuous:

∀t ∈ T, lim
s

∆→t
X(s) = X(t) a.s.

Then, X is mean square continuous as well. In other words, ρ is a continuous function.

lim
s

∆→t
ρ(s, t) = 0, t ∈ T.

Hence s ∆→ t means that ρ(s, t)→ 0.

To prove this lemma, we need the following two facts from the basic probability course:

Definition 3.1.2
A family of random variables {ξn}n∈N is uniformly integrable, if

sup
n∈N

E [|ξn|I(|ξn| > x)]−−−→
x→∞

0.

Lemma 3.1.2
A family of random variables {ξn}n∈N is uniformly integrable iff

1. Uniform boundedness:
sup
n∈N

E|ξn| <∞

2. Uniform absolute continuity:

sup
n∈N

E [|ξn|I(Am)]→ 0,

if P (Am)→ 0

Without Proof; see e.g. [9], p. 190.

Theorem 3.1.1
If {ξn}n∈N is uniformly integrable and

ξn
a.s.−−−→
n→∞

ξ, then E|ξ| <∞ and Eξn−−−→
n→∞

Eξ, E|ξn − ξ|−−−→
n→∞

0.

Without Proof; see [9], p. 188.
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Proof of Lemma 3.1.1 Fix a t ∈ T . Introduce a random field Y (s) = (X(s)−X(t))2, s ∈ T .
It holds

sup
s∈T

EY (s) ≤ 4 sup
s∈T

EX2(s) <∞.

To show that {Y (s) : s ∈ T} is uniformly integrable, it is sufficient (by Lemma 3.1.2) to prove
that

sup
s∈T

E [Y (s)I(Am)]→ 0, if P (Am)−−−−→
m→∞

0.

By the inequality of Cauchy-Schwarz, we have

sup
s∈T

E[Y (s)I(Am)] ≤ sup
s∈T

√
EY 2(s)P (Am)→ 0,

since
sup
s∈T

√
EY 2(s) <∞

due to the Gaussianity ofX. Then, {Y (s) : s ∈ T} is uniformly integrable and then by Theorem
3.1.1 it holds

EY (s)−−→
s→t

0 since Y (s) a.s.−−→
s→t

0;

In the sequel, assume that ρ is always continuous with respect to the ∆-convergence.
Lemma 3.1.3
Let X be a centered separable real-valued Gaussian process on a compact metric space (T,∆).
Then X is a.s. continuous w.r.t. the topology induced by ∆, iff it is a.s. continuous w.r.t. the
topology induced by ρ.

Proof We have to show that

lim
s,∆(s,t)→0

|X(s)−X(t)| a.s.= 0 ⇔ lim
s:ρ(s,t)→0

|X(s)−X(t)| = 0, t ∈ T.

Fix any t ∈ T . Since ρ is ∆-continuous, we have

∆(s, t)→ 0 ⇒ ρ(s, t)→ 0

and then
lim

s:ρ(s,t)→0
|X(s)−X(t)| a.s.= 0⇒ lim

s:∆(s,t)→0
|X(s)−X(t)| a.s.= 0

Let us prove the reverse statement. Let X be a.s. ∆-continuous. For any δ > 0, introduce

Aδ = {(s, t) ∈ T × T : ρ(s, t) ≤ δ} ⊂ T × T.

Since T is compact, so is T × T . Since ρ is ∆-continuous Aδ is ∆-closed in T × T (and hence a
compact in T × T ). Take

A0 =
⋂
δ>0

Aδ.
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Then A0 is compact as well, and by the properties of compactness ∀ε > 0 ∃ a finite ε-network
of balls with centers in A0 covering A0:

A0 ⊂
⋃

(s′,t′)∈B
{(s, t) ∈ T × T : ∆(s, s′) ≤ ε, ∆(t, t′) ≤ ε}

for a finite subset B ⊂ A0. By ∆-continuity of ρ, there exists δ(ε) → 0 such that Aδ(ε) is
covered by this finite ε-network as well, i.e., for any

(s, t) ∈ Aδ(ε) ∃ (s′, t′) ∈ B : ∆(s, s′) ≤ ε, ∆(t, t′) ≤ ε.

Since
|X(s)−X(t)| ≤ |X(s)−X(s′)|+ |X(s′)−X(t′)|︸ ︷︷ ︸

∗=0

+|X(t′)−X(t)|

*a.s., since s′, t′ ∈ B ⊂ A0
we get

sup
s,t∈T :ρ(s,t)≤δ(ε)

|X(s)−X(t)| ≤ 2 sup
s,t∈T :∆(s,t)≤ε

|X(s)−X(t)|,

hence X is a.s. ρ-continuous as well.

Remark 3.1.1
The assertion of this lemma is obviously true for σ-compact metric spaces T .

Definition 3.1.3
Let X be a centered Gaussian random field on a ρ-compact T . For any ε > 0, let N(ε) be the
smallest number of ρ-balls of radius ε covering T : N(ε) = N(T, ρ, ε). Then N(ε) is called the
(metric) entropy of T (or X). H(ε) = logN(ε) is a log-entropy of T . Since T is ρ-compact, it
follows that N(ε) <∞, ε > 0. Introduce

diamρ(T ) = sup
s,t∈T

ρ(s, t).

For ε ≥ diamρ(T ), we obviously have N(ε) = 1. Introduce the modulus of continuity of X by

ωX,ρ(δ) = sup
s,t∈T :ρ(s,t)≤δ

|X(s)−X(t)|, δ > 0.

We would like to state the following results without proof. For proofs, see [1], p.14 ff.

Theorem 3.1.2
Let X = {X(t) : t ∈ T} be a centered separable Gaussian random field on a ρ-compact T with
the metric entropy H(ε). Then,

E sup
t∈T

X(t) ≤ K ·
∫ diam(T )

2

0

√
H(ε) dε,

where K ≥ 0 is a constant.

Theorem 3.1.3
Under conditions of Theorem 3.1.2 there exists a random variable η such that
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ωX,ρ(δ) ≤ K ·
∫ δ

0

√
H(ε) dε

for all δ ≤ η, where K ≥ 0 is a constant.

Theorem 3.1.4
Let X be a centered Gaussian random field with

P (sup
t∈T

X(t) <∞) = 1.

X is a.s. uniformly ρ-continuous on T iff ϕ(δ)→ 0 as δ → 0 with

ϕ(δ) = E sup
ρ(s,t)≤δ

(X(s)−X(t)).

Furthermore, if ϕ(δ) → 0 as δ → 0, then for all ε > 0 ∃ an a.s. finite random variable η > 0
such that

ωX,ρ(ε) ≤ ϕ(δ) · | lnϕ(δ)|ε,

for all δ ≤ η.

Now consider the special case of T being a compact subset of Rd. Introduce

p(u) =
√

sup
|s−t|≤u

2γ(s, t) =
√

sup
|s−t|≤u

E|X(s)−X(t)|2,

where |.| is the Euclidean metric. For stationary X, it holds

p(u) =
√

2 sup
|t|≤u
|C(0)− C(t)|.

Let ωX(δ) be the modulus of continuity of a random field X with respect to the Euclidean
metric.

Corollary 3.1.1
If either ∫ δ

0

√
− log u dp(u) <∞ or

∫ ∞
δ

p(e−u2) du <∞

for some δ > 0 then the centered Gaussian random field X on T is a.s. continuous and bounded.
Furthermore, there exists a constant K = K(d) and a random variable η such that

ωX(δ) ≤ K ·
∫ p(δ)

0

√
− log u dp(u)

for all δ < η.

Proof : Let us show that our assertion follows from Theorem 3.1.3, if we prove that

∫ δ

0

√
H(ε) dε ≤ K ·

∫ p(δ)

0

√
− log u dp(u)
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for small δ. First of all, since p(u) is non-decreasing, the Riemann integral

∫ δ

0

√
− log u dp(u)

is well-defined.
Let L be the side length of the smallest cube cL containing a compact T . Since

p(u) =
√

sup
|s−t|≤u

ρ2(s, t) = sup
|s−t|≤u

ρ(s, t),

cL (and hence T ) can be covered by at least
(
L
∆

)d
Euclidean balls of radius ∆ > 0;

if p(∆) = ε ⇒ ∆ = p−1(ε) where p−1(ε) = sup{u : p(u) ≤ ε} is a generalised inverse of a
non-decreasing function p. Hence,

N(ε) ≤
(
L

∆

)d
=
(

L

p−1(ε)

)d
⇒ H(ε) = logN(ε) ≤ d log

(
L

p−1(ε)

)
and

∫ δ

0

√
H(ε) dε ≤

√
d

∫ δ

0

√
logL− log p−1(ε)dε u=p−1(ε),ε=p(u)=

√
d

∫ p(δ)

0

√
logL− log u dp(u)

≤ 2
√
d︸︷︷︸

K

∫ p(δ)

0

√
− log udp(u), (3.1.1)

for small enough δ because

∃δ > 0 : logL ≤ −3 log u for |u| ≤ p(δ),

and hence

√
logL− log u ≤

√
−4 log u = 2

√
− log u.

Remark 3.1.2
A sufficient condition for the integrals in Corollary 3.1.1 to be finite is

ρ(s, t) ≤ c

| log |s− t||
1
2 +α

, c, α > 0, ∀s, t : |s− t| < β.

Proof :
If

ρ(s, t) ≤ c

| log |s− t||
1
2 +α

, s, t : |s− t| ≤ β,

then
p(u) ≤ c

| log u|
1
2 +α

, 0 ≤ u ≤ β,
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and ∫ δ

0

√
− log u dp (u) = p(u) ·

√
− log u

∣∣∣δ
0
−
∫ δ

0
p(u)d(− log u)

1
2

p(0)=0= p(δ)
√
− log δ

+
∫ δ

0
p(u)1

2
1√
− log u

d log u ≤ p(δ)
√
− log δ +

∫ δ

0

c · d log u
| log u|1+α

= p(δ)
√
− log δ + c

∫ log δ

−∞

dx

|x|1+α <∞ for δ ≤ β.

