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For parallel neighborhoods of the paths of thed–dimensional Brownian motion, so–calledWiener sausages,
formulae for the expected surface area are given for any dimensiond ≥ 2. It is shown by means of geometric
arguments that the expected surface area is equal to the first derivative of the mean volume of the Wiener
sausage with respect to its radius.
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1 Introduction

The trace of a moving spherical particle involved in ad–dimensional Brownian motion observed within a certain
time interval[0, T ], where0 < T < ∞, is often called aWiener sausage. It is used in physics, chemistry, biology
and technology to model various phenomena; see [31] and the references therein. Further recent applications are
wireless sensor networks; see e.g. [11] and [22].

There exists an extensive literature on Wiener sausages; see e.g. [25] and the references therein. Nevertheless,
relatively little is known so far about the geometry of Wiener sausages due to the complex nature of their real-
izations. One possible description of the geometric structure of (sufficiently regular) subsets ofRd is given by
theird + 1 intrinsic volumesor Minkowski functionalsincluding the usual volume, surface area and other curva-
ture measures as well as the Euler–Poincaré characteristic; see e.g. [5]. As far as it is known to the authors, the
only Minkowski functional of Wiener sausages studied in the literature is their expectedd–dimensional Lebesgue
measure. Thus, explicit formulae for the expected volume of Wiener sausages and its asymptotic behavior for
T → 0 or T → ∞ can be found in [9], [13], [23]; see also [2]. The results of corresponding simulation studies
in three dimensions are discussed in [31]. Further limit theorems and deviation results for the volume of Wiener
sausages are proved in [15] and [27]. Asymptotic long–time behavior of its moment generating function is given
in [4], [26], [28]; see also [25], pp. 201 and 315.

In the present paper, the mean surface area of Wiener sausages is determined for all dimensions greater than one.
However, there remains an interesting unsolved problem to obtain corresponding formulae for the otherd − 1
expected intrinsic volumes which would then give a more complete description of the geometric properties of
Wiener sausages. These intrinsic volumes are well defined; see Corollary 4.4 of this paper.

The paper is organized as follows. In Section 2, some preliminary properties of Wiener sausages are discussed
and the main results are stated. In particular, in Theorem 2.2, a representation formula for the expected surface
area of Wiener sausages is given. The proof of this theorem is postponed to Section 4. It makes use of some
auxiliary geometric results on the differentiability of the volume of parallel neighborhoods of compact sets given
in Section 3.

∗ Partially supported by MSM 0021620839.
∗∗ Corresponding author: e-mail:evgueni.spodarev@uni-ulm.de, Phone: +49 731 50 23527, Fax: +49 731 50 23649

Copyright line will be provided by the publisher



2 J. Rataj, V. Schmidt, and E. Spodarev: On the Expected Surface Area of the Wiener Sausage

Fig. 1 A realization ofSr for r = 10 (left) andr = 40 (right)

2 Wiener Sausage

2.1 Random Closed Sets

Let {W (t) : t ≥ 0} be theWiener processwith varianceσ2 initiated atx ∈ R defined on the probability space
(Ω, F, P ). Let {W1(t)}, . . . , {Wd(t)} be d independent Wiener processes starting atx1, . . . , xd ∈ R, respec-
tively. Then, the random function{X(t), t ≥ 0} with X(t) =

(
W1(t), . . . , Wd(t)

)
is called ad–dimensional

Brownian motioninitiated at(x1, . . . , xd) ∈ Rd; see e.g. [3].

TheMinkowski sumof two setsA andB in Rd is given byA ⊕ B = {x + y : x ∈ A, y ∈ B}. If B is the ball
Br(o) of radiusr ≥ 0 in Rd centered at the origin, the setAr = A ⊕ Br(o) is often referred to asr–parallel
neighborhood ofA. The operationA 7→ Ar is known asdilation. LetF (C) be the family of all closed (compact)
subsets inRd, respectively. Denote byσF theσ–algebra generated by the sets{F ∈ F : F ∩ C 6= ∅}, C ∈ C.
A random closed set(RACS)Ξ is a random variable with values inF , i.e.,Ξ : Ω → F is a(F, σF )–measurable
mapping. For the general theory of random sets, see e.g. [16], [17], [21].

Let T > 0 be a fixed a time instant and letS(T ) = {X(t) : 0 ≤ t ≤ T} ⊆ Rd denote the Brownian path inRd.
We shall often write onlyS instead ofS(T ) unless the timeT is changed. The setSr = S(T )⊕Br(o), r ≥ 0 is
called aWiener sausage; see e.g. [25], p.64.

In Figure 1, a simulated realization ofSr for σ = 1, T = 25000 and two dilation radiir = 10 andr = 40 is
given.

Lemma 2.1 For anyr > 0, the Wiener sausageSr is a compact RACS.

