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For parallel neighborhoods of the paths of thedlimensional Brownian motion, so—call&dener sausages
formulae for the expected surface area are given for any dimedsiore. It is shown by means of geometric
arguments that the expected surface area is equal to the first derivative of the mean volume of the Wiener
sausage with respect to its radius.
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1 Introduction

The trace of a moving spherical particle involved id-alimensional Brownian motion observed within a certain

time interval[0, T'], where0 < T' < oo, is often called &Viener sausagdt is used in physics, chemistry, biology

and technology to model various phenomena; see [31] and the references therein. Further recent applications are
wireless sensor networks; see e.g. [11] and [22].

There exists an extensive literature on Wiener sausages; see e.g. [25] and the references therein. Nevertheless,
relatively little is known so far about the geometry of Wiener sausages due to the complex nature of their real-
izations. One possible description of the geometric structure of (sufficiently regular) subBgtssagiven by

theird + 1 intrinsic volumesr Minkowski functionalsncluding the usual volume, surface area and other curva-
ture measures as well as the Euler—Poiaadraracteristic; see e.g. [5]. As far as it is known to the authors, the
only Minkowski functional of Wiener sausages studied in the literature is their expéetitiensional Lebesgue
measure. Thus, explicit formulae for the expected volume of Wiener sausages and its asymptotic behavior for
T — 0 orT — oo can be found in [9], [13], [23]; see also [2]. The results of corresponding simulation studies

in three dimensions are discussed in [31]. Further limit theorems and deviation results for the volume of Wiener
sausages are proved in [15] and [27]. Asymptotic long—time behavior of its moment generating function is given
in [4], [26], [28]; see also [25], pp. 201 and 315.

In the present paper, the mean surface area of Wiener sausages is determined for all dimensions greater than one.
However, there remains an interesting unsolved problem to obtain corresponding formulae for the-ether
expected intrinsic volumes which would then give a more complete description of the geometric properties of
Wiener sausages. These intrinsic volumes are well defined; see Corollary 4.4 of this paper.

The paper is organized as follows. In Section 2, some preliminary properties of Wiener sausages are discussed
and the main results are stated. In particular, in Theorem 2.2, a representation formula for the expected surface
area of Wiener sausages is given. The proof of this theorem is postponed to Section 4. It makes use of some
auxiliary geometric results on the differentiability of the volume of parallel neighborhoods of compact sets given

in Section 3.
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2 J. Rataj, V. Schmidt, and E. Spodarev: On the Expected Surface Area of the Wiener Sausage

Fig. 1 A realization ofS,. for r = 10 (left) andr = 40 (right)

2 Wiener Sausage

2.1 Random Closed Sets

Let {W(t) : t > 0} be theWiener proceswith variances? initiated atz € R defined on the probability space
(Q,58,P). Let{Wi(t)},...,{Wu(t)} bed independent Wiener processes startingat ..,z, € R, respec-
tively. Then, the random functiofiX (¢), t > 0} with X (¢) = (Wi(t),..., Wy(t)) is called ad—dimensional
Brownian motiorinitiated at(z1, . .., z4) € R?; see e.g. [3].

The Minkowski sunof two setsA and B in R is givenbyA @& B = {z +y : =z € A,y € B}. If Bis the ball
B,(0) of radiusr > 0 in R centered at the origin, the sdt. = A @ B,.(o) is often referred to ag—parallel
neighborhood ofA. The operatiom — A,. is known adilation. Let F (C) be the family of all closed (compact)
subsets iR?, respectively. Denote by the o—algebra generated by the s¢fs ¢ 7 : FnNC # ()}, C € C.
A random closed séRACS) = is a random variable with values jf, i.e.,.E : Q — Fis a(§, cx)—-measurable
mapping. For the general theory of random sets, see e.g. [16], [17], [21].

Let7 > 0 be a fixed a time instant and I8{7) = {X(¢) : 0 <t < T'} C R? denote the Brownian path R.
We shall often write onlys instead ofS(T") unless the tim& is changed. The s&,. = S(T) @ B,.(0),r > 01is
called aWiener sausagesee e.g. [25], p64.

In Figure 1, a simulated realization 6f. for o = 1, T = 25000 and two dilation radiir = 10 andr = 40 is
given.

