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Transport networks with an infinite number of nodes

The following paper describes the ergodicity of a transport network with an infinite number of nodes, infinite queues
of vehicles and zero queues of customers. The arrival process is assumed to be Poisson with intensity A\. The
displacements of cars are instantaneous according to the routing matric P = (p;j).

1. Introduction

The present paper gives a description of the limit behavior of transport networks with an infinite number of nodes.
Proofs are omitted due to the lack of space. The classification obtained is not complete and there are still some
interesting open problems to solve.

Consider the following queueing system: mutually independent Poisson arrival processes with intensities A;,
[o@]
> A = A < oo enter a transport network with an infinite number of stations. There are z; cars in an arbitrary node ¢
i=1

[o@]
(Z T = oo) at the initial moment ¢ = 0 which instantly transport clients to different nodes according to the infinite-
i=1
dimensional routing matrix P = (pij)?,.}:l : if a client enters a node ¢ with an awaiting vehicle the car instantly
carries the customer to a station j with probability p;;. If there are no cars present in the node ¢ (we shall call such a

node the empty one) the customer leaves the system (there are no accumulators for customers); accumulators for cars

[o@]
are of infinite capacity. Assume that Vi € IN Y p;; = 1, p;i = 0. If the contrary is not stated suppose that A < cc.

j=1
Consider the space ZT~ where ZT = INU {0}. Introduce the product c—algebra B on Z*~ . Let Vi X;(n) be a
number of cars in the node 4 at the moment of n-th arrival to the system. Denote X (n) = (Xl(n), . Xi(n), ... )

V¥n € IN. Let (Q, L, P) be a given probability space. Then X(n) : (Q, L, P) — (Z"’w,B) is a stochastic process. If
we denote Pz(-) = P{- | X(O) =7} V&€ Zt" then X = ()?(n), P:) appears to be a non-countable Markov chain.

2. Definitions and results

Definition 2.1. The network (the process X ) is called ergodic if the sequence of measures P} which cor-
respond to the distribution of X on every step n converges: P} (T) = Pi{f(n) €T — u) asn = o0 VZE

@]
y/ AR Sa; = o0, VI € B : T is a set of o — continuity, where p is a probability measure on (Z"’w,B),
i=1

/L<ZE: in:oo>:1.
i=1

@]
Denote v; = A\ /A Vi € IN, 3 «; = 1. Suppose the Markov chain with the state space IN and the transition matrix P

i=1

pz(»?) Vi,j € IN where pz(»?) is the probability

18

to be homogeneous, aperiodic, and irreducible. Introduce G(i,7) =

n=0

to reach the node ¢ from the node j in n steps.

Definition 2.2. Matriz P = (pij)ijen s called positive recurrent or ergodic (resp. null - recurrent, tran-
sient) if a countable Markov chain with transition matriz P is positive recurrent (resp. null - recurrent, transient).

In the case of positive recurrence there exists such a probability distribution = = (7rz) later on called stationary)

i€IN (
that Vi e IN m; = Y 7;p;s (briefly, # = 7P ).
j=1

Definition 2.3. Measure u(-) on IN (possibly o-finite) is called (strictly) excessive for transition matriz

o0
P = (pij)ijen iff p>pP:Vip > 30 pipji (w> pP , respectively).
j=1



Proposition 2.1 [Necessary conditions of ergodicity]. If the network is ergodic, then matriz P is positive
recurrent.

Proposition 2.2 [D.Khmelev, V. Oseledets (1998)]. If P is positive recurrent, ) It < oo, then the network
A

2
s not ergodic.

Lemma 2.1. If P is ergodic and {y; }32, # {mi}32, or if P is not ergodic then

Jio, Jor Vi > Z YiPiior  Vio < Z YiPijo
J#io J#jo

Theorem 2.1 [Stochastical boundedness]. If y;; > > vjpji, for some ig, then X; () is stochastically
j=1

bounded.

For some {a;}2;, a; >0, Y a; < oo and for all £ € Z+” define f(Z&) = > a;z; < oo. Let us introduce the
i=1 i=1

family of & — algebras F,, = o ()E(m), m < n) Yn.

Theorem 2.2 [Non-ergodic case: existence of supermartingales]. If the matriz P is transient and there

[o@] [o@] [o@]
exist numbers {p;}32, such that p; > 0, 3 3 G(i,j)p; < oo, then for a; = (Ge), = 3. G(i,j)p; and initial
i=1j=1 j=1

distributions of Markov chain X such that > a;X;(0) < co a. 5. and E Y, a;X;(0) < oo sequence (f()z(n)),fn)
i=1 i=1

)
0o

= = n=1
will be a supermartingale, and hence there exists some random variable X, : EX < 00 such that

o0

.p.1
ZaiXi(n) jhoias X as n — oo.
i=1

Corollary 2.1 [Stochastical boundedness]. Under conditions of theorem 2.2 all nodes of the network are
stochastically bounded.

oo

Proposition 2.3. If3jo : (4,70) < oo, then there ewist such numbers {p; 132, : @i > 0 that the

=1
conditions of theorem 2.2 hold.

Remark 2.1. Lemma 2.1 states that strictly excessive probability measures v do not exist for P if A < oo.
But, if A = 0o and P is transient, then there exist infinitely many o— finite strictly excessive measures p :

@]
S = 0o, u > uP. Hence if we define our process {X;(t) : i € N, t > 0} properly in case A = oo then for

=1
{21t A > Y Ajpji Vi€ IN all coordinates X;(t) will be stochastically bounded.
Jj#i
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