P r o o f. Notice that for eachω ∈ Ω the setS(ω) is compact as a continuous image of the compact interval
[0, T ]. To prove the measurability ofS required in the definition of a random closed set, it is sufficient to show
that the indicator function1(S ∩ C = ∅) is a random variable for allC ∈ C. Indeed, it holds

1(S ∩ C = ∅) = 1(X(t) 6∈ C, t ∈ [0, T ]) = 1(τx
C > T ) ,

whereτx
C = inf{t ≥ 0 : X(t) ∈ C} is the first hitting time of the setC for the Wiener processX started atx.

It is well known thatτx
C is a random variable; cf. e.g. [30,§ 6.1]. Hence,1(τx

C > T ) is measurable andS is a
compact random closed set. Since the dilation preserves this property (see [21], p. 23), the Wiener sausageSr is
a RACS as well.

2.2 Main Results

Let Vd denote the Lebesgue measure andHs thes–dimensional Hausdorff measure inRd; see e.g. [20]. Then
Hd−1(∂Sr) is a random variable, cf. [1] and references therein. The main result of the present paper is the
following representation formula of the expected surface area of the Wiener sausageSr.
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Theorem 2.2 The expected surface areaEHd−1(∂Sr) of Sr is finite and given by

EHd−1(∂Sr) =
dEVd(Sr)

d r
(1)

for anyr > 0 in dimensions two and three. For dimensionsd ≥ 4, formula(1) holds at least for almost allr > 0.

Theproofof Theorem 2.2 will be postponed to Section 4.

Notice that as a consequence of (1), further formulae can be obtained for the expected surface area ofSr. In
connection with this, the Bessel functionsJν(y) andYν(y) of the first and second kind of orderν = (d − 2)/2
are considered; see e.g. [29].

Corollary 2.3 Letd ≥ 2 andr > 0. Then, it holds that

EHd−1(∂Sr) = dωdr
d−1


1 +

σ2T (d− 2)2

2r2
+

4d

π2

∞∫

0

1− (
1 + σ2Ty2/(dr2)

)
e−

σ2y2T

2r2

y3 (J2
ν (y) + Y 2

ν (y))
dy


 (2)

for almost all radiir > 0, whereωd = πd/2/Γ(1 + d/2) is the volume of the unitd–dimensional ballB1(o). For
d = 2, 3, formula(2) holds for allr > 0. Moreover, in the cased = 3, it simplifies to

EH2(∂Sr) = 4πr2 + 8rσ
√

2πT + 2πσ2T . (3)

P r o o f. It is well–known (see e.g. [2]) that the expected volumeEVd(Sr) of the Wiener sausageSr can be
given by

EVd(Sr) = ωdr
d +

d(d− 2)
2

ωd σ2rd−2T +
4dωd rd

π2

∞∫

0

1− e−
σ2y2T

2r2

y3 (J2
ν (y) + Y 2

ν (y))
dy . (4)

Furthermore, in three dimensions, the latter formula simplifies to

EV3(Sr) =
4
3
πr3 + 4σr2

√
2πT + 2πσ2rT ,

see also [11] and [23]. By Theorem 2.2, differentiating the above expressions with respect tor yields the formulae
(2) and (3). To see this we still have to show that it is possible to differentiate with respect tor under the integral
sign in (4). Introduce the notation

f(y, r) =
1− e−

σ2y2T

2r2

y3(J2
ν (y) + Y 2

ν (y))
and notice that

d
dr

f(y, r) =
ϕ(σ2y2T

2r2 )
y3(J2

ν (y) + Y 2
ν (y))

,

whereϕ(z) = 1− e−z − 2
dze−z. It is easy to verify thatϕ is increases on(0,∞) from 0 to 1, and thatϕ(z) ≤ z

for all z > 0. Thus we have an upper bound

d
dr

f(y, r) ≤
max{1, σ2y2T

2r2
0
}

y3(J2
ν (y) + Y 2

ν (y))

valid for all y > 0 and r > r0 with a givenr0 > 0. The well-known asymptotic properties of the Bessel
functions can be used now to verify that the latter bound is integrable on(0,∞), which justifies the interchange
of integration and differentiation, i.e.

d
dr

∫ ∞

0

f(y, r) =
∫ ∞

0

d
dr

f(y, r) dy, r > r0. (5)

Sincer0 > 0 was arbitrary, (5) holds for allr > 0.
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Notice that in the three–dimensional case, the mean surface area of the Wiener sausage is given by the simple
analytical expression given in (3), whereas in other dimensions the formula (2) can be assessed only numerically.
This main difference comes from the theory of parabolic partial differential equations due to the close connections
between the heat equation and the Brownian motion as a diffusion process; see e.g. [13] and [23].