Lemma 2.1 For anyr > 0, the Wiener sausagg,. is a compact RACS.

Proof. Notice that for eaclhy € 2 the setS(w) is compact as a continuous image of the compact interval
[0, T]. To prove the measurability f required in the definition of a random closed set, it is sufficient to show
that the indicator functiod (S N C' = 0) is a random variable for all’ € C. Indeed, it holds

1(SNC=0)=1(X(t) €C, t € [0,T])) = 1(r& > T),

wheret% = inf{t > 0 : X(¢) € C} is the first hitting time of the set’ for the Wiener procesX started atr.
It is well known thatr is a random variable; cf. e.g. [39,6.1]. Hencel(7% > T') is measurable anfl is a
compact random closed set. Since the dilation preserves this property (see [21], p. 23), the WieneiSsaasage
a RACS as well. O

2.2 Main Results

Let V,; denote the Lebesgue measure atidthe s—dimensional Hausdorff measure{; see e.g. [20]. Then
HI1(9S,.) is a random variable, cf. [1] and references therein. The main result of the present paper is the
following representation formula of the expected surface area of the Wiener sdijsage
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Theorem 2.2 The expected surface ar&{?~1(95S,) of S, is finite and given by

BN (05,) = L) o)

for anyr > 0 in dimensions two and three. For dimensiahz 4, formula(1) holds at least for almost all > 0.
Theproof of Theorem 2.2 will be postponed to Section 4.

Notice that as a consequence of (1), further formulae can be obtained for the expected surface&arda of
connection with this, the Bessel functiofis(y) andY, (y) of the first and second kind of order= (d — 2)/2
are considered; see e.g. [29].

Corollary 2.3 Letd > 2 andr > 0. Then, it holds that

) Ly, STE=D? | ad T (40T )
EHY(98S,) = a-1 [, o Td-2)7° 7/ 2
HH(0S,y) = dwqr ( + 272 + 2 / P (J2(y) + Y2(y)) dy | (@)

for almost all radiir > 0, wherew, = 7%/2/T'(1 4 d/2) is the volume of the unit-dimensional balB; (o). For
d = 2,3, formula(2) holds for all» > 0. Moreover, in the casé = 3, it simplifies to
EH?(0S,) = 4mr? + 8roV2rT + 21a°T . (3)

Proof. Itis well-known (see e.g. [2]) that the expected volufE;(S,.) of the Wiener sausag®. can be
given by

[o'e) 02 2T

d(d—2) _ Adwyr? 1—e 27
EVy(S,) = wgr® + ——L 0w 020 2T + / dy . 4
u(Sy) = wart + By o ] PR 2w Y )

Furthermore, in three dimensions, the latter formula simplifies to
4
EV3(S,) = §7rr3 + 4072V 21T + 270%rT
see also[11] and [23]. By Theorem 2.2, differentiating the above expressions with respgieitis the formulae

(2) and (3). To see this we still have to show that it is possible to differentiate with respeghtter the integral
sign in (4). Introduce the notation

) =

7T =

DT R Y2 ()

and notice that ) s
d o sz
7f<y77’) — - 2( 2r )2 ,
dr Y2 (I3 (y) + Y (y))

wherep(z) =1 —e~* — 2ze 7. Itis easy to verify thap is increases of), co) from 0 to 1, and thatp(z) < z

for all z > 0. Thus we have an upper bound

d max{1, ”Z‘i{iT
—f:r) < == 5
dr Y (J2(y) + Y2 (y))

valid for ally > 0 andr > ry with a givenry > 0. The well-known asymptotic properties of the Bessel
functions can be used now to verify that the latter bound is integrab{6,a%), which justifies the interchange
of integration and differentiation, i.e.

d [~ < d
ar /. fly,r) —A 3 fwr)dy, >0 (5)
Sincery > 0 was arbitrary, (5) holds for all > 0. O
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4 J. Rataj, V. Schmidt, and E. Spodarev: On the Expected Surface Area of the Wiener Sausage

Notice that in the three—dimensional case, the mean surface area of the Wiener sausage is given by the simple
analytical expression given in (3), whereas in other dimensions the formula (2) can be assessed only numerically.
This main difference comes from the theory of parabolic partial differential equations due to the close connections
between the heat equation and the Brownian motion as a diffusion process; see e.g. [13] and [23].

