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Summary. A kriging based on residuals is employed for spatial extrapolation of
anisotropic directional road–traffic data. The set of data considered in the present
paper includes, among others, the actual geographic positions and velocities of ap-
proximately 300 test vehicles in downtown Berlin. They are transmitted to a central
station within regular time intervals. The main idea of the extrapolation technique
is to interpret the recorded velocities as realizations of a random velocity field, which
is sampled at selected points only. Structural properties of the resulting road–traffic
maps are discussed combined with a statistical space–time analysis of polygonal
traffic trajectories extracted from the original traffic data. Finally, a brief outlook
to simulation and prediction of future traffic states is provided.
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1 Introduction

A common difficult problem of large cities with heavy traffic is the predic-
tion of traffic jams. In this paper, a first step towards mathematical traffic
forecasting, namely the spatial reconstruction of the present traffic state from
pointwise measurements is briefly described. For details, we refer to [1], where
models of stochastic geometry and geostatistics are used to spatially represent
the traffic state by means of velocity maps. A corresponding Java software that
implements efficient algorithms of spatial extrapolation is developed; see [5].

To illustrate our extrapolation method, we use real traffic data originating
from downtown Berlin. It was provided to us by the Institute of Transport
Research of the German Aerospace Center (DLR). Approximately 300 test
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Fig. 1. Observed positions of test vehicles in downtown Berlin

vehicles (taxis) equipped with GPS sensors transmit their geographic coor-
dinates and velocities to a central station within regular time intervals from
30 sec up to 6 min; see Fig. 2. Thus, a large data base of more than 13 million
positions was formed since April 2001; see Fig. 1.

In the first stage of our research, only a smaller data set (taxi positions on
all working days from 30.09.2001 till 19.02.2002, 5.00–5.30 pm, moving taxis
only) was considered. Furthermore, the observation window was reduced to
downtown Berlin to avoid inhomogeneities in the taxi positions.

The main idea of the extrapolation technique described in Sects. 2 and 3
below is to interpret the velocities of all vehicles at given time t as a realization
of a spatial random field V (t) = {V (t, u)} where V (t, u) is a traffic velocity
vector at location u ∈ R2 and time instant t ≥ 0. The goal is to analyze
the spatial structure of these random fields of velocities in order to describe
the geometry of traffic jams. Since V (t, u) can be measured just pointwise at
some observation points u1, . . . , un, a spatial extrapolation of the observed
data is necessary. Notice that the velocities strongly depend on the location
and the direction of movement, e.g. the speed limits and consequently the
mean velocities are higher on highways than in downtown streets.

The classical extrapolation methods of geostatistics (see e.g. [6]) either
make no use of additional directional information or provide measurements
V (t, u + ui) and V (t, u− ui) with equal weights. Both these features are not
adequate to the setting mentioned above. Thus, the standard extrapolation
methods had to be adapted to our specific problem. In Sect. 3, an ordinary
kriging with moving neighborhood is described that allows to extrapolate
directed velocity fields. First, the original data set should be split into four
subsets which are directionally homogeneous. A data unit (u, V (t, u)) belongs
to the data set i (i = 1, . . . , 4) if the polar angle of the vector V (t, u) lies
within the directional sector Si = {α ∈ [0, 2π) : (i − 1)π/2 ≤ α < iπ/2}.
By convention, the zero polar angle corresponds to the eastward direction on
the city map. The above data sets should be extrapolated separately for each
directional sector. This yields four velocity maps corresponding to the four
sectors of directions.
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Fig. 2. Histogram of time intervals between consecutive GPS signals (in sec)

In what follows, the data from a given time interval, i.e. [5.00, 5.30] pm,
will be taken for extrapolation. Keeping this in mind, we shall omit the time
parameter t in further notation.

The extrapolation method described in Sects. 2 and 3 has been imple-
mented in Java, where a software library has been developed comprising the
estimation and fitting of variograms as well as the ordinary kriging with mov-
ing neighborhood; see [5]. As far as it is known to the authors, this is the
first complete implementation of such kriging methods in Java. Much atten-
tion was paid to the efficient implementation of fast algorithms. In contrast to
classical geostatistics operating with relatively small data sets, this efficiency
is of great importance for larger data sets with more than 10000 entries; see
[1] for details.

