uulm

Prof. Dr. V. Schmidt

Dipl.-Math. Ole Stenzel
Summer Term 2012

Markov Chains and Monte Carlo Simulation Exercise Sheet 7

This exercise sheet will not be marked.
Bitte bis zum 11.07. im Hochschulportal für die Vorleistung anmelden (erste oder zweite Klausur).

Exercise 1

For each of the following densities, write down an algorithm based on the acceptance-rejection method to generate pseudorandom numbers according to each of the given distributions - call it G (with probability function $q=\left(q_{1}, \ldots, q_{100}\right)$ and density $g(y)$ respectively). Assume that the only available random number generator produces $U(0,1)$-pseudo random numbers.
(a) $q_{j}=a / j, j=1, \ldots, 100$ with $a=\left(\sum_{j=1}^{100} q_{j}\right)^{-1}$,
(b) $g(y)=\frac{1}{10} y^{2}+\frac{7}{15} \mathbb{1}\{y \in(-1,1)\}$,

Hint: With regard to part (b): The auxiliary distribution F, from which candidates for the realizations of G are drawn, should be simple to generate, but not too far-off from the desired distribution.

Exercise 2 (Generalized hard core model)

Consider the hard core model introduced in Section 3.3.1 of the lecture notes, but now in 2D. Let the number of ones in a valid configuration \mathbf{x} be weighted with a parameter $\lambda>0$, i.e. one considers the probability function $\pi_{\lambda}=\left\{\pi_{\mathbf{x}, \lambda}, \mathrm{x} \in E\right\}$ with

$$
\pi_{\mathbf{x}, \lambda}=\frac{\lambda^{n(\mathbf{x})}}{l_{\lambda}} \quad \forall \mathbf{x} \in E,
$$

where $n(\mathbf{x})$ denotes the number of ones in \mathbf{x} and $l_{\lambda}=\sum_{\mathbf{x} \in E} \lambda^{n(\mathbf{x})}$.
(a) Determine the conditional probability $\pi_{1 \mid \mathbf{x}(-v)}$ for $v \in V$, where

$$
\begin{equation*}
\pi_{x(v) \mid \mathbf{x}(-\mathbf{v})}=P(X(v)=x(v) \mid \mathbf{X}(-\mathbf{v})=\mathbf{x}(-\mathbf{v})) \tag{1}
\end{equation*}
$$

- denote the conditional probability that the component $X(v)$ of \mathbf{x} has the value $x(v)$
- given that the vector $\mathbf{X}(-\mathbf{v})=(\mathbf{X}(\mathbf{w}), \mathbf{w} \in \mathbf{V} \backslash\{\mathbf{v}\})$ of the other components equals $\mathbf{x}(-\mathbf{v})$ where we assume $(x(v), \mathbf{x}(-\mathbf{v})) \in E$.
(b) Construct a Gibbs sampler for the generalized hard core model.
(c) Let V be an 8×8-grid in two dimensions (use the 8 -neighbourhood for your experiments). Let Y_{λ} be the random number of vertices having value 1 as the probability function π_{λ} is used. Estimate the mean value $\mathbb{E}\left[Y_{\lambda}\right]$ in the following way: Generate $n \cdot k=10^{6}$ steps of your Gibbs sampler $(n=1000)$ and put every n-th value into your sample. Provide estimates for $\mathbb{E}\left[Y_{\lambda}\right]$ putting $\lambda=0.1,1.0$ and 5.0, respectively.

Exercise 3 (will not be presented in tutorial)

Let $\left\{X_{n}\right\}_{n \geq 0}$ be a homogeneous Markov chain with state space $E=\{1, \ldots, l\}$ and transition matrix \mathbf{P}. Show that the Markov chain is ergodic if and only if \mathbf{P} is quasi-positive.

Exercise 4 (Markov chain with countable state space. Example: queues)

Let $\left\{X_{n}\right\}_{n \geq 0}$ be a Markov chain with state space $E=\{0,1,2, \ldots\}$, where $X_{0}=0$ and

$$
X_{n}=\max \left\{0, X_{n-1}+Z_{n}-1\right\}, n \geq 1,
$$

where the random variables Z, Z_{1}, Z_{2}, \ldots are independent and identdically distributed and the transition matrix is given by

$$
p_{i j}= \begin{cases}P(Z=j+1-i) & \text { if } j+1 \geq i>0 \text { or } j>i=0 \\ P(Z=0)+P(Z=1) & \text { if } j=i=0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Show that $\left\{X_{n}\right\}_{n \geq 0}$ is irreducible and aperiodic if

$$
P(Z=0)>0, P(Z=1)>0, \text { and } P(Z=2)>0
$$

(b) Show that

$$
X_{n}=\max \left(0, \max _{k \in\{1, \ldots, n\}} \sum_{r=k}^{n}\left(Z_{r}-1\right)\right) \stackrel{d}{=} \max \left(0, \max _{k \in\{1, \ldots, n\}} \sum_{r=1}^{k}\left(Z_{r}-1\right)\right) .
$$