Remark The following asymptotic behaviour @H%*(9.,.) holds as the radiusof the Wiener sausage tends
to zero. Namely, using (2) and asymptotic properties of Bessel functions one can show that

7o2Tr tlog 2 r if d=2,
EHd_l(&S*T) ~ < 2mo?T . if d=3,
dwgo?TU2pd=3if 4 > 4

asr — 0, wheref(r) ~ g(r) means tha,t.ii% f(r)/g(r) =1.

3 Parallel Neighbourhoods

In the first part of this section, some preliminary facts from the geometry of sets with positive reach and Lipschitz
manifolds are given. Later on, in Section 3.2, it will be shown that the first derivative of the volume of a dilated
set with respect to the dilation radius equals its surface area for “non—critical” values of dilation radii. Notice
that in dimensions two and three, the set of “critical” radii is of Lebesgue measure zero for any compact set, cf.
Theorem 3.1.

3.1 Preliminaries
3.1.1 Distance Function

Let A be a nonempty compact subsefRsf. Thedistance functiom 4 : R% — [0, 00) of A is defined by
Ay(x) =min{|z —a| : a € A}, r e R

Clearly, A 4 is a Lipschitzian function with Lipschitz constant For anyr > 0, ther-parallel neighbourhood
to A rewrites in terms of the distance function.ds = {x € R?: A4(z) < r}. Given two nonempty compact
subsets4, B of R¢, their Hausdorff distancés defined as

Ag(A,B) = max{rgleaj(AB(a)ngeaé(AA(b)} .

It is well known thatA 5 is a metric. For any: € R?, we denote by
Ya(x)={acA: |z—a|=A4(x)}

the set of all points ind which are nearest te. The setX 4(x) is always nonempty, by the compactness of
A. Following Ferry [7], we say that € R? is acritical point of A4 if z lies in the closed convex hull of
Y 4(x). Notice that this property is equivalent to that the subgradier gfcontains the origin which is used
more commonly as definition of a critical point; see [8].

A point x is calledregularif it is not critical. A numberr > 0 is acritical valueof A 4 is there exists a critical
pointz of A4 with As(z) = r. We shall denote by’(A) C (0, 00) the set of all critical values ah 4. In
Figure 2, the sefl consists of two parallel segments located at the distanse0. It is clear that the dilation
radiusr = b/2 is a critical value ofA 4. The dashed line in the middle of Figure 2 is the set of critical points of
Ay
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Fig. 2 The set of critical points for € C'(A)

3.1.2 Sets with Positive Reach

Thereachof a closed subset C R¢ is given by

reach A = sup{r > 0: Vo € R, A(z) <r = cardX4(x) = 1},

see [5]. As examples of sets with positive reach, consider convex closed sets (with infinite reach) or sets with
compact and>2~smooth boundaries. Note that the union of two intersecting convex bodies typically does not

have positive reach. The tangent cdafn (A4, o) is always a closed convex conedife 9A andreach A > 0.
The normal cone is defined as the dual cone to the tangent cone

Nor (A,a) ={u: u-v <O0forallv € Tan(A4,a)}

and it is a closed convex cone as well.

For a compact sett C R? with finite positive reach, the Steiner formula holds only for sufficiently small radii.

More exactly, we have
d .
Va(A,) = Zwierd,i(A) , 0<r<reachAd, (6)
=0

whereV/; is the Lebesgue measurel{ (volume),w; is the volume of the unit-ball andV; is thei-th intrinsic
volume ofA, ¢ =0,...,d (see [5]). The functional®; are motion invariant and additive. In particuld, is the
Euler—Poinca& characteristic antl;_; is one half of the surface area.