In Sect. 4, a numerical example is discussed which shows how the devel-
oped extrapolation technique can be applied to directional traffic data. Some
structural features of the resulting velocity maps (see Figs. 5 and 6) are also
discussed. In Sect. 5, this is combined with a statistical space–time analysis of
polygonal road–traffic trajectories which have been extracted from the original
traffic data. For example, it turns out that the distribution of the number of
segments in these traffic trajectories can be fitted quite well by a geometric dis-
tribution. The directional distribution of the segments reflects the anisotropy
of the street system of downtown Berlin, where the distribution of segment
lengths is demonstrably non-normal. Furthermore, the distributions of veloc-
ity residuals, i.e. the deviations from their means, show interesting skewness
properties which depend on the considered classes of low, medium, and high
mean velocities, respectively. A short outlook to simulation and prediction of
future traffic states is given in Sect. 6.
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2 Random fields

To model traffic maps, non-stationary random fields composed of a determi-
nistic drift and an intrinsically stationary random field of order two (residual)
are used. See e.g. the monographs [4] and [6] for details.

Let X = {X(u), u ∈ R2} be a non-stationary random field with finite
second moment EX2(u) < ∞, u ∈ R2. Then, X(u) can be decomposed into a
sum X(u) = m(u) + Y (u), where m(u) = EX(u) is the mean field (drift) and
Y (u) = X(u)−m(u) is the deviation field from the mean or residual. Assume
that {Y (u)} is intrinsically stationary of order two. Denote by

γ(h) =
1
2
E[(Y (u)− Y (u + h))2] (1)

its variogram function. In practice, the field X can be observed in a compact
(mostly rectangular) window W ⊂ R2. Let x(u1), . . . , x(un) be a sample of
observed values of X, ui ∈ W for all i. The extrapolation method described
in Sect. 3 yields an “optimal” estimator X̂(u) of the value of X(u) for any
u ∈ W based on the sample variables X(u1), . . . , X(un).

3 Kriging based on residuals

Among the variety of extrapolation techniques for non-stationary random
fields, our approach is similar to the so-called kriging based on residuals; see [4],
p. 190. First of all, an estimator m̂(u) for the drift m(u) has to be constructed.
Then, the deviation field Y ∗ = {Y ∗(u), u ∈ R2} defined by

Y ∗(u) = X(u)− m̂(u) (2)

is formed and its kriging estimator Ŷ ∗(u) is computed. Finally, the estimator
X̂(u) is given by

X̂(u) = m̂(u) + Ŷ ∗(u) . (3)

If we suppose that the drift is known, i.e. m̂(u) = m(u) for all u, then we have
exact values of the deviation field Y (u1), . . . , Y (un) since in this case

Y ∗(u) = Y (u) = X(u)−m(u) .

Let {y(ui) = x(ui) − m(ui), i = 1, . . . , n} be a realization of the sample
variables Y (u1), . . . , Y (un). The extrapolation of Y (u) can be performed by
ordinary kriging making use of the variogram γ(h); see [4], [6].

3.1 The kriging estimator

A simpler version of the following ordinary kriging with moving neighborhood
can be found in [3], pp. 201–210 and [6], pp. 101–102. Consider the usual
indicator function



Kriged Road-Traffic Maps 5

1{x ∈ B} =
{

1 if x ∈ B,
0 otherwise.

Introduce the estimator Ŷ (u) of Y (u) for u ∈ W as a linear combination of
the sample variables Y (ui) with unknown weights λi = λi(u) by

Ŷ (u) =
n∑

i=1

λiY (ui)1{ui ∈ A(u)} . (4)

The estimation involves only those sample random variables Y (ui) that are
positioned in the “neighborhood” A(u) of u, i.e. if ui ∈ A(u). Being an arbi-
trary set, this moving neighborhood A(u) contains a priori information about
the geometric dependence structure of the random field Y . For instance, it
could be designed to model the formation of traffic jams; see Sect. 4.

