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Exercise 1
For each of the following densities, write down an algorithm based on the acceptance-rejection
method to generate pseudorandom numbers according to each of the given distributions - call
it G (with probability function q = (q1, . . . , q100) and density g(y) respectively). Assume that
the only available random number generator produces U(0, 1)-pseudo random numbers.

(a) qj = a/j, j = 1, . . . , 100 with a = (∑100
j=1 qj)−1,

(b) g(y) = 1
10y

2 + 7
151l{y ∈ (−1, 1)},

Hint: With regard to part (b): The auxiliary distribution F , from which candidates for the
realizations of G are drawn, should be simple to generate, but not too far-off from the desired
distribution.

Exercise 2 (Generalized hard core model)
Consider the hard core model introduced in Section 3.3.1 of the lecture notes, but now in 2D.
Let the number of ones in a valid configuration x be weighted with a parameter λ > 0, i.e.
one considers the probability function πλ = {πx,λ, x ∈ E} with

πx,λ = λn(x)

lλ
∀x ∈ E,

where n(x) denotes the number of ones in x and lλ = ∑
x∈E λ

n(x).

(a) Determine the conditional probability π1|x(−v) for v ∈ V , where

πx(v)|x(−v) = P
(
X(v) = x(v) | X(−v) = x(−v)

)
(1)

• denote the conditional probability that the component X(v) of x has the value x(v)
• given that the vector X(−v) = (X(w), w ∈ V \ {v}) of the other components

equals x(−v) where we assume (x(v),x(−v)) ∈ E.



(b) Construct a Gibbs sampler for the generalized hard core model.

(c) Let V be an 8×8-grid in two dimensions (use the 8-neighbourhood for your experiments).
Let Yλ be the random number of vertices having value 1 as the probability function πλ
is used. Estimate the mean value E[Yλ] in the following way: Generate n · k = 106 steps
of your Gibbs sampler (n = 1000) and put every n-th value into your sample. Provide
estimates for E[Yλ] putting λ = 0.1, 1.0 and 5.0, respectively.

Exercise 3 (will not be presented in tutorial)
Let {Xn}n≥0 be a homogeneous Markov chain with state space E = {1, . . . , l} and transition
matrix P. Show that the Markov chain is ergodic if and only if P is quasi-positive.

Exercise 4 (Markov chain with countable state space. Example: queues)
Let {Xn}n≥0 be a Markov chain with state space E = {0, 1, 2, . . .}, where X0 = 0 and

Xn = max {0, Xn−1 + Zn − 1} , n ≥ 1,

where the random variables Z,Z1, Z2, . . . are independent and identdically distributed and the
transition matrix is given by

pij =


P (Z = j + 1− i) if j + 1 ≥ i > 0 or j > i = 0,
P (Z = 0) + P (Z = 1) if j = i = 0
0 otherwise.

(a) Show that {Xn}n≥0 is irreducible and aperiodic if

P (Z = 0) > 0, P (Z = 1) > 0, and P (Z = 2) > 0.

(b) Show that

Xn = max
(

0,maxk∈{1,...,n}
n∑
r=k

(Zr − 1)
)

d= max
(

0,maxk∈{1,...,n}
k∑
r=1

(Zr − 1)
)
.

(c) Show that the so-called negative drift condition, i.e., E(Z − 1) < 0, together with the
conditions given in part (a), implies that P = (pij) is ergodic, i.e., the equation αT = αTP
has a uniquely determined probability solution αT = (α0, α1, . . .) which coincides with
the limit distribution πT = (π0, π1, . . .) = limn→∞ α

T
n , where πi > 0 for each i ≥ 0 and

the limit distribution π does not depend on the choice of the initial distribution α0.

(d) Show that the generating function gπ : (−1, 1)→ [0, 1], where gπ(s) = ∑∞
i=0 s

iπi, is given
by

gπ(s) = (1− ρ)(1− s)
gZ(s)− s ∀s ∈ (−1, 1),

where ρ = E[Z] and gZ(s) = E[sZ ].



Hint: the Markov chain can be interpreted as a queueing system, where in each time step
(n→ n+ 1), one customer is served and Zn new customers arrive.

Exercise 5 (will not be presented in tutorial)

• Let m ≥ 1 and let F,G : Rm → [0, 1] be distribution functions (of m–dimensional
random vectors) such that

g(x) ≤ c for some c > 0 and G(y) =
∫

(−∞,y]
g(x) dF (x) , ∀x,y ∈ Rm . (2)

• Let (U1,X1), (U2,X2), . . . be a sequence of independent and identically distributed ran-
dom vectors whose components are independent. Furthermore, let Ui be a (0, 1]–uniformly
distributed random variable and Xi be distributed according to F .

• Show that the random variable

I = min
{
k ≥ 1 : Uk <

g(Xk)
c

}
(3)

is geometrically distributed with expectation c, i.e. I ∼ Geo(c−1), and the random vector
Y = XI is distributed according to G.

Exercise 6 (Uniform distribution on bounded Borel sets)

• Let the random vector X : Ω → Rm (with distribution function F ) be uniformly dis-
tributed on the cube (−1, 1]m and let B ∈ B((−1, 1]m be an arbitrary Borel subset of
(−1, 1]m of positive Lebesgue measure |B|, where m ≥ 1 is an arbitrary fixed integer.

• Show that distribution function G : Rm → [0, 1] of the uniform distribution on B is
absolutely continuous with respect to F and determine the (Radon–Nikodym) density.

• Write down an algorithm (using the result of Exercise 5) to generate pseudo–random
vectors y1,y2, . . . according to the uniform distribution on B.

Exercise 7
Use the Metropolis algorithm to construct the transition matrix P of a Markov chain with
state space E = {0, 1 . . . , l} and (ergodic) limit distribution πT = (π0, . . . , πl) with

πi = µi exp(−µ)
z · i! , ∀ i ∈ E,

where µ ∈ (0, 1) and z ∈ (0,∞) is a normalizing constant. Hint: A potential successor of state
i should be chosen uniformly on {i− 1, i+ 1} (set −1 = 0, l + 1 = l).