A local version of the Steiner formula holds for (not necessarily compact) sets with positive rea€¢h(.Lgbe
the nearest point ofl to = wheneverA 4 (z) < reach A. Then we have for any Borel subsétof R¢

d
Va (A\A)NEHEF)) =Y wir'Ca_i(A;F), 0<r <reachA, @)

=1

whereC;(A4; ) is theith curvature measuref A4; it is a signed Radon measure concentrated drfor 0 < ¢ <
d —1andCy_1(4;-) is the restriction of théd — 1)—dimensional Hausdorff measuredel provided that4 is
d-dimensional. IDA is compact theid; (A; R?) = V;(A),i =0,...,d — 1.
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6 J. Rataj, V. Schmidt, and E. Spodarev: On the Expected Surface Area of the Wiener Sausage

3.1.3 Lipschitz Manifolds

AsetA C R?is a (d — 1)-dimensional)Lipschitz manifoldf A is locally representable as the graph of a
Lipschitzian function, i.e., for any € A there exists a neighbourhodtlof « (in R¢), a unit vector: € R% and

a Lipschitzian functionp : u* — R such thatd N U = graph¢ N U (u* denotes théd — 1)—dimensional
subspace dR? perpendicular ta)). Of course, any Lipschitz manifold is a topological manifold and any smooth
manifold is a Lipschitz manifold, but not vice versa.

A d—dimenional Lipschitz manifold ilR? with boundary is a subset C R? which is locally representable as the
subgraph of a Lipschitzian function (consequently, its topological boundaryds-al )—dimensional Lipschitz
manifold). For such sets, conditions were found in [19] under which its curvature measures can be defined so that
the Gauss—Bonnet and principal kinematic formulae hold. These conditions are satisfied in particular if the set
A itself or the closure of its complemeRt \ A has positive reach. If, moreover, the boundarylaé compact

then the total curvature measures are denotell;(t) and called intrinsic volumes as in the case of sets with
positive reach and we always have

Vi (RIVA) = ()W), i=0,..,d— 1. (8)

Theorem 3.1 For any nonempty compact s¢tC R, the following properties hold:
(i) if r € (0,00) \ C(A) thendA, is a(d — 1)-dimensional Lipschitz manifold andach (R%\ 4,) > 0;

(i) The set’(A) is compact and{ = (C(A)) = 0.

A proofof Theorem 3.1 can be found in [8].

Corollary 3.2 For any nonempty compact sétin R?, the curvature measures; (A, ; -) and intrinsic volumes
Vi(A,) of the parallel setd, to A are well defined foi = 0,...,d — 1 whenever ¢ C(A).

Note that the assertion about the measur@@1) in (ii) of Theorem 3.1 is nonempty only if < 3. Examples
can be found in [7] and [8] showing that(A) can contain a nondegenerate interval if 4.

3.2 Volume of the Parallel Neighbourhood

Let A C R be a nonempty and compact subseR6f Forr > 0, denote byV4 (r) the volumeV (A,.) of the
parallel neighbourhood td. The functionV4 is obviously increasing off), co). Applying the co—area formula
to the distance function, we obtain (see [6, Section 3.2.34])

Va(r) = Va(0) + /OT HIH (AL s}) ds, r>0. 9)

Consequently, the functio¥i, is absolutely continuous and its derivative exists and equéfs' (A;l{r}) for

almost allr. Note that the boundar§A.. is a subset of the level séigl{r}, but the equality does not hold in
general (as a counterexample, the4ét Figure 2 can be considered).

Stacld [24] derived some further properties dfy; in particular, he showed that the one-sided derivatives
(Va)_(r) and(Va)’ (r) exist for anyr > 0, but only the inequalitfV4)" (r) > (Va)’, () holds in general.
Stacld also proved that the arithmetic mean of the left and right derivativés, aflways equals the Minkowski
content of0 A,. (see [24, Theorem 2]).

We shall need later the following result.
Theorem 3.3 If r € (0,00) \ C(A) thenV}(r) exists and equals?~1(9A,).
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In the proofof Theorem 3.3, which is postponed to Section 3.3, we shall need some further properties of sets with
positive reach. Leteach A > 0. The unit normal bundle ofl is the subset aR? x S9!

nor A = {(a,u) € 9A x 471 : u € Nor (4, a)}.

The generalized principal curvaturegz, v), i = 1,...,d — 1, are defined{¢~!-almost everywhere onor A

and take values from-reach A, oo] (see [32]). If, in particularDA is C?—smooth, thenrlim Nor (4,a) = 1

for anya € 0A andk;(a, ) equal, up to sign, the classical principal curvatures of differential geometry for any
(a,u) € nor A.

Lemma 3.4 Denotingr : (a,u) — a the first coordinate projection oR? x R¢, we have
H (m{(a,u) € nor A : k;i(a,u) = oo forsomel <i<d—1})=0.