The above necessary conditions are quite sharp in the stationary case, as it can bee seen
from the following.

Proposition 3.1.1
If X = {X(t) : t ∈ T} is a stationary centered Gaussian random field, T ⊂ Rd is open and for
the covariance function C of X the inequality

K1
(− log |t|)1+α1

≤ C(0)− C(t) ≤ K2
(− log |t|)1+α2

holds for |t| small enough. Then X has a.s. continuous realizations if α2 > 0, and a.s. discon-
tinuous realizations, if α1 < 0.
(Without proof; see the proof in [1], p. 47-48)

Exercise 3.1.1
Show that conditions of Corollary 3.1.1 are satisfied for the Brownian motion X = {X(t) : t ∈
[0; 1]}.

Conditions for a.s. continuity can be also formulated in terms of the spectral measure of X:

Proposition 3.1.2
Let X = {X(t) : t ∈ T} be a centered Gaussian process on a compact T ⊂ R with spectral
measure µ. If ∫ ∞

0
(log(1 + λ))1+αµ(dλ) <∞

for some α > 0 then X has a.s. continuous paths. If this integral diverges for some α < 0 then
X is a.s. discontinuous.
(Without proof; see [4])

Now suppose thatX is a centered Gaussian random field on T ⊂ Rd and examine the question
of a.s. differentiability of its realisations.

Definition 3.1.4
Let t ∈ Rd. For any k ∈ N and directions h1, . . . , hk ∈ Rd, introduce the L2-partial derivative
of X in t in direction h = (h1, . . . , hk) (or mean-square partial derivative) of order k by

∂kX(t)
∂h

= lim
δ1,...,δk→0

∆kX(t, 〈δ, h〉)
δ1 · . . . · δk

,

where δ = (δ1, . . . , δk) ∈ Rk, 〈δ, h〉 =
∑k
i=1 δihi ∈ Rd,
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∆kX(t, y) =
∑

s∈{0,1}k, s=(s1,...,sk)
(−1)k−

∑k

i=1 siX(t+
k∑
i=1

siyi), y = (y1, . . . , yk),

is the symmetrical difference of X and the limit is understood sequentially in the mean square
sense: first δ1 → 0, then δ2 → 0 and so on.

Lemma 3.1.4
Furthermore:

1. A random field X is mean square differentiable of order k in all directions in a region
T ⊂ Rd, if

lim
δ1,...,δk,δ

′
1,...,δ

′
k
→0

1
δ1 . . . δk · δ′1 . . . δ′k

E(∆kX(t,
k∑
i=1

δihi) ·∆kX(s,
k∑
i=1

δ′ih
′
i)) (3.1.2)

exists for all s, t ∈ T and directions h, h′ ∈ (Rd)k.

2. If X is Gaussian then ∂kX
∂h is Gaussian as well for any h ∈ (Rd)k.

Proof Property 2 is obvious since a L2-limit of Gaussian random variables is Gaussian.
1. For any random variables {Yn}n∈N with EY 2

n < ∞, n ∈ N it holds that {Yn} converges in
L2-sense as n→∞ iff E(YnYm) converges as n,m→∞. Indeed,

E|Yn − Ym|2−−−−−→
n,m→∞

0 iff E(Yn · Ym)−−−−−→
n,m→∞

c,

since
E|Yn − Ym|2 = EY 2

n − 2E(Yn · Ym) + EY 2
m, ∀n,m ∈ N.

Then
∆kX(t, (δ1h1, . . . , δkhk))

δ1 · . . . · δk

converges to a limit as δ1, . . . , δk → 0 in L2-sense if condition (3.1.2) holds true.

Now take the space Rd × (Rd)k with the norm ‖.‖d,k given by ‖(t, y)‖d,k = |t|Rd + |y|Rdk ,
where |x|Rn is the Euclidean norm in Rn. Let Br(t, y) be the ball of radius r > 0 with center
at (t, y) in some space Rd × (Rd)k. Introduce the set Tε = T × {y : 1− ε < |y|Rdk < 1 + ε}

Theorem 3.1.5
Let X be a centered Gaussian random field given on a open index set T ⊂ Rd which has all
kth-order L2-partial derivatives in all directions everywhere in T . X is k times continuously
differentiable with probability one, i.e., X ∈ Ck(T ) a.s., if ∃C ∈ (0;∞) and ε, γ, r0 > 0 such
that

E(∆kX(t, δ1 · y1)−∆kX(s, δ2 · y2))2 ≤ C [− log(‖(t, y1)− (s, y2)‖d,k + |δ1 − δ2|)]−(1+γ) (3.1.3)

for all ((t, y1), (s, y2)) ∈ Tε × Tε : (s, y2) ∈ Br(t, y1) and some 0 < δ1, δ2, r < r0.
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Proof Define a new Gaussian random field X̃ = {X̃(t, y, δ) : (t, y, δ) ∈ T̃}, where T̃ = Tε ×
(−r; r) is an open subset of Rd × (Rd)k ×R with the norm ‖(t, y, δ)‖d,k,1 = ‖(t, y)‖d,k + |δ| and

X̃(t, y, δ) =


∆kX(t,δ−y)

δk
, δ 6= 0

∂kX(t)
∂y , δ = 0

(t, y, δ) ∈ T̃ .

X ∈ Ck(T ) a.s. iff X̃ ∈ C(T̃ ). Moreover, it is clearly enough if X̃ ∈ C (hyperplane δ = 0 in
T̃ ). But condition (3.1.3) being true, our assertion follows from Corollary 3.1.1 and Remark
3.1.2.

3.1.2 Gaussian random polynomials

Let X = {X(t) : t ∈ Rd} be a random field given by

X(t) =
∑
|α|≤n

aα · tα, t = (t1 . . . td)T ∈ Rd,

where α = (α1, · · · , αd)T is a multiindex with αi ∈ N∪ {0}, i = 1, . . . , d, |α| = α1 + · · ·+αd,
tα = tα1

1 · t
α2
2 · . . . · t

αd
d , and {aα} is a sequence of i.i.d. N(0, 1)-distributed random variables.

This is a random polynomial of degree n ∈ N with Gaussian coefficients aα. (For d = 1, we
get X(t) = a0 + a1t + . . . + an−1t

n−1 + ant
n, t ∈ R). Such polynomials form a special case of

Gaussian linear functions introduced in Example 2.2.1, 2):

X(t) =< ~a,~t >, where ~a = (aα : |α| ≤ n)T and ~t = (tα : |α| ≤ n)T are the vectors of
coefficients and of variables respectively. It holds obviously X(t) ∼ N(0, |~t|2), with

|~t|2 =
∑
|α|≤n

t2α, t2α = t2α1
1 · t2α2

2 · . . . · t2αdd

and covariance function

C(s, t) =
∑
|α|≤n

sα · tα.

Evidently, X(t) has an integral representation of Example 1.2.1.

X(t) =
∫
Rd
g(t, x)W (dx), t ∈ Rd, (3.1.4)

where

g(t, x) =
∑
|α|≤n

aα t
αI(x ∈ Aα),

and {Aα} is a family of pairwise disjoint subsets of Rd with unit volume λd(Aα) = 1, ∀α. W
is a Gaussian white noise with Lebesgue control measure; cf. Sections 2.3.1 and 2.3.2 for the
definition of W and the integral in (3.1.4).
One of the classical questions for random Gaussian polynomials is the problem about the mean
number of real (or complex) zeros of X in a compact domain T ⊂ Rd. If d = 1, then the
classical result of M. Kac (1943) says that
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ENn = 2
π

logn(1 + o(1)), n→∞, (3.1.5)

where Nn is the number of real roots of X(t) = 0, degX = n. Moreover,

ENn(a, b) = 1
π

∫ b

a

1−
(

(n+ 1)tn(1− t2)
1− t2n+2

)2
1/2

dt

|1− t2| , (3.1.6)

where Nn(a, b) is the number of real of X in (a, b),−∞ ≤ a < b ≤ + ∞.

In the Special case (a, b) = R we have

ENn = 1
π

∫
R

√
1

(t2 − 1)2 −
(n+ 1)2 t2n

(t2n+2 − 1)2 dt
(∗)= 4

π

1∫
0

1−
(

(n+ 1) xn(1− x2)
(1− x 2n+2)

)2
1/2

dx

1− x2 ,

the letter is the original formula by M. Kec (1943).
The equality (∗) can be proven by noting that by symmetry

ENn = 2
π

∞∫
0

(
1

(t2 − 1)2 −
(n+ 1)2t2n

(t2n+2 − 1)2

)1/2

dt = 2
π

1∫
0

(...)1/2 dt+ 2
π

∞∫
1

(...)1/2 dt = 4
π

1∫
0

(...)1/2 dt

where we used the substitution x = 1/t in the last integral.

For n = 1, we have N1 = 4
π

1∫
0

√
1−4 x2(1−x2)2

(1−x4)2

1−x2 dx.

Remark 3.1.3
The asymptotic of the mean number of real roots heavily depends on that form of the joint
distribution of all coefficients

~a = (aα : |α| ≤ n)T .

If all aα are independent and id. distributed the asymptotic (3.1.5) holds essentially for
distributions of a0 which belongs to the domain of attraction of α-stable laws (see [23]) with
another constant factor c on the place of 2

π . It is proven in [41] that if Θ is a class of all
non-degenerated distributions of a0 then

inf
Θ

sup
n∈N

E(Nn|X(t) 6≡ 0) = 1.