Unbiasedness of the estimator introduced in (4) and minimizing its vari-
ance lead to the following conditions on the weights λi. For all i = 1, . . . , n
with ui ∈ A(u) it holds

n∑

j=1

λjγ(uj − ui)1{uj ∈ A(u)}+ µ = γ(u− ui) , (5)

n∑

j=1

λj1{uj ∈ A(u)} = 1 .

To solve this system of equations, the knowledge of the variogram function
γ(h) is required. However, in most practical cases γ(h) is unknown and has
to be estimated from the data y(u1), . . . , y(un).

3.2 Variograms

In this paper, the most simple and popular variogram estimator of Matheron
is used (cf. [3], [6]). It is defined by

γ̂(h) =
1

2N(h)

∑

i,j:ui−uj≈h

(Y (ui)− Y (uj))
2 (6)

where ui−uj ≈ h means that ui−uj belongs to a certain neighborhood U(h) of
vector h and N(h) denotes the number of such pairs (ui, uj) for i, j = 1, . . . , n.

As shown in Fig. 4, the traffic data lead to empirical variograms that are
clearly zonally anisotropic. Below, we consider zonally anisotropic variogram
models constructed from isotropic ones (cf. [4], [6]). Put

γ(h) = γ1(h) + γ2(h) , (7)

where γ1(h) is an exponential isotropic variogram model with nugget effect
a1 > 0, sill b1 and range c1. The second term
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γ2(h) = b2(1− e−
√

h>Ch/c2) (8)

is a geometrically anisotropic exponential variogram model with sill b2 > 0
and a further parameter c2 > 0. For a vector h = (h1, h2), the quadratic form

h>Ch = λ2h
2
1 + λ1h

2
2 + (λ2 − λ1)

(
(h2

2 − h2
1) cos2 α− h1h2 sin(2α)

)

depends on two scale parameters λ1, λ2 and a rotation parameter α ∈ [0, 2π).
Let γ̂(h) be an empirical variogram estimated from the observed data

{y(ui)} for the field Y and γβ(h) the theoretical parametric variogram model
considered in (7) with parameter vector β = (a1, b1, c1, b2, λ1/c2

2, λ2/c2
2, α). In

practice, only a finite number m of values γ̂(h1), . . . , γ̂(hm) can be computed.
In the case of traffic data, the classical least squares method is employed to
fit γβ to γ̂. Since traffic data is substantially anisotropic, the variogram model
(7) has to be fitted to the data on the whole grid as well as in two directions
with polar angles α and α + π/2.

3.3 Drift estimation

The mean field {m(u)} can be estimated from the data by various methods
ranging from radial extrapolation to smoothing techniques such as moving
average and edge preserving smoothing. In what follows, the moving average
is used because of its ease and computational efficiency for large data sets. By
moving average, the value m(u) is estimated as

m̂(u) =
1

Nu

∑

ui∈W (u)

X(ui) (9)

where W (u) is the “moving” neighborhood of location u and Nu denotes the
number of measurement points ui ∈ W (u). For fast computation, we put
W (u) to be a square with side length τ centered in u.

3.4 Residuals formed with estimated drift

In the previous sections, we supposed that the drift m(u) is explicitly known.
However, if it has to be estimated from the data, the theoretical background
for the application of the kriging method breaks down (cf. [3], pp. 122–125,
[4] p. 72, [6], p. 214). Nevertheless, practitioners continue to use the ordinary
kriging of residuals with estimated drift based on the data y∗(ui) = x(ui) −
m̂(ui), i = 1, . . . , n legitimized by its ease and satisfactory results.

4 Extrapolation of the velocity field

In what follows, the extrapolation method of Sect. 3 is applied to real traffic
data of the directional sector S2 = {α : π/2 ≤ α < π}. This partial data set
contains 19699 entries of taxis moving northwest collected over 90 days.
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Fig. 3. Mean field bm(u) of data set 2

Fig. 4. Empirical variogram bγ∗(h) and fitted variogram model γ∗(h) (level curves)

In Fig. 3, the northwest movement direction of the taxis can be clearly
recognized in the mean velocity field {m̂(u)}. Grey tones reflect speed vari-
ation. It clearly shows that the estimator m̂ preserves the spatial velocity
structure. To estimate the variogram γ∗ of Y ∗, the empirical variogram γ̂∗i
is computed for each day i = 1, . . . , 90 and then averaged over all days, i.e.
γ̂∗(h) =

(∑90
i=1 γ̂∗i (h)

)
/90. The empirical variogram γ̂∗(h) with “maximum

range” in northwest direction and “minimum range” in orthogonal direction
is zonally anisotropic; see Fig. 4. The main directions of anisotropy are closely
connected to the road directions in downtown Berlin. See Sect. 5 and especially
Fig. 10(a) for details.