Remark The following asymptotic behaviour ofEHd−1(∂Sr) holds as the radiusr of the Wiener sausage tends
to zero. Namely, using (2) and asymptotic properties of Bessel functions one can show that

EHd−1(∂Sr) ∼




πσ2Tr−1 log−2 r if d = 2,
2πσ2T if d = 3,

dωdσ
2T (d−2)2

2 rd−3 if d ≥ 4

asr → 0, wheref(r) ∼ g(r) means thatlim
r→0

f(r)/g(r) = 1.

3 Parallel Neighbourhoods

In the first part of this section, some preliminary facts from the geometry of sets with positive reach and Lipschitz
manifolds are given. Later on, in Section 3.2, it will be shown that the first derivative of the volume of a dilated
set with respect to the dilation radius equals its surface area for “non–critical” values of dilation radii. Notice
that in dimensions two and three, the set of “critical” radii is of Lebesgue measure zero for any compact set, cf.
Theorem 3.1.

3.1 Preliminaries

3.1.1 Distance Function

Let A be a nonempty compact subset ofRd. Thedistance function∆A : Rd → [0,∞) of A is defined by

∆A(x) = min{|x− a| : a ∈ A}, x ∈ Rd .

Clearly,∆A is a Lipschitzian function with Lipschitz constant1. For anyr ≥ 0, ther-parallel neighbourhood
to A rewrites in terms of the distance function asAr = {x ∈ Rd : ∆A(x) ≤ r}. Given two nonempty compact
subsetsA,B of Rd, theirHausdorff distanceis defined as

∆H(A,B) = max
{
max
a∈A

∆B(a), max
b∈B

∆A(b)
}

.

It is well known that∆H is a metric. For anyx ∈ Rd, we denote by

ΣA(x) = {a ∈ A : |x− a| = ∆A(x)}

the set of all points inA which are nearest tox. The setΣA(x) is always nonempty, by the compactness of
A. Following Ferry [7], we say thatx ∈ Rd is a critical point of ∆A if x lies in the closed convex hull of
ΣA(x). Notice that this property is equivalent to that the subgradient of∆A contains the origin which is used
more commonly as definition of a critical point; see [8].

A point x is calledregular if it is not critical. A numberr > 0 is acritical valueof ∆A is there exists a critical
point x of ∆A with ∆A(x) = r. We shall denote byC(A) ⊆ (0,∞) the set of all critical values of∆A. In
Figure 2, the setA consists of two parallel segments located at the distanceb > 0. It is clear that the dilation
radiusr = b/2 is a critical value of∆A. The dashed line in the middle of Figure 2 is the set of critical points of
∆A.
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A

critical points

A r

r - C(A)

Fig. 2 The set of critical points forr ∈ C(A)

3.1.2 Sets with Positive Reach

Thereachof a closed subsetA ⊆ Rd is given by

reachA = sup{r ≥ 0 : ∀x ∈ Rd, ∆A(x) < r =⇒ cardΣA(x) = 1} ,

see [5]. As examples of sets with positive reach, consider convex closed sets (with infinite reach) or sets with
compact andC2–smooth boundaries. Note that the union of two intersecting convex bodies typically does not
have positive reach. The tangent coneTan (A, a) is always a closed convex cone ifa ∈ ∂A andreach A > 0.
The normal cone is defined as the dual cone to the tangent cone

Nor (A, a) = {u : u · v ≤ 0 for all v ∈ Tan (A, a)}

and it is a closed convex cone as well.

For a compact setA ⊆ Rd with finite positive reach, the Steiner formula holds only for sufficiently small radii.
More exactly, we have

Vd (Ar) =
d∑

i=0

ωir
iVd−i(A) , 0 ≤ r < reach A , (6)

whereVd is the Lebesgue measure inRd (volume),ωi is the volume of the uniti-ball andVi is thei-th intrinsic
volume ofA, i = 0, . . . , d (see [5]). The functionalsVi are motion invariant and additive. In particular,V0 is the
Euler–Poincaŕe characteristic andVd−1 is one half of the surface area.

A local version of the Steiner formula holds for (not necessarily compact) sets with positive reach. LetξA(x) be
the nearest point ofA to x whenever∆A(x) < reachA. Then we have for any Borel subsetF of Rd

Vd

(
(Ar \A) ∩ ξ−1

A (F )
)

=
d∑

i=1

ωir
iCd−i(A; F ) , 0 ≤ r < reach A , (7)

whereCi(A; ·) is theith curvature measureof A; it is a signed Radon measure concentrated on∂A for 0 ≤ i ≤
d − 1 andCd−1(A; ·) is the restriction of the(d − 1)–dimensional Hausdorff measure to∂A provided thatA is
d–dimensional. If∂A is compact thenCi(A;Rd) = Vi(A), i = 0, . . . , d− 1.
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3.1.3 Lipschitz Manifolds

A set A ⊆ Rd is a ((d − 1)–dimensional)Lipschitz manifoldif A is locally representable as the graph of a
Lipschitzian function, i.e., for anya ∈ A there exists a neighbourhoodU of a (in Rd), a unit vectoru ∈ Rd and
a Lipschitzian functionφ : u⊥ → R such thatA ∩ U = graph φ ∩ U (u⊥ denotes the(d − 1)–dimensional
subspace ofRd perpendicular tou). Of course, any Lipschitz manifold is a topological manifold and any smooth
manifold is a Lipschitz manifold, but not vice versa.