Let Θa,b be the class of distributions of a0 such that

P (a0 > 0) = a, P (a0 < 0) = b, a, b ≥ 0 : 0 < a+ b ≤ 1.

Then Nazarov and Zaporozhets showed that

inf
Θa,b

sup
n∈N

E(Nn|X(t) 6≡ 0) = 1 + 1− |a− b|
a+ b

.

For instance, for symmetric distributions (a = b = 1
2) we get
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inf
Θ 1

2 ,
1
2

sup
n∈N

E(Nn|X(t) 6≡ 0) = 2.

In order to prove formula (3.1.7), let us do it in a more general setting:
Theorem 3.1.6
Let

X(t) = a0 + a1t+ a2t
2 + . . .+ ant

n, t ∈ R,

be a random polynomial, where the random coefficients a0, . . . , an have a joint density p(x0, . . . , xn).
Let g(t) be any smooth function on R, g ∈ C1(R). Denote by Nn(g; a, b) the number of real
solutions of the equation X(t) = g(t), t ∈ [a; b]. Then

ENn(g; a, b) =
∫ b

a

∫
Rn
p(g(t)−xntn−. . .−x1t, x1, . . . , xn)|nxntn−1+. . .+x1−g′(t)|dx1 . . . dxndt

Proof If X is a polynomial of degree n, then the probability measure on such polynomials is
introduced by

dX = p(x0, x1, . . . , xn)dx0dx1 . . . dxn.

Let us try to pass to more convenient coordinates. If X intersects the graph of g at a point
with an abscissa s, then we can write

0 = X(s) = a0 + a1s+ . . .+ ans
n − g(s) ⇒ a0 = g(s)− a1s

1 − . . .− ansn;

hence, perform a change of coordinates
x0 = g(s)− y1s− . . .− ynsn
x1 = y1
...
xn = yn

We get

dX = p(x0, x1, . . . , xn)dx0 . . . dxn = p(g(s)− y1s− . . .− ynsn, y1, . . . , yn)
|g′(t)− y1 − . . .− nyntn−1|dtdy1 . . . dyn

Let H = {all polynomials X of degree n: graph of X intersects the graph of g within [a; b]×R}
Then integrate I(X ∈ H) with respect to dX:
we get

ENn(g; a, b) =
∫
X∈H

Nn(g; a, b)dX =
∫ b

a

∫
Rn
p(g(s)− y1s− . . .− ynsn, y1, . . . , yn)

|g′(s)− y1 − . . .− nynsn−1|dy1 . . . dynds,

since any polynomial is counted as many times on the left-hand side as often it intersects the
graph of g.
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Corollary 3.1.2
For i.i.d. N(0, 1)-distributed coefficients ai, i = 0, . . . , n, the above theorem yields formula
(3.1.7).

Proof Take

g(t) ≡ 0, p(x0, x1, . . . , xn) = 1
(2π)

n+1
2

exp(−1
2(x2

0 + . . .+ x2
n))

Then

p(g(t)− xntn − . . .− x1t, x1, . . . , xn) = 1
(2π)

n+1
2

exp(−1
2((x1t1 + . . .+ xnt

n)2 + x2
1 + . . .+ x2

n))

If we can prove that

1
(2π)

n+1
2

∫
Rn

exp(−1
2((x1t+ . . .+ xnt

n)2 + x2
1 + . . .+ x2

n) · |ntn−1xn + . . .+ x1|dx1 . . . dxn

= 1
π

1
|1− t2|

1−
(

(n+ 1)tn(1− t2)
1− t2n+2

)2
1/2

, t ∈ (a; b),

we are done.

Exercise 3.1.2
Show this!

Another possibility to get formula (3.1.7) is by means of the so-called Rice’s formula. Let

N+
u (0, T ) = #{t ∈ [0;T ] : X(t) = u,X ′(t) > 0}

be the number of up-crossings of the smooth stochastic process X of level u ∈ N over [0;T ].
Then, Rice’s formula states, that (under some assumptions on X that will be given later) it
holds

EN+
u (0, T ) =

∫ T

0

∫ ∞
0

xpt(u, x)dxdt,

where pt is the probability density of the distribution of random vector (X(t), X ′(t))T . Actually,
the name "Rice’s formula" attributes to the whole class of similar integral formulae for the
moments of N+

u and related quantities

Nu(0, T ) = #{t ∈ [0;T ] : X(t) = u},
N−u (0, T ) = #{t ∈ [0;T ] : X(t) = u,X ′(t) < 0} (number of downcrossings),

and so on. These formulae go back to Rice and Kac in the 1940s who proved them for stationary
Gaussian processes. (cf. [1], p. 264-265, [3], p. 69 ff for discussion). The classical Rice’s formula
(1944, 1945) states that for a stationary centered Gaussian process X = {X(t) : t ∈ R} with
unit variance and second spectral moment λ2 it holds

ENu(0, T ) =
√
λ2
π

e−
u2
2 T, EN+

u (0, T ) = ENu(0, T )
2 ,
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here λ2 is defined as

λ2 =
∫
Rd
x2µX(dx),

where µX is the spectral measure of X.
Now let us formulate and prove Rice’s formula for the case of Gaussian processes. The same
formula holds for a much more general class of processes: see [3], p. 74-79. Generalizations for
the case of vector-valued random fields are also available; see [3], Chapter 6 and [1], 11.2.

Theorem 3.1.7 (Gaussian Rice formula):
Let X = {X(t) : t ∈ I} be a Gaussian process with C1-smooth paths, and I be an inter-
val on R. Let u ∈ N, t1, . . . , tk ∈ I be any pairwise distinct points and the distribution of
(X(t1), . . . , X(tk)) is not degenerate with density pX(t1),...,X(tk). Denote by EN [k]

u the k-th
factorial moment of Nu = Nu(I) :

EN [k]
u = E[Nu(Nu − 1) · . . . · (Nu − k + 1)I(Nu ≥ k)].

Then it holds

EN [k]
u =

∫
Ik

E[|X ′(t1) · . . . ·X ′(tk)| |X(t1) = u, . . . ,X(tk) = u]pX(t1)...X(tk)(u, . . . , u)dt1 . . . dtk
(3.1.7)

Before we begin to prove this Theorem, some remarks are in order.

1. An equivalent form of (3.1.7) is

EN [k]
u =

∫
Ik
dt1 . . . dtk

∫
Rk
|x′1·x′2·. . .·x′k|pX(t1)...X(tk)X′(t1)...X′(tk)(u, . . . , u, x′1, . . . , x′k)dx′1 . . . dx′k,

where pX(t1)...X(tk)X′(t1)...X′(tk) is the joint probability density of X(tj), i = 1, . . . , k and
X ′(tj), j = 1, . . . , k.

2. In particular, for k = 1 it holds

ENu(I) =
∫
I

∫
R
|x|pX(t),X′(t)(u, x)dxdt (3.1.8)

It can be shown that this formula holds also for non-Gaussian processes X satisfying the
following conditions:

a) Function (t, x) 7→ pX(t)(x) is continuous for t ∈ T , x in a neighborhood of u.

b) (t, x, x′) 7→ pX(t),X′(t)(x, x′) is continuous for t ∈ I in a neighborhood of u and
x′ ∈ R.

c) If ωX′(δ) is the modulus of continuity of X ′ then

E[ωX′(δ)]−−−→
δ→0

0.
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3. It follows from formula (3.1.8) that ENu(I) is finite for Gaussian processes, since the right-
hand side is always finite. Unfortunately, this may not be the case for E(N [k]

u (I)) < ∞,
k > 1.

4. It is in general not easy to show that the distribution of X(t1) . . . X(tk) is non-degenerate.
However, in the case of stationary Gaussian X, an easy sufficient condition for that is
that there exists no countable set A : µX(Ac) = 0, where µX is the spectral measure of
X.

For the proof of Theorem 3.1.7 we need the following lemma:

Lemma 3.1.5 (Kac’s counting formula):
Let f ∈ C1(I) be a real-valued function defined on an interval I = [t1, t2], f(t1) 6= u, f(t2) 6= u,
such that there are no critical points of f at level u : @t ∈ I : f(t) = u, f ′(t) = 0. Then

Nu(f, I) = lim
δ→0

1
2δ

∫
t∈I:|f(t)−u|<δ

|f ′(t)|dt (3.1.9)

Proof Since f ∈ C1(I), Nu(f, I) is finite. Let Nu(f, I) = n ∈ N ∪ {0}. If n = 0, then both
sides of (3.1.9) are zero, since the integration set in (3.1.9) is empty for δ > 0 small enough.
Let n ≥ 1 and s1, . . . , sn ∈ I be the points where f(si) = u, i = 1, . . . , n. Since f ′(si) 6= 0,
i = 1, . . . , n, we have for small enough δ > 0 that

f−1(u− δ, u+ δ) =
n⋃
j=1

Jj

where Jj are disjoint intervals and si ∈ Ji, i = 1, . . . , n. f |Ji is a one-to-one mapping, a
diffeomorphism, so that one gets ∫

Ji

|f ′(t)|dt = 2δ

by an exchange of variables. Then for small enough δ > 0, it holds

1
2δ

∫
t∈I:|f(t)−u|<δ

|f ′(t)|dt = 1
2δ

n∑
i=1

∫
Ji

|f ′(t)|dt = n · 2δ
2δ = n.