Proof. The(d — 1)—dimensional Jacobian afrestricted tanor A equals

d—1

1
URNPRA I, SR —
il;[l V1+ki(a,u)?

see [32]. The Jacobian is thus zero whenever some of the generalized curvatures are infinite. The assertion
follows thus by the so—called area formula; see Section 3.2.22 of [6]. O

(a,u) € nor A;

Let from now onA be compact and denote for brevify = R? \ A, (clearlydC, = 9A,). By Theorem 3.1, we
havereach C,. > 0 for r ¢ C'(A). We can describe the tangent and normal cone&s,dds follows. Given a set
H C R¢, denote bycone H the closed convex cone spannedidyi.e.,

cone H = {t1h1+ - +tqhg: hi,...,hqg € H, t1,...,tq > 0},

and bycone *H the dual coneone*H = {u: v-h <0forallh € H}.

Lemma 3.51f z € 0A, is regular for A4 thenNor (C,z) = cone (X4(z) — z) and Tan (C,,2) =
cone* (X 4(z) — 2).

Proof. First, notice that since is a regular point ofA 4, cone (X 4(2) — z) is a proper convex cone (i.e.,
there is a hyperplane intersecting it only in the origin) and, hence, the dualcoané (X 4(z) — z) is full-
dimensional. Leb be a vector from the interior afone * (X 4(z) — z). Then, since there are no points.4fon
the hemispheréB,.(z) N {z : (z — 2z) - v > 0}, the shifted ballB,.(z + sv) does not intersect for sufficiently
smalle > 0. Thereforez + ev € C, for sufficiently smalle and, hencey € Tan (C,, z). By the closeness of
the tangent cone, we getne * (X 4(z) — z) C Tan (C,, z). On the other hand, if ¢ cone* (¥ 4(z) — z) then
there is a pointt € A such thatla — z) - v > 0. Then there exists an > 0 such that for any vectow with
|lw —v| < €, all points of the segmeltt, z + cw] have distance smaller tharfrom a and, thereforey cannot be
a tangent vector t@’, atz. O

Introduce the functios : = — min {|a — z| : a € convX(x)}, z € R%. Clearly, is a regular point of 4
if and only if J4(x) > 0.

Lemma 3.6 Letz € 0 A, be aregular point ofA 4 and letd A,. be representable as the graph of a Lipschitzian
function with Lipschitz constart > 0 in some neighbourhood ef Then

r

JA(Z) > \/szﬂ .
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8 J. Rataj, V. Schmidt, and E. Spodarev: On the Expected Surface Area of the Wiener Sausage

Proof. Let0A, be representable in a neighbourhood af a graph of ad—Lipschitzian functionf defined
onu’, whereu is a unit vector, and assume thapoints outwards of4,.. From the Lipschitz property of we
have that the whole convex cone- {v : v-u > L|v|/v/1 + L?} lies above the graph ¢f and, hence, belogs to
Tan (C,, z). Consequently, any vector froor (C,, z) must lie in the dual conév : v - u < —|v|/V1 + L?}.

It follows by Lemma 3.5 thata — 2) - u < —r(L?> + 1)"'/2 for anya € $4(z) and, hence, also for any
a € conv X 4(z), which implies thata — z| > r(L? + 1)~/2 for anya € conv £ 4(2). a

Lemma 3.7 Let D be a set with positive reach. Assume that the generalized principal curvétr(ies:),
i =1,...,d — 1, exist and are finite at a poirlla, v) € nor D such that(a, —u) ¢ nor D. Then there exists
¢ > 0 such thatB. (a — eu) C D.

Proof. Fix some0 < s < reach D and consider the parallel s&t, which hasC':! smooth boundary. The
(classical) principal curvatures 6D, atb = a + su exist and equal

s o ki(av u)
ki (b) = 1+ sksi(a,u)’

(see [32]). Denotdd = max{0, maxi<;<q—1 k;i(a,u)}; we have

ES(b) <
l()fl—l—sK

K 1
< -,
S

It follows from the basic differential calculus that, takirg< ¢t < s + % there exists a > 0 such that
Bi(b—tu)N B, (b) C Ds. Since clearlyB;(a) NdDs = {b}, the distance oB;(a) \ B-(b) from dD; is positive
and, therefore, there exists an- 0 with B, .(a —eu) C Dy. It follows thatB.(a —eu) C D, which completes
the proof. O

3.3 Proof of Theorem 3.3

First, we show thatVs)', (r) = H?1(9A,). By [10, Corollary 4.6], we have thd¥,)', (r) = HI1(9+ A,)
for anyr > 0, where
0tA, ={a€dA, : Jze RN\ A, a € Ya,(x)}.