A d–dimenional Lipschitz manifold inRd with boundary is a subsetA ⊆ Rd which is locally representable as the
subgraph of a Lipschitzian function (consequently, its topological boundary is a(d − 1)–dimensional Lipschitz
manifold). For such sets, conditions were found in [19] under which its curvature measures can be defined so that
the Gauss–Bonnet and principal kinematic formulae hold. These conditions are satisfied in particular if the set
A itself or the closure of its complementRd \A has positive reach. If, moreover, the boundary ofA is compact
then the total curvature measures are denoted byVi(A) and called intrinsic volumes as in the case of sets with
positive reach and we always have

Vi

(
Rd \A

)
= (−1)d−i−1Vi(A) , i = 0, . . . , d− 1 . (8)

Theorem 3.1 For any nonempty compact setA ⊆ Rd, the following properties hold:

(i) if r ∈ (0,∞) \ C(A) then∂Ar is a (d− 1)-dimensional Lipschitz manifold andreach
(
Rd \Ar

)
> 0;

(ii) The setC(A) is compact andH d−1
2

(
C(A)

)
= 0.

A proofof Theorem 3.1 can be found in [8].

Corollary 3.2 For any nonempty compact setA inRd, the curvature measuresCi(Ar; ·) and intrinsic volumes
Vi(Ar) of the parallel setAr to A are well defined fori = 0, . . . , d− 1 wheneverr 6∈ C(A).

Note that the assertion about the measure ofC(A) in (ii) of Theorem 3.1 is nonempty only ifd ≤ 3. Examples
can be found in [7] and [8] showing thatC(A) can contain a nondegenerate interval ifd ≥ 4.

3.2 Volume of the Parallel Neighbourhood

Let A ⊆ Rd be a nonempty and compact subset ofRd. For r ≥ 0, denote byVA(r) the volumeVd (Ar) of the
parallel neighbourhood toA. The functionVA is obviously increasing on[0,∞). Applying the co–area formula
to the distance function, we obtain (see [6, Section 3.2.34])

VA(r) = VA(0) +
∫ r

0

Hd−1
(
∆−1

A {s}) ds , r > 0 . (9)

Consequently, the functionVA is absolutely continuous and its derivative exists and equalsHd−1
(
∆−1

A {r}) for
almost allr. Note that the boundary∂Ar is a subset of the level set∆−1

A {r}, but the equality does not hold in
general (as a counterexample, the setA in Figure 2 can be considered).

Stach́o [24] derived some further properties ofVA; in particular, he showed that the one-sided derivatives
(VA)′−(r) and(VA)′+(r) exist for anyr > 0, but only the inequality(VA)′−(r) ≥ (VA)′+(r) holds in general.
Stach́o also proved that the arithmetic mean of the left and right derivatives ofVA always equals the Minkowski
content of∂Ar (see [24, Theorem 2]).

We shall need later the following result.

Theorem 3.3 If r ∈ (0,∞) \ C(A) thenV ′
A(r) exists and equalsHd−1(∂Ar).
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In theproofof Theorem 3.3, which is postponed to Section 3.3, we shall need some further properties of sets with
positive reach. Letreach A > 0. The unit normal bundle ofA is the subset ofRd × Sd−1

nor A = {(a, u) ∈ ∂A× Sd−1 : u ∈ Nor (A, a)}.

The generalized principal curvatureski(x, u), i = 1, . . . , d − 1, are definedHd−1-almost everywhere onnor A
and take values from[−reach A,∞] (see [32]). If, in particular,∂A is C2–smooth, thendimNor (A, a) = 1
for anya ∈ ∂A andki(a, u) equal, up to sign, the classical principal curvatures of differential geometry for any
(a, u) ∈ norA.

Lemma 3.4 Denotingπ : (a, u) 7→ a the first coordinate projection onRd × Rd, we have

Hd−1 (π{(a, u) ∈ nor A : ki(a, u) = ∞ for some1 ≤ i ≤ d− 1}) = 0.

P r o o f. The(d− 1)–dimensional Jacobian ofπ restricted tonor A equals

Jd−1(a, u) =
d−1∏

i=1

1√
1 + ki(a, u)2

, (a, u) ∈ norA ;

see [32]. The Jacobian is thus zero whenever some of the generalized curvatures are infinite. The assertion
follows thus by the so–called area formula; see Section 3.2.22 of [6].