Proof of Theorem 3.1.7. We prove only the case k = 1. For k > 1 see [3], p. 73. Without
loss of generality we assume that I = [0, 1]. Let X(n) be the dyadic approximation of X, i.e.
the graph of X(n) is a polygonal line with vertices {( k

2n , X( k
2n )), k = 0, . . . , 2n}. One can easily

show that

sup
t∈[0,1]

|X(n)(t)−X(t)| a.s.−−−→
n→∞

0,

∣∣∣X(n)(t)−X(t)
∣∣∣ a.s.
≤ 2 sup

t∈I
|X(t)|, ∀n ∈ N, t ∈ I,

whereas
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E
[
sup
t∈I
|X(t)|

]m
<∞

for all m ∈ N, since X is a Gaussian process. By Lebesgue’s theorem on dominated conver-
gence

varX(n)−−−→
n→∞

varX(t)

uniformly on t ∈ I. Hence, for large n

var(X(n)(t)) ≤ b > 0

for all t ∈ I and some b > 0, since X is non-degenerate process. For such large n, it holds

X(n)
(
k

2n
)
6= u a.s., k = 0, . . . , 2n,

since X(t) has a (Gaussian) density, t ∈ I. Since the result of Lemma 3.1.5 holds also for
polygonal f (although they are only piecewise from C1(I)) by additivity of left and right-hand
side of formula (3.1.9) we get

Nu(X(n), I) a.s.= lim
δ→0

1
2δ

∫
t∈I:|X(n)(t)−u|<δ

|X(n)′(t)|dt (3.1.10)

for any n large enough, where the right-hand side of (3.1.10) is obviously bounded by the
total number of segments in X(n), which is 2n. Applying dominated convergence theorem, we
get

ENu(X(n), I) = lim
δ→0

1
2δ

∫
I

E(|X(n)′(t)| · I{|X(n)(t)− u| < δ})︸ ︷︷ ︸
E(I{|X(n)(t)− u| < δ}E(|X(n)′(t)||X(n)(t)))dt

= lim
δ→0

∫
I
dt

1
2δ

∫ u+δ

u−δ
E(|X(n)′(t)| | X(n)(t) = x)pX(n)(t)(x)dx.

Since X,X(n) have continuous sample paths and are Gaussian, their expectation and covari-
ance functions are continuous as well. Since for t ∈

(
k

2n ,
k+1
2n
]
it holds

X(n)(t) = (k + 1− 2nt)X
(
k

2n
)

+ (2nt− k)X
(
k + 1

2n
)

= 2n
(
X

(
k + 1

2n
)
−X

(
k

2n
))

︸ ︷︷ ︸
ξ(k)

t+ (k + 1)X
(
k

2n
)
− kX

(
k + 1

2n
)

︸ ︷︷ ︸
η(k)

,

we get X(n)′(t) = ξ(k) and hence

E(|X(n)′(t)| | X(n) = x) = E(|ξ(k)| | ξ(k)t+ η(k) = x) = E
(∣∣∣∣x− η(k)

t

∣∣∣∣) .
Thus,
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E(|X(n)′(t)| | X(n)(t) = x)pX(n)(t)(x)

is a continuous function of (t, x) on
[
k

2n ,
k+1
2n
]
× [u− δ0, u+ δ0] for some δ0 > 0, and hence

ENu(X(n), I) =
∫
I

lim
δ→0

1
2δ

∫ u+δ

u−δ
E(|X(n)′(t)| | X(n)(t) = x)pX(n)(t)(x)dxdt

=
∫
I

E(|X(n)′(t)| | X(n)(t) = u)pX(n)(t)(u)dt

by the mean value theorem. Now take the limit as n→∞ on both sides of the last equality.
Since

Nu(X(n), I) ↑ Nu(X, I)

as n→∞, we get

ENu(X(n), I)−−−→
n→∞

ENu(X, I)

by the theorem on monotone convergence. The monotone convergence Nu(X(n), I) to Nu(X, I)
takes place, since with probability one there are no extremal points of X at level u. [Ylvisaker
Theorem]. As n → ∞, the expectation and the covariance matrix of (X(n)(t), X(n)′(t))T
converge to the corresponding expressions of X, that is why

∫
I

E(|X(n)′(t)| | X(n)(t) = u)pX(n)(t)(u)dt−−−→
n→∞

∫
I

E(|X ′(t)| | X(t) = u)pX(t)(u)dt.

Exercise 3.1.3
Show that (3.1.7) holds using Rice’s formula!

Another problem of interest is the location of all complex zeros of

X = {X(t) : t ∈ C}, X(t) =
n∑
i=0

ait
i

on the complex plane C. Let Rn(a, b) = #{z ∈ C : a ≤ |z| ≤ b,X(z) = 0}, 0 ≤ a < b < ∞ be
the number of zeros of X on the ring. Let Sn(α, β) = #{z ∈ C : α ≤ arg z ≤ β,X(z) = 0},
−π ≤ α < β ≤ π be the number of zeros of X in the sector. The following result (see [25]) can
be proven for arbitrary distributions of i.i.d. coefficients ai, i = 0, . . . , n of X:
Theorem 3.1.8 1. It holds 1

nRn(1− δ, 1 + δ) a.s.−−−→
n→∞

1 for any δ ∈ (0, 1) iff

E log(1 + |a0|) <∞. (3.1.11)

2. For any distribution of a0, it holds

1
n
Sn(α, β) a.s.−−−→

n→∞
β − α

2π .
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This result shows that all complex zeros of random polynomials satisfying conditions of The-
orem 3.1.8 asymptotically lie (with probability one) around the unit circle |z| = 1. Moreover,
they are spread over |z| = 1 uniformly.

For Gaussian coefficients a0, a more exact result can be proven (see [51]): for any δ > 0

1
n

ERn
(
e−

δ
n , e

δ
n

)
−−−→
n→∞

1 + e−2δ

1− e−2δ −
1
δ
.

This asymptotic was extended to distributions of a0 belonging to domains of attraction of
α-stable laws by [26]. It is worth noting that the behavior of complex roots can be very different
from that stated in Theorem 3.1.8, 1) if condition (3.1.11) does not hold. There are examples
of polynomials such that on average n

2 +o(1) of its n roots concentrate near the origin, whereas
another half goes to infinity as n→∞ (see [60]).

Now let us consider the case of dimension d of index space greater than one, i.e.

X(t) =
∑
|α|≤n

aα · tα

is a polynomial of d variables (t ∈ Rd). Let Mn be the random hypersurface defined by the
equation X(t) = 0; let Hd−1 be the Hausdorff measure of dimension d− 1.
Theorem 3.1.9
If aα are i.i.d. N(0, 1)-distributed random variables, then for any compact set K ∈ Rd it holds

EHd−1(Mn ∩K) =
Γ
(
d+1

2

)
2π d+1

2

∫
K

∫ π

0
. . .

∫ 2π

0

√√√√ d∑
i=1

g(xi)
(1− x2

i )
v2
iϕ ·D(ϕ)dϕdx,

where dx = dx1 . . . dxd, dϕ = dϕ1 . . . dϕd−1,

D(ϕ) = sind−2 ϕ1 sind−3 ϕ2 · . . . · sinϕd−2

g(xi) = 1−
(

(n+ 1)xni (1− x2
i )

1− x2n+2
i

)2

, i = 1, . . . , d



v1(ϕ) = cosϕ1
v2(ϕ) = sinϕ1 · cosϕ2
...
vd−1(ϕ) = sinϕ1 · sinϕ2 · . . . · sinϕd−2 · cosϕd−1
vd(ϕ) = sinϕ1 · sinϕ2 · . . . · sinϕd−2 sinϕd−1

Moreover, it holds

EHd−1(Mn ∩K) = logn
π
Hd−1(K ∩K0)(1 + o(1)), n→∞,

where

K0 =
d⋃
i=1
{x = (x1, . . . , xd) ∈ Rd : |xi| = 1}
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The proof of this result can be found in [24].
The asymptotic result above means that almost the whole surface Mn concentrates around K0
for n → ∞. More generally, it holds EHd−1(Mn ∩K) = O(1), as n → ∞ for polynomials X
with i.i.d. coefficients aα that have a density p with sup

x∈R
p(x) < ∞ and Ea0 < ∞, if compact

K is chosen so that dist(K,K0) > 0. Here dist(., .) is the Euclidean distance between two sets
(see [22]).
In the same paper, the statement of Theorem 3.1.9 is generalized to symmetric strictly α-stable
distributions of aα.

3.1.3 Large deviations for Gaussian random functions

In this Section, we investigate the asymptotic behavior of the probability
P (sup

t∈T
X(t) ≥ n), n→ +∞, for a Gaussian random function X = {X(t), t ∈ T}. Probabilities

of that kind play an important role e.g. in risk theory (insurance mathematics) and financial
mathematics, as well as in reliability theory and theory of extreme values. This asymptotic
behaviors depends heavily on the behavior of the variance of X.
See the book Piterbarg [44] (1996) for a complete treatment of this subject. We have state and
prove the following powerful and elegant result by M. Talagrand (1988) [? ].

Theorem 3.1.10
Let X = {X(X), t ∈ T} be a centered a.s. bounded real separable Gaussian random function
on a compact T with continuous covariance function and a unique maximum point of variance,
i.e.,

∃! t0 ← T : σ2
T := E X2(t0) = sup

t←T
E X2(t). (3.1.12)

Suppose that
lim
δ→0

1
δ

(
E sup

t∈Tδ
X (t)

)
= 0, (3.1.13)

where the set Tδ = {t ∈ T : E
(
X(t)X(t0)

)
≥ σ2

T − δ2}. Then

P
(

sup
t∈T

X(t) ≥ n
)

∼
n→→∞

Ψ(u/σT ), (3.1.14)

where Ψ(x) = 1√
2π

∞∫
x
e−t

2/2dt, x ∈ R is the tail probability function of standard normal

law. Also the converse statement is true: if (3.1.18) holds true then property (3.1.13) follows
from (3.1.14).