The zonally anisotropic variogram model (7) with two fixed parameters
α = 170◦, λ1/c2

2 = 1000 has been fitted to the empirical one. The classical
least squares fitting method applied to one-dimensional vertical slices of the
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Fig. 5. Residual field bY ∗(u)

Fig. 6. Velocity field bX(u)

empirical variogram in orthogonal directions α = 80◦ and α = 170◦ yields
the remaining parameter values a1 = 31.772, b1 = 116.211, c1 = 245388.671,
b2 = 22.634, λ2/c2

2 = 683964.794. Thus, the range values in directions 170◦

and 80◦ are r1 = 270 m and r2 = 162 m, respectively. It means that the
velocities of two vehicles separated by distances 3r1 = 810 m in horizontal
direction and 3r2 = 486 m in vertical direction are almost independent. These
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Fig. 7. Traffic jams: bX(u) ≤ 15 kph

range values are conform with the results stated in Sect. 5 for the typical
distance between two subsequent positions of the same test vehicle.

For extrapolation, the sample of velocities x(u1), . . . , x(un) (n = 223) ob-
served on Monday, 18.02.2002 is used. Compared to the whole data set 2 rep-
resenting the “past”, it is interpreted as “actual” data. The random field Y ∗ of
deviations from mean velocities is extrapolated by kriging with moving neigh-
borhood (4) using the indicator function 1{ui ∈ A(u)} = 1{ϕ(ui − u) ∈ S2}
where ϕ(ui − u) is the polar angle of the vector ui − u. This assumption is
rather intuitive since only those measurements at locations ui lying “ahead”
of the current position u can influence its velocity value.

The extrapolated residuals Ŷ ∗(u) and the resulting velocity map {X̂(u)}
are shown in Figs. 5 and 6, respectively. Due to the particular asymmetric
form of the indicators, the extrapolated field of residuals is strongly disconti-
nuous. Discontinuities of the realizations of {X̂(u)} caused by the kriging with
moving neighborhood are essential for precise localization of traffic–jam areas.
In Fig. 5, most of the deviation values are zero. The routes of taxis driving in
the streets are marked by peaks of the field Ŷ ∗ with subsequent tails of non–
zero residual velocity values lying behind. Thus, one can distinguish separate
routes of different test vehicles. See also the extracted taxi routes in Fig. 8,
which are similar to those shown in Fig. 5.

In Fig. 7, areas with velocities X̂(u) ≤ 15 kph are marked grey. Some
of these regions might be caused by traffic jams, others are regions with low
average velocities. Indeed, the most likely velocity value in downtown Berlin
is about 20 kph as it can be seen in Fig. 12.
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Fig. 8. Taxi routes on 18.02.2002, from 5.15 to 5.30 pm

5 Statistical analysis of traffic data

In addition to the spatial statistical inference performed above, we now discuss
the histograms of velocity residuals and further traffic characteristics which
bring an extra insight into the structure of traffic data. In particular, they
help us to explain some features of anisotropy and spatial correlation which
we already mentioned in Sect. 4. For a more detailed treatment of the subject,
see [2].

5.1 Distributional properties of polygonal taxi routes

10pt0cm 10pt0cm 10pt0cm

Fig. 9. Histogram of the number of segments
in the taxi routes

If we think about the way the
traffic data are collected we un-
derstand that the locations where
the velocities are measured can
not be deterministic. Moreover,
they are stochastically dependent.
In fact, each test vehicle follows
a route that consists of a ran-
dom number of segments. Each
segment connects two locations
where consecutive GPS signals
were sent; see Fig. 8. The his-
togramm of the number of seg-
ments in the taxi routes is shown
in Fig. 9. It turns out that this

histogram can be well approximated by a geometric distribution with parame-
ter p = 0.9365064 being the probability of enlarging a route by a new segment.