Let from now onA be compact and denote for brevityCr = Rd \Ar (clearly∂Cr = ∂Ar). By Theorem 3.1, we
havereach Cr > 0 for r 6∈ C(A). We can describe the tangent and normal cones ofCr as follows. Given a set
H ⊆ Rd, denote bycone H the closed convex cone spanned byH, i.e.,

coneH = {t1h1 + · · ·+ tdhd : h1, . . . , hd ∈ H, t1, . . . , td ≥ 0},

and bycone ∗H the dual conecone ∗H = {u : u · h ≤ 0 for all h ∈ H}.

Lemma 3.5 If z ∈ ∂Ar is regular for ∆A then Nor (Cr, z) = cone (ΣA(z)− z) and Tan (Cr, z) =
cone ∗ (ΣA(z)− z).

P r o o f. First, notice that sincez is a regular point of∆A, cone (ΣA(z)− z) is a proper convex cone (i.e.,
there is a hyperplane intersecting it only in the origin) and, hence, the dual conecone ∗ (ΣA(z)− z) is full-
dimensional. Letv be a vector from the interior ofcone ∗ (ΣA(z)− z). Then, since there are no points ofA on
the hemisphere∂Br(z) ∩ {x : (x− z) · v ≥ 0}, the shifted ballBr(z + εv) does not intersectA for sufficiently
smallε > 0. Therefore,z + εv ∈ Cr for sufficiently smallε and, hence,v ∈ Tan (Cr, z). By the closeness of
the tangent cone, we getcone ∗ (ΣA(z)− z) ⊂ Tan (Cr, z). On the other hand, ifv 6∈ cone ∗ (ΣA(z)− z) then
there is a pointa ∈ A such that(a − z) · v > 0. Then there exists anε > 0 such that for any vectorw with
|w− v| < ε, all points of the segment(z, z + εw] have distance smaller thanr from a and, therefore,v cannot be
a tangent vector toCr atz.

Introduce the functionJA : x 7→ min {|a− x| : a ∈ conv ΣA(x)}, x ∈ Rd. Clearly,x is a regular point of∆A

if and only if JA(x) > 0.

Lemma 3.6 Letz ∈ ∂Ar be a regular point of∆A and let∂Ar be representable as the graph of a Lipschitzian
function with Lipschitz constantL > 0 in some neighbourhood ofz. Then

JA(z) ≥ r√
L2 + 1

.
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P r o o f. Let ∂Ar be representable in a neighbourhood ofz as a graph of anL–Lipschitzian functionf defined
on u⊥, whereu is a unit vector, and assume thatu points outwards ofAr. From the Lipschitz property off we
have that the whole convex conez + {v : v ·u ≥ L|v|/√1 + L2} lies above the graph off and, hence, belogs to
Tan (Cr, z). Consequently, any vector fromNor (Cr, z) must lie in the dual cone{v : v · u ≤ −|v|/√1 + L2}.
It follows by Lemma 3.5 that(a − z) · u ≤ −r(L2 + 1)−1/2 for any a ∈ ΣA(z) and, hence, also for any
a ∈ conv ΣA(z), which implies that|a− z| ≥ r(L2 + 1)−1/2 for anya ∈ conv ΣA(z).

Lemma 3.7 Let D be a set with positive reach. Assume that the generalized principal curvatureski(a, u),
i = 1, . . . , d − 1, exist and are finite at a point(a, u) ∈ nor D such that(a,−u) 6∈ nor D. Then there exists
ε > 0 such thatBε(a− εu) ⊆ D.

P r o o f. Fix some0 < s < reach D and consider the parallel setDs which hasC1,1 smooth boundary. The
(classical) principal curvatures of∂Ds at b = a + su exist and equal

ks
i (b) =

ki(a, u)
1 + ski(a, u)

, i = 1, . . . , d− 1

(see [32]). DenoteK = max{0, max1≤i≤d−1 ki(a, u)}; we have

ks
i (b) ≤

K

1 + sK
<

1
s

, i = 1, . . . , d− 1 .

It follows from the basic differential calculus that, takings < t < s + 1
K , there exists aτ > 0 such that

Bt(b− tu)∩Bτ (b) ⊆ Ds. Since clearlyBs(a)∩∂Ds = {b}, the distance ofBs(a)\Bτ (b) from ∂Ds is positive
and, therefore, there exists anε > 0 with Bs+ε(a− εu) ⊆ Ds. It follows thatBε(a− εu) ⊆ D, which completes
the proof.

3.3 Proof of Theorem 3.3

First, we show that(VA)′+(r) = Hd−1(∂Ar). By [10, Corollary 4.6], we have that(VA)′+(r) = Hd−1(∂+Ar)
for anyr > 0, where

∂+Ar =
{
a ∈ ∂Ar : ∃x ∈ Rd \Ar, a ∈ ΣAr (x)

}
.