Proof Let us prove only the sufficiency of (3.1.18) and (3.1.13) for (3.1.14). Since {X(t0) ≥
u} ⊆ {supt∈T0 X(t) ≥ u} then ∀u ∈ R P (supt∈T X(t) ≥ u) ≥ P (X(t0) ≥ u) = Ψ(u/σT ).
Hence, it is sufficient to show that lim supu→+∞ P (supt∈T X(t) ≥ u)/Ψ(u/σT ) ≤ 1, because

1 ≤ lim inf
n→+∞

P (sup
t∈T

X(t) ≥ u) / Ψ(u/σT )

≤ lim sup
n→+∞

P (sup
t∈T

X(t) ≥ u) / Ψ(u/σT ) ≤ 1
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yields relation (3.1.14).
It follows from (3.1.13) that ∀ε > 0 ∃δ0 > 0 small enough such that for any δ ≤ 2δ0 it holds
E(supt∈Tδ X(t)) ≤ ε2 · δ.

Assume that δ0 ≤ σT ε2. By assumption on t0, 0 = supt/∈Tδ E X2(t) < σ2
T .

Without loss of generality, we may put σT = 1, since otherwise we may scale X(t) by σT :
X̃(t) = X(t)/σT .
We need the following Lemmata:

Lemma 3.1.6
Let ϕ(x) = 1√

2πe
−x2/2, x ∈ R be the density if the standard normal law. Then for all x > 0

it holds
(

1
x −

1
x3

)
ϕ(x) ≤ Ψ(x) ≤ 1

xϕ(x).

Remark 3.1.4
Relation (3.1.14) does not imply both relations (3.1.18) and (3.1.13). For instance, let X =
{X(t), t ∈ T}, X(t) ≡ X0 ∼ N(0, 1), ∀t ∈ T. It holds P (supt∈T X(t) ≥ u) = P (X0 ≥ u) =
Ψ(u), i.e., (3.1.14) holds, however, VarX(t) = 1 ∀t ∈ T, which means that condition (3.1.18)
is not true.
To prove the upper bound, notice that

√
2π ψ(x) =

∞∫
x
e−y

2/2dy =
∫

{y≥x}
e−y

2/2dy ≤
1≤y/x

∞∫
x

y
xe
−y2/2dy = 1

x
1
2

∞∫
x
e−y

2/2dy2

= 1
xe
−x2/2.

For the lower bound, compute
√

2π ψ(x) =
+∞∫
x
e−y

2/2dy = | Substitution y = x+ t/x|

= 1
x

∞∫
0
e−

1
2 (x2+2t+t2/x2)dt = 1

x e
−x2/2

∞∫
0
e−(2t+t2/x2)/2 dt ≥︸︷︷︸

Since e−z≥1−z

1
x e
−x2/2

∞∫
0
e−t

(
1− 1

2
t2

x2

)
dt

≥ 1
xe
−x2/2 ·

(
1− 1

x2

∞∫
0

t2

2 e
−t dt

)
= 1

x

(
1− 1

x2

)
e−x

2/2, since
∞∫
0
e−t t

2

2 dt = −
∞∫
0

t2

2 de
−t =

∞∫
0
e−t dt = 1.

Remark 3.1.5
In particular, it holds ψ(x) ≥ κ1 · 1

x for all x ≥ 1 and some κ1 > 0.

Lemma 3.1.7 (Inequality of Borell-Tsirelson-Sudakov, 1975):
Let Y = {Y (t), t ∈ T} be a separable Gaussian random function, a.s. bounded on T and
centered. Then, for w ∈ R such that P (supt∈T Y (t) ≥ w) ≤ 1/2 and any u ≥ w we have
P (supt∈T Y (t) ≥ u) ≤ ψ (u−wσT ) where σ2

T = supt∈T EY 2(t). (without proof).

By Lemma 3.1.7 it holds

limn→+∞
P (supt∈T\Tδ0 Y (t) ≥ u)

ψ(u) = 0, (3.1.15)

since T \ Tδ0 = {t ∈ T : E X(t)X(t0) < 1− δ2
0}, and for large u

P (supt∈T\Tδ0 Y (t) ≥ u)
ψ(u)

L.3.1.7
≤

ψ
(
u−w
θ

)
ψ(u)

L.3.1.6
≤ θu

u− w
e−(u−w)2/2

κ1e−u
2/2
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∼ exp

−u2/2
(
1/θ2 − 1

)
︸ ︷︷ ︸
>0, since θ<1

 e2uw/θ →
u→+∞

0.

Since P
(

supt∈Tδ0∪(T\Tδ0 )=T X(t) ≥ u
)
≤ P

( {
supt∈Tδ0 X(t) ≥ u

}
∪
{

supt∈T\Tδ0 X(t) ≥ u
} )

≤ P
(

supt∈Tδ0 X(t) ≥ u/2
)

+ P
(

supt∈T\Tδ0 X(t) ≥ u/2
)

for all n > 0, and in view of
(3.1.14), it is enough to show that lim supn→+∞ P

(
supt∈T\Tδ0 X(t) ≥ u

)
/ψ(u) ≤ 1,

i.e., for all sufficiently large u > 0

P
(

sup
t∈Tδ0

X(t) ≥ u
)
≤ ψ(u) (1 +Kε) (3.1.16)

for some constant K > 0.
Now fix u > 0 and set α = 1/(ε u). Define the following non-decreasing sequence of sets:
V−1 = ∅, Vk = T2kα, for k ≥ 0, and let Uκ = Vk\Vk−1 = {t ∈ T : 1−(2kα)2 ≤ E(X(t)X(t0)) <
1−(2k−1α)2}, ∀k ≥ 1, U0 = V0. Let p = inf{k ∈ N : 2kα ≥ δ0}. It follows then Tδ0 ⊂

⋃
0≤k≤p Uk.

Let us prove the bound on each "ring" Uk, and then combine them.
Set µk = E (sup

t∈Vκ
X(t)). For k ≤ p it holds by the bound � that µk ≤ α2kε2.

Lemma 3.1.8
Let Y = {Y (t), t ∈ T} be a centered a.s. continuous Gaussian process on T, and Z a Gaussian
random variable such that EZ = 0 and the family {z, Y (t), t ∈ T} is jointly Gaussian. Assume
that

E
(
(Y (t)− t)t

)
≤ 0 (3.1.17)

for each t ∈ T. Set

µ = E sup
t∈T

Y (t), σ2 = E Z2, a =
(

sup
t∈T

E
(
Y (t)− t

)2 )1/2

.

If a < σ and u > max{2µ, µ+ σ} then

P (sup
t∈T

Y (t) ≥ u) ≤ Ψ(u/σ)
[
1 +K · au

σ2 · e
a2u2/(2σ4)

]
e2uµ/σ2

,

where K > 0 is a constant.

See the proof in [Adler Taylor], p. 80-83.
Use this Lemma with

T = U0 = V0 and Z = X(t0), Y (t) = X(t), t ∈ U0, σ = 1, µ = µ0 ≤ α · ε2 = ε/u.

Since (3.1.18) holds, (3.1.17) is true by Cauchy-Schwarz inequality. Then we have for each u
large enough

P (sup
t∈U0

X(t) ≥ u) ≤ Ψ(u)
[
1 +K · a · u · ea2u2/2

]
e2u·ε/u︸ ︷︷ ︸
e2ε

. (3.1.18)
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Calculate a = ω0, where ωk = supt∈Vk (E(X(t)−X(t0))2)1/2 for all k ≥ 0. We have for any
Gaussian Z ∼ N(0, σ2)

E|Z| = 2
∞∫
0

x ϕZ(x)dx = 2√
2πσ

∞∫
0

xe−x
2/(2σ2)dx = |y = x

σ
|

= σ
2√
2π

∞∫
0

ye−y
2/2 dy

︸ ︷︷ ︸
1

= σ

√
2
π

=
√

2
π

(E|Z|2)1/2,

hence

ωk =
√

2
π

sup
t∈Vk

E|X(t)−X(t0)| ≤
√

2
π

E sup
t∈Vk
|X(t)−X(t0)| ≤︸︷︷︸

since t0←Vk ∀k

≤ 2
√

2
π

E sup
t∈Vk
|X(t)| ≤ 4

√
2
π︸ ︷︷ ︸

K1

E sup
t∈Vk

X(t) = K1 · µk ≤ K1 · α · 2kε2,

since by symmetry of N(0, σ2) it holds

P (sup
t∈T
|X(t)| > u) ≤ 2 P (sup

t∈T
X(t) > u)

and hence

E supt∈T |X(t)| =
∞∫
0

P (sup
t∈T
|X(t)| > u)du ≤ 2

∞∫
0

P (sup
t∈T

X(t) > u)du = 2Esupt∈TX(t).

Then we insert a ·K1 · µ0 = K1
ε
u in (3.1.16) to get

P (sup
t∈U0

X(t) ≥ u) ≤ Ψ(u) ·
[
1 + k · k1 · ε · ek

2
1ε

2/2
]
e2ε ≤ Ψ(n) [1 +K2ε]

for ε > 0 small enough, since then eε < 1.
A similar argument shall be applied to all Uk for p ≥ k ≥ 1. Set Z = (1− (α · 2k−1)2)X(t0)

in Lemma 3.1.8. Check that inequality (3.1.17) holds: for t ∈ Uk, 1 ≤ k ≤ p

E
[(
X(t)−X(t0) + (α · 2k−1)2 X(t0)

)
X(t0)

] (
1− (α · 2κ−1)2

)

=
(
1− (α · 2k−1)2

)
︸ ︷︷ ︸

≥0

E [X(t)X(t0)]− 1 + (α · 2k−1)2︸ ︷︷ ︸
σ02


︸ ︷︷ ︸

≤0, if t∈Uk.

≤ 0.