It remains to prove that
HIL DA\ 0T A,) =0. (10)

Forz € 0A, \ 0T A,, there exists a unit vectarand an index < i < d — 1 such that the generalized principal
curvatures; (z, u) of C, is infinite. Indeed, if all principal curvatures @t, u) were finite then the application of
Lemma 3.7 withD = C, would yield B, (x — eu) C C, for somes > 0, and consequently € ¥4 (x — cu).
We arrived at the contradiction with¢ T A,.. Thus, relation (10) follows from Lemma 3.4.

We now verify that(V4)"_(r) = H9=1(dA,) as well. Sinceeach C, > 0 by Theorem 3.1, we have

lim Va ((Cr)s \ CT)

e—0 £

=H"1C,) = HIH(0A,)
by Steiner formula (6). A$C,.). \ C, is asubset ofd,. \ A, _., itis sufficient to show that

Vi (Zye) = o(e), ase — 0, (11)
whereZ, . = (A, \ A,—c)\ ((Cr):\C;). Note thatz € Z, . ifand only ifr — < A4(z) < randB.(z) C A,.

Clearly A, _. T A, ase — 0. By the compactness of,., A,._. converges tol,. in the Hausdorff metricas — 0
and, hence, there exists a functié@) — 0 (¢ — 0) suchthatZ,.. C A, \ A,_. C (C;)5() \ Cr. Assume that
e is so small thab(e) < reach C,.
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Forz € Z, . introducez = &¢, (x). Clearlyx — z € Nor (C,,z). Take some point € X 4(z); note that
la — z| = r asa € 0A. We haveq — z € Nor (C,, z) (since the interior of the balB,(a) does not hitC,.).

The vectorst — z anda — z are linearly independent (for otherwise— z = rﬁ would imply A 4(z) =

r — |z — z| < r — e, which would contradict € Z, .), hencedim Nor (C,., a) > 2. Denote

0*C, = {z € 9C,. : dimNor (C,, z) > 2}.
By local Steiner formula (7), we have that for— 0
Va(Zre) < Va (((C)se) \ Cr) NESHOCr)) = 26(e)Ca—1(Cr; 0°Cr)+0(8(e)) = 8(e)H (9" C,)+0(5(e)) -

SinceH?~1(0*C,.) = 0 by [5, Remark 4.15 (3)], we havig; (Z,..) = o(d(¢)). We shall prove (11) by showing
that

lim sup @ < 00, (12)
e—0 3

which will imply o(é(e)) = o(e) for e — 0. SincedC,. is a compact Lipschitz manifold, there exists a constant
L > 0 such thatoC,. can be covered by open sets on which it can be represented as the graph of a Lipschitzian
function with Lipschitz constant less then or equaltoThus, we have by Lemma 3.6

'
VIZ+1’

Butthen for anyr € Z, . andz = &¢, (z), there must exist a poit€ X 4(z) with (a — 2) - (x — z) > nr|z — 2|,
wheren = (1 + L?)~'/2, Itfollows that|z — a|? < 72 + |z — z|? — 2r|z — 2|n. We havelz — a| > r — ¢ since
x &€ Ar_., hence(r —)? <r? + |z — x|? — 2r|z — z|n and, solving the quadratic inequality, we obtain

|z — x| < nr—/n?r?2 —2re 42

Since this inequality holds for any< Z, ., we have also

Ja(z) > z € 0C, .

5(e) <mr— /2 —2re +e2 =n"te 4+ o(e)

ase — 0, which proves (12) and completes the proof of Theorem 3.3.