It remains to prove that

Hd−1(∂Ar \ ∂+Ar) = 0 . (10)

Forx ∈ ∂Ar \ ∂+Ar, there exists a unit vectoru and an index1 ≤ i ≤ d− 1 such that the generalized principal
curvatureκi(x, u) of Cr is infinite. Indeed, if all principal curvatures at(x, u) were finite then the application of
Lemma 3.7 withD = Cr would yieldBε(x − εu) ⊆ Cr for someε > 0, and consequentlyx ∈ ΣAr (x − εu).
We arrived at the contradiction withx 6∈ ∂+Ar. Thus, relation (10) follows from Lemma 3.4.

We now verify that(VA)′−(r) = Hd−1(∂Ar) as well. SincereachCr > 0 by Theorem 3.1, we have

lim
ε→0

Vd ((Cr)ε \ Cr)
ε

= Hd−1(∂Cr) = Hd−1(∂Ar)

by Steiner formula (6). As(Cr)ε \ Cr is a subset ofAr \Ar−ε, it is sufficient to show that

Vd (Zr,ε) = o(ε) , asε → 0, (11)

whereZr,ε =
(
Ar \Ar−ε

)\(
(Cr)ε \Cr

)
. Note thatz ∈ Zr,ε if and only if r−ε < ∆A(z) ≤ r andBε(z) ⊆ Ar.

ClearlyAr−ε ↑ Ar asε → 0. By the compactness ofAr, Ar−ε converges toAr in the Hausdorff metric asε → 0
and, hence, there exists a functionδ(ε) → 0 (ε → 0) such thatZr,ε ⊆ Ar \Ar−ε ⊆ (Cr)δ(ε) \ Cr. Assume that
ε is so small thatδ(ε) < reachCr.
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For x ∈ Zr,ε introducez = ξCr
(x). Clearly x − z ∈ Nor (Cr, z). Take some pointa ∈ ΣA(z); note that

|a − z| = r asa ∈ ∂A. We havea − z ∈ Nor (Cr, z) (since the interior of the ballBr(a) does not hitCr).
The vectorsx − z anda − z are linearly independent (for otherwise,a − z = r x−z

|x−z| would imply ∆A(x) =
r − |x− z| ≤ r − ε, which would contradictx ∈ Zr,ε), hencedimNor (Cr, a) ≥ 2. Denote

∂∗Cr = {z ∈ ∂Cr : dimNor (Cr, z) ≥ 2}.
By local Steiner formula (7), we have that forε → 0

Vd (Zr,ε) ≤ Vd

((
(Cr)δ(ε) \ Cr

) ∩ ξ−1
Cr

(∂∗Cr)
)

= 2δ(ε)Cd−1(Cr; ∂∗Cr)+o(δ(ε)) = δ(ε)Hd−1(∂∗Cr)+o(δ(ε)) .

SinceHd−1(∂∗Cr) = 0 by [5, Remark 4.15 (3)], we haveVd (Zr,ε) = o(δ(ε)). We shall prove (11) by showing
that

lim sup
ε→0

δ(ε)
ε

< ∞ , (12)

which will imply o(δ(ε)) = o(ε) for ε → 0. Since∂Cr is a compact Lipschitz manifold, there exists a constant
L > 0 such that∂Cr can be covered by open sets on which it can be represented as the graph of a Lipschitzian
function with Lipschitz constant less then or equal toL. Thus, we have by Lemma 3.6

JA(z) ≥ r√
L2 + 1

, z ∈ ∂Cr .

But then for anyx ∈ Zr,ε andz = ξCr (x), there must exist a pointa ∈ ΣA(z) with (a− z) · (x− z) ≥ ηr|x− z|,
whereη = (1 + L2)−1/2. It follows that|x− a|2 ≤ r2 + |z − x|2 − 2r|z − x|η. We have|x− a| > r − ε since
x 6∈ Ar−ε, hence(r − ε)2 ≤ r2 + |z − x|2 − 2r|z − x|η and, solving the quadratic inequality, we obtain

|z − x| ≤ ηr −
√

η2r2 − 2rε + ε2 .

Since this inequality holds for anyz ∈ Zr,ε, we have also

δ(ε) ≤ ηr −
√

η2r2 − 2rε + ε2 = η−1ε + o(ε)

asε → 0, which proves (12) and completes the proof of Theorem 3.3.

4 Differentiating the Expected Volume

In this section we prove Theorem 2.2, i.e., we show that the expected surface area of the Wiener sausageSr can
be obtained by differentiating its mean volume with respect to the dilation radiusr.

4.1 The Case of Dimensions Two and Three

Let S = S(T ) = {X(t) : 0 ≤ t ≤ T} be the image of the interval[0, T ] in Rd under the mappingX where
X = {X(t, ω) : t ≥ 0, ω ∈ Ω} is the Brownian motion introduced in Section 2. Without loss of generality,
assume thatX(0) = o almost surely. Clearly, the setS(T ) = {S(T, ω) : ω ∈ Ω} is a random curve inRd where
S(T, ω) is the realization ofS(T ) corresponding to the elementary eventω.