Then Lemma 3.1.8 yields

P ( sup
t∈Uk

X(t) ≥ u) ≤ ψ(u/σ)
(

1 +K
au

σ2 ea
2u2/(2σ4)

)
· e2uµ/σ2

, (3.1.19)
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where
σ2 = EZ2 =

(
1− (α · 2k−1)2

)2
EX2(t0) =

(
1− (α · 2k−1)2

)2

µ = E sup
t∈Uk

X(t) ≤ E sup
t∈Vk

X(t) = µk ≤ α · 2k · ε2 =
∣∣∣∣α = 1

εu

∣∣∣∣ = 2k · ε
u

,

a = sup
t∈Uk

(
E (X(t)− (1− (α · 2k−1)2)X(t0))2)

)1/2

≤ sup
t∈Vk

‖ X(t)− (1− (α · 2k−1)2)X(t0)‖2,

where ‖ · ‖2 is the L2(Ω,F , P )−norm, and K > 0 is a constant. By triangle inequality,

sup
t∈Vκ

‖ X(t)− Z‖2 ≤ sup
t∈Vk

‖ X(t)−X(t0)‖2︸ ︷︷ ︸
ωk

+ sup
t∈Vk

‖ X(t0)− Z‖2

≤ K1 · α · 2k ε2 + (α · 2k−1)2 · ‖X(t0)‖2︸ ︷︷ ︸
1

since 1 ≤ k ≤ p and hence δ0 ≥ α · 2k−1, where δ0 ≤ ε2 by the choice of δ0, we have

(α · 2k−1)2 ≤ α · 2k−1 · δ0 ≤ α · 2k · ε2.

Then
a ≤ K1 · α · 2k ε2 + α · 2k ε2 = K2 · α · 2k · ε2

for some constant K2 > 0. Since 0 < ε < 1, inequality (3.1.19) reads

P ( sup
t∈Uk

X(t) ≥ u) ≤ Ψ
(

u

1− (α · 2k−1)2

)

×
[
1 + kε22k u

εu
k2

1
((−(α2k−1)2)2 exp

(
K2

2
u2

ε2u2 22k ε
4

2
(
1− (α · 2k−1)2

)4
)]

× exp
(

2u2k ε
u

1
(1− (α · 2k−1)2)2

)

≤ Ψ
(

u

1− (α · 2k−1)2

) [
1 +K3 · ε 2k · eK4 ε222k]

eK5·ε2k

≤ Ψ
(

u

1− (α · 2k−1)2

)
eK6·ε·22k

,

since for large u > 0 1
1−(α·2k−1)2

∣∣∣
α= 1

εu

is bounded. Using the inequality 1
1−x ≥ 1+x, 0 ≤ x < 1,

we get
u

1− (α · 2κ−1)2 ≥ n+ u · (α · 2κ−1)2.
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Since ∀y ≥ 0

Ψ(x+ y) =
∞∫

x+y

1√
2π

e−t
2/2dt = |z = t− y| =

∞∫
x

1√
2π

e−(z+y)2/2dz

= e−y
2/2

√
2π

∞∫
x

e−z
2/2 e−zydz ≤ 1√

2π
· e−xy

∞∫
x

e−z
2/2 dz = e−xyΨ(x),

we have Ψ
(

u
1−(α·2k−1)2

)
≤︸︷︷︸
Ψ↓

Ψ
(
u+ u(α · 2k−1)2

)
≤ exp

(
−u2(α · 2κ−1)2

)
︸ ︷︷ ︸

22(k−1)/ε2

Ψ(u) and hence

∑
1≤k≤p

P ( sup
t∈Uk

X(t) ≥ u) ≤ Ψ(u)
∑

1≤k≤p
exp

(
−22k

4ε2 +K6ε · 22k
)

≤︸︷︷︸
ε∈(0,1)

Ψ(u)
∑

1≤k≤p
exp

(
−22k

( 1
4ε −K6ε

))
−→
ε→+0

0.

To summarize, we proved that

P ( sup
t∈Tδ0

X(t) ≥ u) ≤
p∑

k=0
P ( sup

t∈Uk
X(t) ≥ u) ≤

∣∣∣∣∣ Note that Tδ0 ⊂
p⋃

k=0
Uk

∣∣∣∣∣
≤ Ψ(u)(1 +K2 · ε) + Ψ(u)

∑
1≤k≤p

e−22k( 1
4ε−K6ε)

︸ ︷︷ ︸
≤K7·ε

≤ Ψ(u)(1 +K8 · ε)

for large u and ε > 0 arbitrary small. Theorem 3.1.10 is proved.

The Borell-Tsirelson-Ibragimov-Sudakov inequality is a mighty tool in the investigation of
Gaussian random functions. It has a number of important corollaries, for instance, the follows
one.

Corollary 3.1.3
Let X = {X(t), t ∈ T} be a centered separable Gaussian random function. The following
statements are equivalent:

1. P (sup
t∈T

X(t) <∞) = 1

2. E sup
t∈T

X(t) <∞

3. E exp
(
s(sup
t∈T

X(t))2
)
<∞ for all sufficiently small s > 0.

It is known for any random variables Z ≥ 0 a.s. that E esZ < ∞, s > 0 ⇒ EZ <
∞ ⇒ P (Z < ∞) = 1. Hence, the assertions of Corollary 3.1.3 that are specific to the
Gaussian case, are 1)⇒ 2)⇒ 3).
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Proof of Corollary 3.1.3 1) ⇒ 2). By Lemma 3.1.7, the tail probability function of Z =
sup
t∈T

X(t) is exponentially bounded for large argument values, which yields

EZ =
∞∫
0
P (Z > u)du ≤

w∫
0
P (Z > u)︸ ︷︷ ︸

≤1

du +
∞∫
w

Ψ(u−wσT )du ≤ w + E(σTY ) < ∞, where w as

in Lemma 3.1.7 and Y ∼ N(0, 1).
2)⇒ 3). For any s > 0 it holds EesZ2 =

∞∫
0
P (esZ2

> u) du =
∞∫
0
P (Z >

√
1/s log u) du since

EZ <∞, it follows Z a.s. bounded, and hence for w ∈ R as in Lemma 3.1.7 and u0 = esw
2

E es Z
2 L. 3.1.7
≤

u0∫
0

P (Z >
√

log u1/s) du +
∞∫
u0

Ψ
(√

(log u)1/s− w
σT

)
du

≤
∣∣∣ Substitution u = es(σT t+w)2

∣∣∣u0 +
∞∫
u0

Ψ(t) 2s (σT t+ +w) σT esσ
2
T t

2+2sσT tw+sw2
dt

= u0 + 2sσT esw
2
∞∫
0

(σT t+ w) Ψ(t) esσ2
T t

2+2sσTw·t dt

L. 3.1.6
≤ u0 + 2sσT esw

2
∞∫
0

(σT + w/t) ϕ(t) esσ2
T t

2+2sσTwt dt <∞

if s > 0 is small enough so that −1/2 + sσ2
T < 0, where ϕ(t) = 1√

2π e
−t2/2.

3.1.4 Comparison of Gaussian random functions
Let X = {X(t), t ∈ T} and Y = {Y (t), t ∈ T} be two a.s. bounded separable Gaussian pro-
cesses. Now can they be compared?

Definition 3.1.5 (Stochastic order):
Let X1 and X2 be two random variables on a probability space (Ω,F , P ). One says that X1 is
stochastically smaller than or equal to X2 (X1 ≤st X2) if P (X1 > u) ≤ P (X2 > u) ∀u ∈ R.

Theorem 3.1.11 (Slepian’s inequality (1963)):
Let X and Y be Gaussian random functions as above, centered and such that
V ar X(t) = V arY (t), t ∈ T,

γX(s, t) ≤ γY (s, t), ∀s, t ∈ T, (3.1.20)

where γX and γY are variograms of X and Y, respectively. Then,

sup
t∈T

X(t) ≤st sup
t∈T

Y (t), (3.1.21)

and
E sup

t∈T
X(t) ≤ E sup

t∈T
Y (t). (3.1.22)

Remark 3.1.6
1) Since V arX(t) = EX2(t) = V arY (t) = EY 2(t), t ∈ T the condition γX(s, t) =
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1
2E (X(s) − X(t))2 ≤ 1

2 E(Y (s) − Y (t))2 = γY (s, t), s, t ∈ T is equivalent to CX(s, t) ≥
CY (s, t), s, t ∈ T, where CX(s, t) = E(X(s)X(t)) and CY (s, t) = EY (s)Y (t) are covariance
functions of X and Y.

2) Inequality (3.1.22) is a simple corollary of (3.1.21), which is an intrinsic property of stochas-

tic order: if X1 ≤st X2 then EX1 =
∞∫
0

P (X1 > u)du −
0∫
−∞

P (X1 ≤ u)du

≤
∞∫
0
P (X2 > u)du−

0∫
−∞

P (X2 ≤ u)du = EX2.

3) It is essential in inequality (3.1.21) that X and Y are without an absolute value. Namely,
inequality sup

t∈T
|X(t)| ≤st sup

t∈T
|Y (t)| does not follow from condition (3.1.20).

Exercise 3.1.4
Give a counterexample!
To prove Theorem 3.1.11, we need the following Lemma.

Lemma 3.1.9
Let X = (X1, . . . , Xn)T ∼ N(0, C), C = (cij)ni,j=1. Let h : Rn → R satisfy h ∈ C2(Rn),
∂2h(x)
∂xi0∂xj0

≥ 0 for all x ∈ Rn and some 1 ≤ i0, j0 ≤ n,

h(x)
|x|d

= o(1)
|x|→∞

,
1
|x|d

∂h(x)
∂xi

= 0(1), |x| → ∞, 1
|x|d

∂2h(x)
∂xi∂xj

= o(1), |x| → ∞ (3.1.23)

for some d > 0.
Then H(C) = Eh(X1, . . . , Xn) is an increasing function of ci0,j0 .

