uulm

Prof. Dr. V. Schmidt

Dipl.-Math. Ole Stenzel

Markov Chains and Monte Carlo Simulation Exercise Sheet 3

for the Exercises on May 22, 2012 from 12-14 in Room 120

Exercise 1 (5 points)
Let $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{l}\right)^{\top}$ be an initial distribution and $\mathbf{P}=\left(p_{i j}\right), i, j \in E=\{1, \ldots, l\}$ a transition matrix. Furthermore, let ξ_{0}, ξ_{1}, \ldots be a sequence of i.i.d. random variables uniformly distributed on $[0,1]$. Define the E-valued random variable X_{0} by

$$
X_{0}=k \quad \Leftrightarrow \quad \xi_{0} \in\left(\sum_{i=1}^{k-1} \alpha_{i}, \sum_{i=1}^{k} \alpha_{i}\right]
$$

and the sequence X_{1}, X_{2}, \ldots recursively by $X_{n}=\phi\left(X_{n-1}, \xi_{n}\right)$, where $\phi: E \times[0,1] \rightarrow E$ is given by

$$
\phi(i, z)=\sum_{k=1}^{l} k \mathbb{1}\left\{\sum_{j=1}^{k-1} p_{i j}<z \leq \sum_{j=1}^{k} p_{i j}\right\} .
$$

Verify that $\left\{X_{n}\right\}$ is a Markov chain with initial distribution $\boldsymbol{\alpha}$ and transition matrix \mathbf{P}.
Exercise 2 (4 points)
Compute the n-step transition matrix $\mathbf{P}^{(n)}$ for $\mathbf{P}=\left(\begin{array}{cc}1-p & p \\ q & 1-q\end{array}\right)$ with $p, q \in(0,1]$. Hint:
Use the spectral representation of the transition matrix \mathbf{P}, i.e. $\mathbf{P}=\Phi(\operatorname{diag}(\theta)) \Phi^{-1}$, where Φ is the matrix of eigenvectors of \mathbf{P} and $\operatorname{diag}(\theta)$ is the diagonal matrix of the corresponding eigenvalues.

Exercise 3 (3 points)
Suppose your mood can be categorized in exactly three classes (good mood, even-tempered mood, bad mood) and is modelled by a Markov chain with the following transition probabilities:

	(1)	*	()
(1)	0.8	0.2	0.0
-	0.4	0.4	0.2
(2)	0.2	0.6	0.

Here, in the transition matrix $\mathbf{P}=\left(p_{i j}\right)$ the symbol i stands for your mood today and j for your mood tomorrow.

Suppose now that you are in a good mood on $1^{s t}$ of July. Compute the probability distribution of your mood on Christmas eve ($24^{\text {th }}$ of December). Hint: Use the spectral representation of the transition matrix \mathbf{P}, i.e. $\mathbf{P}=\Phi(\operatorname{diag}(\theta)) \Phi^{-1}$, where Φ is the matrix of eigenvectors of \mathbf{P} and $\operatorname{diag}(\theta)$ is the diagonal matrix of the corresponding eigenvalues. It is allowed to use maths software to calculate eigenvectors, eigenvalues etc..

Exercise 4 (8 points)
Let $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ be a Markov chain with finite state space $E=\{1,2,3\}$ and transition matrix

$$
\mathbf{P}=\left(\begin{array}{ccc}
1 / 2 & 1 / 4 & 1 / 4 \\
1 / 2 & 0 & 1 / 2 \\
1 / 4 & 1 / 4 & 1 / 2
\end{array}\right) .
$$

(a) Is this Markov chain ergodic? Give a detailed proof of your statement.
(b) Determine the limits $\pi_{j}=\lim _{n \rightarrow \infty} p_{i j}^{(n)}, i, j \in E$. Are these limits independent of i ?