Kriged Road-Traffic Maps 11

Furthermore, the geometry of the taxi routes explains the form of the vario-
gram anisotropy mentioned in Sect. 4. In particular, the distribution of the
angles between the movement direction of a vehicle and the eastward direction
in Fig. 10(a) reflects the distribution of typical street directions with heavy
traffic in downtown Berlin. The majority of main roads goes east or west which
corresponds to the angles of 0◦, 180◦, and 360◦, respectively. This is certainly
the reason for the character of zonal anisotropy of the variograms in Fig. 4.
Fig. 10(b) shows that the distribution of segment lengths is demonstrably

(a) Directions of route segments (b) Lengths of route segments

Fig. 10. Histograms of segment directions (in degrees) and lengths (in m)

non-normal. Furthermore, with probability of ca. 0.9, the distances between
two subsequent GPS signals in the taxi routes do not exceed 1000 m. It is clear
that the velocities at two positions within this distance are correlated. The
opposite statement is also true. As it has been already mentioned in Sect. 4,
the velocities of two cars at a distance of more than 3

√
r2
1 + r2

2 ≈ 945 m from
each other are almost independent.

5.2 Distribution of velocity residuals

The histogram in Fig. 11 shows that the distribution of velocity residuals
can be well fitted by some normal distribution. Nevertheless, a more detailed
statistical inference shows that the distribution of velocity residuals depends
on the value of mean velocity. One reason for this is that the sum of the residual
and the mean has to be non–negative. Figs. 13, 14 and 15 show the histograms
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of the velocity residuals measured at locations with mean velocities (in kph)
belonging to three disjoint classes: [15, 20), [25, 30) and [40, 45), respectively. If

Fig. 11. Histogram of the velocity residuals (in kph)

(a) for the first route segments (b) for the remaining route segments

Fig. 12. Histogram of velocities (in kph)

we add the mean velocity values to their residuals we see that most velocities
in downtown Berlin do not exceed 60 kph. The histogram of the velocities
themselves is given in Fig. 12 which shows that the most likely velocity value
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in downtown Berlin (i.e., the modus of the empirical velocity distribution) is
about 20 kph. This explains the dominance of low velocity values in the mean
field m̂ and the threshold maps in Figs. 3 and 7.

Fig. 13. Histogram of residuals
given that bm ∈ [15, 20)

The right skewness of this his-
togram means that large positive
deviations from small mean val-
ues are more likely than negative
ones.

Fig. 14. Histogram of residuals
given that bm ∈ [25, 30)

This histogram is almost sym-
metric. Thus, both positive and
negative residuals of equal size
occur nearly with the same prob-
ability.

Fig. 15. Histogram of residuals
given that bm ∈ [40, 45)

It is clear from this histogram
that at positions with large mean
values large negative residuals are
more likely than positive ones.
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6 Outlook

The spatial extrapolation and statistical space–time analysis of traffic data
considered in the present paper is an important step towards stochastic mod-
elling, simulation and prediction of future road–traffic states. Our results can
be used to construct a Markov–type simulator by means of which future routes
of test vehicles can be generated, where the choice of the starting configura-
tion depends on the actually measured traffic situation. In particular, when
sampling the velocity residuals from histograms as given in Figs. 13, 14 and
15, the mean velocity field {m̂(u)} will be actualized by the recently, say at the
given day, observed velocities. For example, suppose that significantly larger
velocities than usually have been observed at the considered day in a certain
neighborhood of location u. In this case, the velocity residual at location u
will be sampled from a histogram which corresponds to a larger class of mean
velocities than the “historical” value m̂(u). Further details concerning our
simulation algorithms can be found in [2].

Then, using the extrapolation technique described in Sects. 2 and 3, ve-
locity maps based on both the measured and simulated traffic data can be
computed. To evaluate the quality of these maps, they are compared with cor-
responding velocity maps computed exclusively from measured traffic data.
The comparison is based on morphological distance measures for digital image
data. These issues will be discussed in a forthcoming paper.
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