Proof Show that ∂H(C)
∂ci0,j0

≥ 0 if ∂2h(x)
∂xi0∂xj0

≥ 0. Assume that det(C) 6= 0. Let ϕX be the density of
X = (X1, . . . , Xn)T ∼ N(0, C) ϕX(x) = 1

(2π)n/2
√

detC e−x
TC−1x/2, x ∈ Rn It can be easily seen

that

∂ϕX
∂cii

= 1
2
∂2ϕX
δx2

i

,
∂ϕX
δcij

= ∂2ϕX
δXiδXj

, i 6= j, i = 1, . . . , n, j = 1, . . . , n. (3.1.24)

To calculate ∂ϕX
∂cij

, write ∂ϕX
∂cij

= ∂ϕX
∂κij

∂κij
∂cij

, where C−1 = (κij)ni,j=1. Integrating by parts twice,
we get

∂H(C)
∂ci0j0

= ∂

∂ci0j0

∫
Rn

h(x)ϕX(x)dx =
∫
Rn

h(x)∂ϕX(x)
∂ci0j0

dx

(3.1.24)=
∫
Rn

h(x) ∂
2ϕX(x)
∂xi0∂xj0

dx
l3119:eq1=

∫
Rn

∂2h(x)
∂xi0∂xj0︸ ︷︷ ︸
≥0

ϕX(x)dx ≥ 0.

For a singular C, approximative it by a sequence of Ck with det(Ck) 6= 0, Ck → C, k →∞.

Proof of Theorem 3.1.11 Since X and Y are separable, it is enough to prove this theo-
rem for a finite T. Indeed, in the case of general T , let Tn be a sequence of finite subsets
of T such that Tn ⊂ Tn+1, and Tn → T̃ , where T̃ ⊂ T is a dense subset of T . Then



3 Models of random fields 103

sup
t∈Tn

X(t) a.s. ↑
n→∞

sup
t∈T̃

X(t) = sup
t∈T

X(t), and by monotonicity of this convergence, it holds

P (sup
t∈Tn

X(t) > u) →
n→∞

P (sup
t∈T

X(t) > u), E sup
t∈Tn

X(t) →
n→∞

E sup
t∈T

X(t).

(The same convergence holds for the random field Y).
So let T = {t1, . . . , tn}. Take h(x) =

n∑
i=1

hi(xi), x ∈ Rn, where hi : R → R+ is non-increasing,

hi ∈ C2(R) satisfying all assumptions of Lemma 3.1.9 Notice that ∂2h(x)
∂xi∂xj

= h′i(xi) h′j(xj)
×
∏
k 6=i,j

hk(xk) ≥ 0. Since CX(ti, tj) ≥ CY (ti, tj). i, j = 1, . . . , n by Remark 3.1.6, 1), using

Lemma 3.1.9 we get E
n∏
i=1

hi(X|ti|) ≥ E
n∏
i=1

hi(Y (ti)). Take now {h(k)
i }∞k=1 to be a sequence of

positive non-increasing C2-smooth functions s.t. h(κ)
i (x) →

κ→∞
1(x ≤ u). It follows that

P (sup
t∈T

X(t) ≤ u) = E1(X(ti) ≤ u, i = 1, . . . , n) = E
n∏
i=1

1(X(ti) ≤ u)

= lim
κ→∞

E
n∏
i=1

h
(κ)
i (X(ti)) ≥ lim

κ→∞
E

n∏
i=1

h
(κ)
i (Y (ti)) = . . . = P (sup

t∈T
Y (t) ≤ u),

∀u ∈ R, which implies P (sup
t∈T

X(t) > u) = 1− P (sup
t∈T

X(t) ≤ u) ≤ 1− P (sup
t∈T

Y (t) ≤ u)

= P (sup
t∈T

Y (t) > u), u ∈ R.

One of the most important extensions of Slepian’s inequality is the following Sudakov-
Fernique inequality:
Theorem 3.1.12
Let X and Y be two random functions as in the beginning of Section 3.1.4. Assume that
EX(t) < EY (t), t ∈ T and that γX(s, t) ≤ γY (s, t), s, t ∈ T. Then E sup

t∈T
X(t) ≤ E sup

t∈T
Y (t).

Without proof. Notice that the weaker ordering of expectations (and not ≤st) is obtained
under more general conditions (we do not require that X and Y are centered with identical
variance).

3.1.5 Entropy bounds
By Lemma 3.1.7, we have the inequality P (sup

t∈T
X(t) ≥ u) ≤ C1 e

−(u−w)2/(2σ2
T ), u ≥ w for

a separable a.s. bounded Gaussian random function X = {X(t), t ∈ T}, where C1 > 0 is a
constant and σ2

T = sup
t∈T

EX2(t). Our goal is to improve this tail bound by imposing some extra

conditions on the entropy of X.
Theorem 3.1.13
Let X = {X(t), t ∈ T} be a centered a.s. continuous Gaussian random function with en-
tropy N(ε), ε > 0. If N(ε) ≤ κε−σ for ε > 0 and some α > 0 then P (sup

t∈T
X(t) ≥ u)

≤ Cα · uα+βe−u
2/(2σ2

T ) for sufficiently large u > 0, every β > 0 and Cα = C(κ, α, σ2
T ) > 0.

Proof Let ρ(·, ·) be the canonical metric ofX. For any ε > 0 introduce µ(t, ε) = E sup
s∈Bε(t)

X(s),

µ(ε) = sup
t∈T

µ(t, ε), where Bε(t) is the ball with center t and radius ε > 0 in the metric ρ.
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Since T ⊆
N(ε)⋃
i=1

Bε(ti) for some t1, . . . , tN(ε) ∈ T, Lemma 3.1.7 yields

P (sup
t∈T

X(t) ≥ u) ≤
N(ε)∑
i=1

P ( sup
t∈Bε(ti)

X(t) ≥ u) ≤ N(ε)C1e
−(u−µ(ε))2/(2σ2

T ) (3.1.25)

for u ≥ ω = µ(ε). By Theorem 3.1.2, we get µ(t, ε) ≤ C̃2 ·
ε∫
0

√
logN(δ)dδ

by assum. on N(ε)
≤

C̃2
ε∫
0

(log κ− α log δ)1/2d δ
for small ε>0
≤ C̃3

√
α

ε∫
0

(log 1/δ)1/2dδ ≤ C̃4ε(log 1/ε)1/2, since

ε∫
0

(log 1/δ)1/2dδ = δ
√

log 1/δ |ε0 −
ε∫

0

δ
1
2

1√
− log δ

(
−1
δ

)
dδ

= ε
√

log 1/ε+ 1
2

ε∫
0

d δ√
− log δ

≤ ε
√

log 1/ε+ 1
2

ε√
− log ε

≤ 2ε
√

log(1/ε).

Set ε = 1/u and chose u large so that u > C̃4ε(log 1/ε)1/2. Then u − µ(ε) ≥ 0, and
µ(ε) ≤ C̃4 u

−1 √log u, N(ε) ≤ K uα. Applying this to inequality (3.1.25), we get

P (sup
t∈T

X(t) ≥ u) ≤ C̃5u
α exp

(
(u− C̃4u

−1√log u)2

2δ2
T

)

= C̃5u
α exp

(
− u2

2σ2
T

+ 1
σ2
T

C̃4
√

log u− C̃2
4 u
−2 log u2σ2

T

)
= C̃5 e−C̃

2
4/(2σ2

T ) · u−2 log u︸ ︷︷ ︸
≤2

uα eC̃6
√

log u︸ ︷︷ ︸
≤uβ

· e−u2/(2σ2
T ) ≤ C̃7 u

α+βu−u
2/(2σ2

T ).

for ∀β > 0 and u→∞.

Several extensions of the bound in Theorem 3.1.13 are thinkable. We formulate just one of
those due to M. Talagrand (1994).

Theorem 3.1.14
Le X be as in Theorem 3.1.13. If N(ε) ≤ (A/ε)α for some A > σT , α > 0 and ε ∈ (0, ε0),
where ε0 ∈ [0, σT ] then P (sup

t∈T
X(t) ≥ u) ≤ (C1·A u)α

(
√
ασ2

T )α ψ (u/σT ) for all u ≥ σ2
T (1+

√
σ)/ε0 where

C1 > 0 is a constant.
(Without proof).

3.1.6 Logarithmic large durations
Going to the logarithmic scale, the following asymptotic result for large durations holds for
any a.s. bounded Gaussian random functions:
Theorem 3.1.15
Let X = {X(t), t ∈ T} be an a.s. bounded separable Gaussian random functions with σ2

T =
sup
t∈T

V ar X(t). Then there exists µ ∈ R s.t. lim
u→+∞

1
u(log P (sup

t∈T
X(t) > u)+(u+µ)2

/(2σ2
T )) = 0.
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Before proving this theorem, a remark and a lemma are in order:

Remark 3.1.7
It follows from lemma 3.1.6 that for a random variable ξ ∼ N(−µ, σ2

T ) holds
lim

u→+∞
1
u (logP (ξ > u) + (u+µ)2/(2σ2

T )) = 0, which means that the tails of sup
t∈T

X(t) and ξ are

equivalent at the logarithmic scale.

Lemma 3.1.10
Let F (x) = P (sup

t∈T
X(t) ≤ x), x ∈ R be the c.d.f. of sup

t∈T
X(t). Then the function

f(u) = σTΦ−1(F (u))− u is non-decreasing, and there exists µ = lim
u→+∞

f(u). Here Φ(·) is the
c.d.f. of N(0, 1)-law.

Proof of Theorem 3.1.15 Introduce the notation g(u) = Φ−1(F (u)). Then, P (sup
t∈T

X(t) >

u) = 1−Φ(g(u)), u ∈ R. For u→ +∞, it holds g(u)→ +∞. By theorem 3.1.7, we have for the
N(0, 1)-law lim

r→+∞
1
r (log(1−Φ(r))+r2/2) = 0. Making the substitution r 7−→ g(u), u→ +∞,

we get 0 = lim
u→+∞

1
g(u)(log (1− Φ(g(u))︸ ︷︷ ︸

P (sup
t∈T

X(t)>u)

) + g2(u)
2 ).