It follows from Theorem 3.1 that the set of critical valuesC(S(T, ω)) has Lebesgue measure zero in dimensions
two and three for anyω ∈ Ω. We shall combine this fact with a probabilistic argument to show that the following
is true.

Theorem 4.1 Letd ≤ 3. Then for anyr > 0, r 6∈ C(S) almost surely.

Theproofof Theorem 4.1 will be based on the following two auxiliary results.
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Lemma 4.2 Let r > 0 be an arbitrary fixed number. With probability one, there is no critical pointx 6= o of
∆S with o ∈ ΣS(x) and∆S(x) = r.

P r o o f. Denote byQ = {x ∈ Rd : xi ≥ 0 for all i ≤ d} the nonnegative coordinate cone and letR be a
countable dense set of rotations around the origin inRd. Theninf{t > 0 : X(t) ∈ Q} is a random variable, see
[30, § 6.1]. Since the coneQ is recurrent for the Brownian motion{X(t)} (see Proposition 2.13 of [18]), we have
P (sup{t > 0 : X(t) ∈ Q} = ∞) = 1. Furthermore, this implies thatP (inf{t > 0 : X(t) ∈ Q} = 0) = 1,
since the process{X̃(t), t ≥ 0} with

X̃(t) =
{

t X(1/t) if t > 0,
0 if t = 0,

has the same distribution as the Brownian motion{X(t)}. Thus, using the isotropy of thed–dimensional Brow-
nian motion, we obtain

P (inf{t > 0 : X(t) ∈ ρQ} = 0 for all ρ ∈ R) = 1 . (13)

Consider the setAr = {ω ∈ Ω : o ∈ ΣS(ω)(x(ω)) for some critical pointx(ω) with |x(ω)| = r}. Then, for any
ω ∈ Ar, there is no point ofS(ω) in the interior of the ballBr(x) with centrex = x(ω) and radiusr = |x|.
Using (13), this implies thatP (Ar) = 0, since there is surely a rotationρ = ρ(ω) ∈ R andδ = δ(ω) > 0 such
thatρQ ∩Bδ(o) is contained inBr(x).

Lemma 4.3 If P (r ∈ C(S)) > 0 for somer > 0, then there exists a constantc > 1 such that

P (s ∈ C(S)) > 0

for anys ∈ [r, cr].

P r o o f. Suppose that for somer > 0 we haveP (B) > 0, whereB = {ω ∈ Ω : r ∈ C(S(T, ω))}.
Then, by Lemma 4.2, there exists a critical pointx = x(ω) of ∆S(T,ω) with ∆S(T,ω)(x) = r and |x| > r for
almost allω ∈ B. Consequently, for almost allω ∈ B there exists a time instantτ = τ(ω) > 0 such that
min0≤t≤τ |X(t)− x| > r. It follows that the event

M = {ω ∈ B : ∃ critical pointx = x(ω) such that∆S(x) = r, min
0≤t≤t0

|X(t)− x| > r}

has positive probability for somet0 ∈ (0, T ). Furthermore, for anys0 ≤ t0, the random function

Xs0(t) =
√

T

T − s0

(
X

(
s0 +

T − s0

T
t

)
−X(s0)

)

is a Brownian motion due to the scaling invariance property (see, for example, [3,§ IV.2]) and, hence, the ran-
dom setSs0 = {Xs0(t) : 0 ≤ t ≤ T} has the same distribution asS. SinceSs0 is a shift of the multiple√

T/(T − s0)S′, whereS′ = {X(t) : s0 ≤ t ≤ T}, andr ∈ C(S′), we have that
√

T/(T − s0)r ∈ C(Ss0) for
all s0 ≤ t0 andω ∈ M . Therefore, the assertion holds withc =

√
T/(T − t0).

Now we are able to complete the proof of Theorem 4.1. Suppose thatP (r ∈ C(S)) > 0 for somer > 0. Then,
by Fubini’s theorem and by Lemma 4.3, we have

EH1{s > 0 : s ∈ C(S)} =
∫ ∞

0

P (s ∈ C(S)) ds ≥
∫ cr

r

P (s ∈ C(S)) ds > 0 .

However, by Theorem 3.1, the expectation on the left–hand side must be zero. This implies thatP (r ∈ C(S)) = 0
for anyr > 0. Thus, the statement of Theorem 4.1 is shown.

The following result immediately follows from Theorems 3.3 and 4.1.
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Corollary 4.4 LetSr be a Wiener sausage of radiusr in Rd, d ≤ 3. Then for anyr > 0,

(i) ∂Sr is a Lipschitz manifold,reachRd \ Sr > 0 and the curvature measuresCi(Sr, ·) and intrinsic volumes
Vi(Sr) are defined fori = 0, . . . , d− 1 almost surely;

(ii) Vs(r) is almost surely differentiable atr, and we haveHd−1(∂Sr) = V ′
S(r) almost surely.