4 Differentiating the Expected Volume

In this section we prove Theorem 2.2, i.e., we show that the expected surface area of the Wiener$acemage
be obtained by differentiating its mean volume with respect to the dilation radius

4.1 The Case of Dimensions Two and Three

LetS = S(T) = {X(t) : 0 <t < T} be the image of the intervdl), '] in R? under the mapping where

X ={X(t,w) : t > 0, w € O} is the Brownian motion introduced in Section 2. Without loss of generality,
assume thak (0) = o almost surely. Clearly, the s8{(T) = {S(T,w) : w € Q} is a random curve iiR¢ where
S(T,w) is the realization of(T") corresponding to the elementary event

It follows from Theorem 3.1 that the set of critical valugsS(T,w)) has Lebesgue measure zero in dimensions
two and three for any € Q. We shall combine this fact with a probabilistic argument to show that the following
is true.

Theorem 4.1 Letd < 3. Then for any- > 0, r ¢ C(S) almost surely.
The proof of Theorem 4.1 will be based on the following two auxiliary results.
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Lemma 4.2 Letr > 0 be an arbitrary fixed number. With probability one, there is no critical paint o of
Ag witho € 3¥g(x) andAg(z) = r.

Proof. Denote byQ = {x € R?: 2; > 0foralli < d} the nonnegative coordinate cone and ebe a
countable dense set of rotations around the origiRinTheninf{t > 0: X (¢) € Q} is a random variable, see
[30, § 6.1]. Since the con@ is recurrent for the Brownian motiofiX (¢) } (see Proposition 2.13 of [18]), we have
P(sup{t > 0: X(t) € Q} = c0) = 1. Furthermore, this implies tha&(inf{t > 0: X(¢t) € Q} =0) = 1,

since the procesgX (¢), ¢ > 0} with

= tX(1/t) ift>0,
X(t):{o if t =0,

has the same distribution as the Brownian motjéf\¢)}. Thus, using the isotropy of thé-dimensional Brow-
nian motion, we obtain

P(inf{t >0: X(t) € pQ} =0forallpc R) =1. (13)

Consider the sefl, = {w € Q: 0 € Xg(,)(z(w)) for some critical point:(w) with |z(w)| = r}. Then, for any
w € A,, there is no point o5(w) in the interior of the ballB,.(x) with centrex = z(w) and radius: = |z|.
Using (13), this implies thaP (A, ) = 0, since there is surely a rotatipn= p(w) € R andé = d(w) > 0 such
thatp@ N Bs(o) is contained inB,.(x). O

Lemma 4.3 If P(r € C(S)) > 0 for somer > 0, then there exists a constant> 1 such that
P(seC(59))>0
foranys € [r, cr].

Proof. Suppose that for some > 0 we haveP(B) > 0, whereB = {w € Q : r € C(S(T,w))}.
Then, by Lemma 4.2, there exists a critical point z(w) of Agp..) With Agp .y (z) = r and|z| > r for
almost allw € B. Consequently, for almost all € B there exists a time instant = 7(w) > 0 such that
ming<;<, | X () — z| > r. It follows that the event

M = {w € B : Fcritical pointx = x(w) such thatAg(z) = r, 021<nt | X (t) — x| > r}
>U>0o

has positive probability for somg € (0, T). Furthermore, for any, < to, the random function

Xo(t) = Tfso (X (50+ T;SO t) X(50)>

is a Brownian motion due to the scaling invariance property (see, for examplgM2]) and, hence, the ran-
dom setS*e = {X*®o(¢) : 0 < ¢t < T} has the same distribution & SinceS*° is a shift of the multiple
VT/(T — s0)S’, whereS” = {X(¢) : s <t <T}, andr € C(5), we have that/T/(T — so)r € C(S*°) for
all so < to andw € M. Therefore, the assertion holds with= \/T/(T — to). O

Now we are able to complete the proof of Theorem 4.1. Supposéihrae C(S)) > 0 for somer > 0. Then,
by Fubini’s theorem and by Lemma 4.3, we have

EHY{s>0: sGC(S)}:/OOP(seC(S))dsZ/CTP(SGC(S))ds>O.
0 T

However, by Theorem 3.1, the expectation on the left-hand side must be zero. This implidg-thaf’(S)) = 0
for anyr > 0. Thus, the statement of Theorem 4.1 is shown.