By lemma 3.1.6, it holds µ = lim
u→+∞

(σT g(u) − u), which yields g(u) ∼
u→+∞

u+µ
σT

and hence

lim
u→+∞

σT
u

(
log P (sup

t∈T
X(t) > u) + (u+µ)2

2σ2
T

)
= 0.

To prove Lemma , we need some tools from convex geometry.

3.1.7 Convexity and isoperimetric inequality for Gaussian measures

Let L be a linear topological space.

Definition 3.1.6
A functional f : L→ (−∞,+∞] is
1) lower convex, if ∀ x, y ∈ L and ∀ γ ∈ [0, 1] f(γ x+ (1− γ)y) ≤ γf (x) + (1− γ)f(y).
2) lower semicontinuous, if lim inf

x→y
f(x) ≥ f(y). ∀ y ∈ L.

For lower semicontinuous functions f , the sets Πf,u = {x ∈ L : f(x) ≤ u} are closed in L.
Let ν(L) be the class of all lower semicontinuous lower convex functionals on L. For f ∈ ν(L),
it holds that they are measurable w.r.t. the Borel σ-algebra in L.

Example 3.1.1
Let L = RT , T be arbitrary space. Then f(x) = sup

t∈T
x(t) ∈ ν(L).

Definition 3.1.7
Let P be a probability measure on (L,BL), and f ∈ ν(L).
1) The distribution of f is Pf = P ◦ f−1.
2) The distribution function of f is Ff (u) = P (Πf,u) = P ({x ∈ L : f(x) ≤ u}), u ∈ R.

Clearly, Pf is a probability measure on (R,BR).
Let X = (X1, . . . , Xn)T ∼ N(µ, K) be an n−dim. Gaussian random vector on a probability
space (Ω,F , P ). Then it is known that X d= µ + K1/2Y , where Y ∼ N(0, I) is a standard
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normal random vector. Define the deviation ellipsoid of X by Er = K1/2 · Br(0), where Br(0)
is the r- neighborhood of the origin, r > 0. Then the parallel set of any A ⊂ Rn is defined by
Ar = A+Er. The following isoperimetric inequality for the Gaussian measure PX(·) = P (X ∈ ·)
of X can be proven by symmetrization techniques (see [Lifshits], Theorem. 1.5):

Theorem 3.1.16
For any A ∈ BRn and X ∼ N(µ,K), r > 0 it holds Φ−1(PX(Ar)) ≥ Φ−1(PX(A)) + r.

The measure of any Borel set A is minimal among all "larger" sets Ar.
The next inequality states convexity of Gaussian measures:

Theorem 3.1.17 (Ehrhard inequality):
Let X ∼ N(µ,K), γ ∈ [0, 2), and A,B be two non-empty convex subsets of Rn. Then
Φ−1 (PX(γA+ (1− γ)B)) ≥ γ Φ−1 (PX(A)) + (1− γ) Φ−1(PX(B)).

Now let us transfer these inequalities to Gaussian measures on general linear topological
spaces (LTS).

Definition 3.1.8
A LTS L is called locally convex if Γ the there exists the base of topology in L which contains
only convex sets. That is, for any open V ⊂ L and x ∈ V exists convex open U ⊂ X s.t.
x ∈ U ⊂ V.

From now is, we assume L to be a locally convex LTS.

Definition 3.1.9
1. The algebra of cylindric sets C0 of L is the family of subsets of L of the form
{x ∈ L : (f1(x), . . . , fn(x) ∈ A}, A ∈ BRn , n ∈ N, f1, . . . , fn ∈ L∗, where L∗ is the dual space
to L (the space of all linear continuous functionals on L). Such sets are celled cylinders.
2. C = σ(C0) is celled cylindric σ-Algebra.

Let BL be the Borel σ-Algebra of L, and Z ⊂ BL any algebra.

Definition 3.1.10
1. A set function M : Z → R+ which is monotone w.r.t. inclusion (i.e., A,B ∈ Z,A ⊂ B
⇒ M(A) ≤M(B)) is called Radon, if ∀A ∈ Zµ(A) = sup{M(B) : B ⊂ A,B ∈ Z − compact}.
If µ is a measure then M is called a Radon measure.
2. The outer measure for M is M∗(A) = inf{M(B) : A ⊃ B, B ∈ Z}, which is defined for all
A ⊆ L. The inner measure of M is M∗ (A) = sup {M(B) : B ⊂ A, B ∈ Z}, A ⊆ L.

It can be proven that the values of a Radon measure on C0 completely define if, i.e., for two
Radon measures M and Λ on BL ”M(B) = Λ(B), B ∈ C0” ⇒ ”M(B) = Λ(B), B ∈ BL”.
Let now P be a probability measure on (L,C).

Definition 3.1.11
1. The mean of P is a µ ∈ L s.t. f(µ) =

∫
L
f(x)P (dx) ∀f ∈ L∗. If µ = 0 then P is celled

centered.
2. A linear operatorK : L∗ → L is called covariance operator of P if ∀f, g ∈ L∗ it holds f(Kg) =∫
L
f(x− µ)g(x− µ)P (dx). It is clear that K is self-adjoint, i.e., f(Kg) = g(Kf ), ∀f, g ∈ L∗.

3. The characteristic functional of P is a function ϕP : L∗ → R given by ϕP (f) =
∫
L
eif(x)P (dx),

f ∈ L∗. It can be shown that for Radon measures M and Λ on BL ϕM = ϕΛ yields M = Λ.
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Definition 3.1.12
1) A probability measure P on a σ-Algebra F , s.t. C ⊂ F is called Gaussian if for all f ∈ L∗
the distribution Pf is univariate Gaussian.
2) If P is Gaussian with mean µ ∈ R and covariance operator K we write P = N(µ,K). The
class of all Radon Gaussian measures on BL will be denoted by G(L).
Lemma 3.1.11
If P = N(µ,K) then its characteristic functional is given by ϕP (f) = eif(µ)− 1

2f(Kf ), f ∈ L∗.

Proof It is clear that ∀f ∈ L∗ Pf = N(f(µ), f(Kf )) by Definitions 3.1.11 and 3.1.12, since
EPf =

∫
R
xdPf (x) =

∫
L
f(y)P (dy) = f(µ), V arPf =

∫
R

(x−EPf )2dPf (x) =
∫
L

(f(y−EPf ))2 P (dy) =

f(Kf ). Since ϕP (f) =
∫
L
eif(y)P (dy) =

∫
R
eixPf (dx) = exp{i EPf − 1

2 V arPf }, we are done.

Since characteristic functionals define their measures in a unique way, the mean µ ∈ R and
K (covariance operator) define N(µ,K) uniquely. Now it is possible to generalize Ehrhard
inequality to Gaussian measures on locally convex LTS L:
Theorem 3.1.18 (Ehrhard inequality):
Let P ∈ G(L), and let A,B be non-empty convex Borel subsets of L, γ ∈ (0, 1). Then

Φ−1(P∗(γA + (1− γ)B)) ≥ γ Φ−1(P (A)) + (1− γ)Φ−1(P (B)).

In particular, if A and B are closed then

Φ−1 (P (γA + (1− γ)B)) ≥ γ Φ−1(P (A)) + (1− γ)Φ−1(P (B)). (3.1.26)

(without proof).
Similarity, the isoperimetric inequality of Theorem 3.1.16 rewrites

Theorem 3.1.19 (Isoperimetric inequality):
Let P ∈ G(L), A ∈ BL, r > 0. Then Φ−1(P (Ar)) ≥ Φ−1(P (A)) + r, where Ar = A+ rE and
E is the derivation ellipsoid of P.
Lemma 3.1.12
Let f ∈ ν(L), P ∈ G(L). Then the function Ψ(u) = Φ−1 (Ff (u)), u ∈ R is concave.

Proof For any u1, u2 ∈ R and γ ∈ [0, 1], we have to show that

ψ(γu1 + (1− γ)u2) ≥ γψ(u1) + (1− γ)ψ(u2).

Since f ∈ ν(L), sets Πf,u are closed and convex in L. Moreover, it follows from the convexity of
f that (γΠf,u1 + (1−γ)Πf,u2) ⊂ Πf,γu1+(1−γ)u2 , since f(γx+ (1−γ)y) ≤ γf(x) + (1−γ)f(y) ≤
γu1 +(1−γ)u2, if x ∈ Πt,u1 , y ∈ Πt,u2 , hence γ{x ∈ L : f(x) ≤ u1}+(1−γ){x ∈ L : f(x) ≤ u2}
⊆ {x ∈ L : f(x) ≤ γu1 + (1− γ)u2}. By Theorem 3.1.18, it holds

Φ−1 (P (Πf,γu1+(1−γ)u2))︸ ︷︷ ︸
ψ(γu1+(1−γ)u2)

≥ γ Φ−1 (P (Πf,u1))︸ ︷︷ ︸
ψ(u1)

+ (1− γ) Φ−1 (P (Πf,u2))︸ ︷︷ ︸
ψ(u2)

,

which means that ψ is concave.

Proof of Lemma 3.1.6 By the above Lemma, ψ(u) = Φ−1(F (u)) is concave, then f(u) =
σTΦ−1 (F (u)) − u is concave either. Since σT > 0 and a linear function is both convex and
concave. Then, f ↗ and ∃ limu→+∞ f(u) = µ ∈ R. Let us show that µ <∞.
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substitution, 37

transform
Fourier, 33
inverse Fourier, 33

trend, 15

variogram, 16

white noise, 7
Wiener process, 31
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