4.2 The Case of Dimensionsd ≥ 4

We do not know whether the assertions of Theorem 4.1 and Corollary 4.4 hold for any dimensiond. Anyway, a
different method of proof must be used. However, notice that the following is true.

Lemma 4.5 For almost allr > 0 the volumeVS(r) is almost surely differentiable atr, and it holds

P
(Hd−1(∂Sr) = V ′

S(r)
)

= 1

for d ≥ 4 and almost allr > 0.

P r o o f. It follows from [10, Lemma 4.5] and Pucci’s theorem in [24] that for any realizationS(ω) of S the
equalityHd−1(∂S(ω)r) = V ′

S(ω)(r) holds for allr > 0 except for an at most countable setK = K(ω) of radii
r. Thus, by Fubini’s theorem we get that

0 = EH1(K) =
∫ ∞

0

P (r ∈ K) dr

and, consequently,P (r ∈ K) = 0 for almost allr > 0. Hence, it holdsP
(Hd−1(∂Sr) = V ′

S(r)
)

= 1 for almost
all r > 0.

4.3 Proof of Theorem 2.2

In order to prove Theorem 2.2, we make use of the fact that we can interchange differentiation and expectation
on the right–hand side of (1). For showing this, the following auxiliary result is useful.

Lemma 4.6 Let A ⊂ Rd be an arbitrary nonempty and compact set. Then, for almost everys, r > 0 with
s ≤ r, the derivativesV ′

A(s) andV ′
A(r) exist. Moreover, it holds that

V ′
A(r) ≤

(r

s

)d−1

V ′
A(s) (14)

and

0 ≤ V ′
A(r) ≤ d

r
(R + r)dωd , (15)

whereR is the radius of a ball containingA, i.e. A ⊂ BR(o).

P r o o f. It has been shown in [12] that

VA(λb)− VA(λa) ≤ λd(VA(b)− VA(a))

for any0 ≤ a ≤ b andλ ≥ 1. This implies that

V ′
A(λa) = lim

b→a

VA(λb)− VA(λa)
λ(b− a)

≤ λd−1 lim
b→a

VA(b)− VA(a)
b− a

= λd−1V ′
A(a)
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for anya > 0 andλ ≥ 1 such that the derivativesV ′
A(a) andV ′

A(λa) exist. Recall that the derivativeV ′
A(r) exists

for almost everyr > 0; see (9). Thus, for almost everys, r > 0 with s ≤ r, we have

V ′
A(r) ≤

(r

s

)d−1

V ′
A(s) .

Multiplying both sides of the above inequality by(s/r)d−1 and then integrating them with respect tos we obtain

VA(r)− VA(0) =
∫ r

0

V ′
A(s) ds ≥ V ′

A(r)
∫ r

0

(s

r

)d−1

ds =
r

d
V ′

A(r) ,

or, equivalently,

V ′
A(r) ≤ d

r

(
VA(r)− VA(0)

) ≤ d

r
VA(r) ≤ d

r
(R + r)dωd .

This completes the proof of Lemma 4.6.

Now we can complete the proof of Theorem 2.2. It follows from Corollary 4.4 and Lemma 4.5 that

EHd−1(∂Sr) = EV ′
S(r) (16)

for all r > 0 if d = 2, 3 and almost allr > 0 if d ≥ 4. Furthermore, using (14), we have

VS(r + h)− VS(r)
h

=
1
h

∫ r+h

r

V ′
S(s) ds ≤

(r + h

r

)d−1

V ′
S(r) ≤ 2d−1V ′

S(r)

for anyh ∈ (0, r), whereas (15) implies that

V ′
S(r) ≤ d

r
( max
t∈[0,T ]

|X(t)|+ r)dωd .

Notice thatE(maxt∈[0,T ] |X(t)|+ r)d < ∞. This follows from the inequality

max
t∈[0,T ]

|X(t)| ≤
d∑

i=1

max
t∈[0,T ]

|Wi(t)|

and from the well–known fact that

E( max
t∈[0,T ]

|Wi(t)|)d ≤ 2E( max
t∈[0,T ]

Wi(t))d < ∞

for eachi ∈ {1, . . . , d}, where{W1(t)}, . . . , {Wd(t)} are independent Wiener processes initiated at zero. This
means that the random variables{(VS(r + h)− VS(r))/h, h ∈ (0, r)} have a common integrable bound. By the
dominated convergence theorem, this implies that

dEVd(Sr)
d r

= EV ′
S(r) .

Thus, in view of (16), Theorem 2.2 is proved.

Note added in proof

While this paper has been refereed, Last [14, Theorem 4.5] proved the relation (1) by another method using the
generalized Steiner formula from [10].
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