(c) Show that the so-called negative drift condition, i.e., $\mathbf{E}(Z-1)<0$, together with the conditions given in part (a), implies that $\mathbf{P}=\left(p_{i j}\right)$ is ergodic, i.e., the equation $\alpha^{T}=\alpha^{T} \mathbf{P}$ has a uniquely determined probability solution $\alpha^{T}=\left(\alpha_{0}, \alpha_{1}, \ldots\right)$ which coincides with the limit distribution $\pi^{T}=\left(\pi_{0}, \pi_{1}, \ldots\right)=\lim _{n \rightarrow \infty} \alpha_{n}^{T}$, where $\pi_{i}>0$ for each $i \geq 0$ and the limit distribution π does not depend on the choice of the initial distribution α_{0}.
(d) Show that the generating function $g_{\pi}:(-1,1) \rightarrow[0,1]$, where $g_{\pi}(s)=\sum_{i=0}^{\infty} s^{i} \pi_{i}$, is given by

$$
g_{\pi}(s)=\frac{(1-\rho)(1-s)}{g_{Z}(s)-s} \forall s \in(-1,1) \text {, }
$$

where $\rho=\mathbb{E}[Z]$ and $g_{Z}(s)=\mathbb{E}\left[s^{Z}\right]$.

Hint: the Markov chain can be interpreted as a queueing system, where in each time step ($n \rightarrow n+1$), one customer is served and Z_{n} new customers arrive.

Exercise 5 (will not be presented in tutorial)

- Let $m \geq 1$ and let $F, G: \mathbb{R}^{m} \rightarrow[0,1]$ be distribution functions (of m-dimensional random vectors) such that

$$
\begin{equation*}
g(\mathbf{x}) \leq c \text { for some } c>0 \quad \text { and } \quad G(\mathbf{y})=\int_{(-\infty, \mathbf{y}]} g(\mathbf{x}) d F(\mathbf{x}), \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{m} \tag{2}
\end{equation*}
$$

- Let $\left(U_{1}, \mathbf{X}_{1}\right),\left(U_{2}, \mathbf{X}_{2}\right), \ldots$ be a sequence of independent and identically distributed random vectors whose components are independent. Furthermore, let U_{i} be a $(0,1]$-uniformly distributed random variable and \mathbf{X}_{i} be distributed according to F.
- Show that the random variable

$$
\begin{equation*}
I=\min \left\{k \geq 1: U_{k}<\frac{g\left(\mathbf{X}_{k}\right)}{c}\right\} \tag{3}
\end{equation*}
$$

is geometrically distributed with expectation c, i.e. $I \sim \operatorname{Geo}\left(c^{-1}\right)$, and the random vector $\mathbf{Y}=\mathbf{X}_{I}$ is distributed according to G.

Exercise 6 (Uniform distribution on bounded Borel sets)

- Let the random vector $\mathbf{X}: \Omega \rightarrow \mathbb{R}^{m}$ (with distribution function F) be uniformly distributed on the cube $(-1,1]^{m}$ and let $B \in \mathcal{B}\left((-1,1]^{m}\right.$ be an arbitrary Borel subset of $(-1,1]^{m}$ of positive Lebesgue measure $|B|$, where $m \geq 1$ is an arbitrary fixed integer.
- Show that distribution function $G: \mathbb{R}^{m} \rightarrow[0,1]$ of the uniform distribution on B is absolutely continuous with respect to F and determine the (Radon-Nikodym) density.
- Write down an algorithm (using the result of Exercise 5) to generate pseudo-random vectors $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots$ according to the uniform distribution on B.

Exercise 7

Use the Metropolis algorithm to construct the transition matrix \mathbf{P} of a Markov chain with state space $E=\{0,1 \ldots, l\}$ and (ergodic) limit distribution $\pi^{T}=\left(\pi_{0}, \ldots, \pi_{l}\right)$ with

$$
\pi_{i}=\frac{\mu^{i} \exp (-\mu)}{z \cdot i!}, \quad \forall i \in E,
$$

where $\mu \in(0,1)$ and $z \in(0, \infty)$ is a normalizing constant. Hint: A potential successor of state i should be chosen uniformly on $\{i-1, i+1\}$ (set $-1=0, l+1=l$).