The following result immediately follows from Theorems 3.3 and 4.1.
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Corollary 4.4 LetS, be a Wiener sausage of radiusn R¢, d < 3. Then for any- > 0,

(i) 0S5, is a Lipschitz manifoldseach R? \ S,. > 0 and the curvature measuré%(S,., -) and intrinsic volumes
Vi(S,.) are defined foi = 0,...,d — 1 almost surely;

(i) Vi(r)is almost surely differentiable at and we havé{?~1(9S,.) = V{(r) almost surely.

4.2 The Case of Dimensiond > 4

We do not know whether the assertions of Theorem 4.1 and Corollary 4.4 hold for any diménsioyway, a
different method of proof must be used. However, notice that the following is true.

Lemma 4.5 For almost allr > 0 the volumé&/s(r) is almost surely differentiable at and it holds
P(H¥10S,) =Vi(r) =1
for d > 4 and almost all- > 0.

Proof. It follows from [10, Lemma 4.5] and Pucci's theorem in [24] that for any realizafign) of S the
equalityH?=1(9S(w),) = V(. (r) holds for allr > 0 except for an at most countable gét= K (w) of radii
r. Thus, by Fubini's theorem we get that

0=EH (K) = /OOP(T € K)dr
0

and, consequently?(r € K) = 0 for almost all- > 0. Hence, it holds”(H?~*(85,) = V4(r)) = 1 for almost
allr > 0. O

4.3 Proof of Theorem 2.2

In order to prove Theorem 2.2, we make use of the fact that we can interchange differentiation and expectation
on the right—hand side of (1). For showing this, the following auxiliary result is useful.

Lemma 4.6 Let A ¢ R? be an arbitrary nonempty and compact set. Then, for almost every> 0 with
s < r, the derivatived’} (s) andV, (r) exist. Moreover, it holds that

r

VA(r) < (7)"1_1 VA(s) (14)
A = \s A
and
/ d d

0<Va(r) <~ (R+7)wa, (15)

whereR is the radius of a ball containing, i.e. A C Bg(0).
Proof. It has been shown in [12] that
Va(Ab) = Va(ha) < A (Va(b) = Va(a))

forany0 < a < bandX\ > 1. This implies that

VA(/\b) — VA(ACL) < /\d71 lim VA(b) — VA(a)

/ 1 _yd—1y,7/
Va(ra) = 1}1—{1{11 Alb—a) b—a b—a = A" Vala)
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foranya > 0 andX > 1 such that the derivativag) (a) andV, (Aa) exist. Recall that the derivativié; (r) exists
for almost every > 0; see (9). Thus, for almost evesyr > 0 with s < r, we have

r

Vi) < (5) Vi),

Multiplying both sides of the above inequality By/r)?~! and then integrating them with respecttae obtain

r T gy d-1 r
Va(r) = Va(0) = / Vi(s)ds > vg(r)/ (2) ds=Zvae,
0 o \T d
or, equivalently,
, d d d
Va(r) < — (Va(r) = Va(0)) < = Va(r) < —(R+7)"wa
This completes the proof of Lemma 4.6. O

Now we can complete the proof of Theorem 2.2. It follows from Corollary 4.4 and Lemma 4.5 that
EH(0S,) = EV4(r) (16)

forallr > 0if d = 2,3 and almost alt > 0 if d > 4. Furthermore, using (14), we have

Vs(r+h)—Vs(r) 1 [™" 7+ hyd-1 _
SRS 2 [ veas < (5 v <2 v0)

foranyh € (0,r), whereas (15) implies that

Vi) < & (mas X0+ 1)

te[0,T]

Notice that(maxe (o, 71 | X ()| + 7)* < co. This follows from the inequality

X)) < Wi(t
o, |X ()] Ztén?’é]'
and from the well-known fact that

E( max |W;(t))? < 2E( max W;(t))? < oo

tel0,T) t€[0,T]

for eachi € {1,...,d}, where{W1(¢)},...,{Wa(t)} are independent Wiener processes initiated at zero. This
means that the random variablgd’s (r + h) — Vs(r))/h, h € (0,r)} have a common integrable bound. By the
dominated convergence theorem, this implies that

dE Vd(Sr)

=EVi(r).
dr Vi(r)

Thus, in view of (16), Theorem 2.2 is proved.

Note added in proof

While this paper has been refereed, Last [14, Theorem 4.5] proved the relation (1) by another method using the
generalized Steiner formula from [10].
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