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Markov Chains and Monte Carlo Simulation
Exercise Sheet 7

This exercise sheet will not be marked.
Bitte bis zum 11.07. im Hochschulportal fiir die
Vorleistung anmelden (erste oder zweite Klausur).

Exercise 1

For each of the following densities, write down an algorithm based on the acceptance-rejection
method to generate pseudorandom numbers according to each of the given distributions - call
it G (with probability function ¢ = (g1, ..., qi00) and density g(y) respectively). Assume that
the only available random number generator produces U (0, 1)-pseudo random numbers.

(a) ¢ =a/j, 5=1,...,100 Wltha—(zjlolq]) L

(b) 9(y) = 15v° + = L{y € (-1, 1)},

Hint: With regard to part (b): The auxiliary distribution F', from which candidates for the
realizations of G are drawn, should be simple to generate, but not too far-off from the desired
distribution.

Exercise 2 (Generalized hard core model)

Consider the hard core model introduced in Section 3.3.1 of the lecture notes, but now in 2D.
Let the number of ones in a valid configuration x be weighted with a parameter A > 0, i.e.
one considers the probability function my = {mx\, x € E} with

)\n(x)

Tx A = VXEE,

[x
where n(x) denotes the number of ones in x and Iy = Y, cp A",

(a) Determine the conditional probability m|x(—y) for v € V, where

Towix(—v) = P(X(v) = 2(v) | X(=v) = x(-V)) (1)

e denote the conditional probability that the component X (v) of x has the value z(v)

e given that the vector X(—v) = (X(w), w € V \ {v}) of the other components
equals x(—v) where we assume (z(v),x(—v)) € E.



(b) Construct a Gibbs sampler for the generalized hard core model.

(c¢) Let V be an 8 x8-grid in two dimensions (use the 8-neighbourhood for your experiments).
Let Y, be the random number of vertices having value 1 as the probability function )
is used. Estimate the mean value E[Y,] in the following way: Generate n - k = 10° steps
of your Gibbs sampler (n = 1000) and put every n-th value into your sample. Provide
estimates for E[Y,] putting A = 0.1, 1.0 and 5.0, respectively.

Exercise 3 (will not be presented in tutorial)

Let {X,}n>0 be a homogeneous Markov chain with state space E = {1,...,l} and transition
matrix P. Show that the Markov chain is ergodic if and only if P is quasi-positive.

Exercise 4 (Markov chain with countable state space. Example: queues)

Let { X, }n>0 be a Markov chain with state space £ = {0,1,2,...}, where X, = 0 and
X, =max{0,X,,1+ 2, -1}, n>1,

where the random variables Z, Z1, Z5, . . . are independent and identdically distributed and the
transition matrix is given by

P(Z=j7+1-4) ifj+1>i>00rj>1=0,
0 otherwise.

(a) Show that {X,,},>¢ is irreducible and aperiodic if
P(Z=0)>0, P(Z=1)>0, and P(Z =2) > 0.

(b) Show that

n k
X,, = max (O,maxke{l ..... n} Z(Z,, - 1)) 2 max (O,maxke{l ,,,,, n} Z(ZT — 1)) )

r=k r=1

(c) Show that the so-called negative drift condition, i.e., E(Z — 1) < 0, together with the
conditions given in part (a), implies that P = (p;;) is ergodic, i.e., the equation o’ = o’ P
has a uniquely determined probability solution o’ = (g, a,...) which coincides with
the limit distribution 77 = (mg, 7y, ...) = lim,, o, al, where m; > 0 for each i > 0 and

the limit distribution 7 does not depend on the choice of the initial distribution ay.
(d) Show that the generating function g, : (—1,1) — [0, 1], where g.(s) = 32, s'm;, is given

. 1=p)—s)
~(I=p)(l=s < (—
ga(8) = o) =5 Vs e (—1,1),

where p = E[Z] and gz(s) = E[s7].



Hint: the Markov chain can be interpreted as a queueing system, where in each time step
(n — n 4+ 1), one customer is served and Z, new customers arrive.

Exercise 5 (will not be presented in tutorial)

e Let m > 1 and let F;,G : R™ — [0,1] be distribution functions (of m-dimensional
random vectors) such that

g(x) < ¢ for some ¢ > 0 and G(y) = /( }g(x) dF(x), Vx,y € R™. (2)
ooy

o Let (Uy,X4), (U, X2),... be a sequence of independent and identically distributed ran-
dom vectors whose components are independent. Furthermore, let U; be a (0, 1]—uniformly
distributed random variable and X; be distributed according to F'.

e Show that the random variable

I= min{k >1:U < g()fk)} (3)

is geometrically distributed with expectation ¢, i.e. I ~ Geo(c™!), and the random vector
Y = X is distributed according to G.

Exercise 6 (Uniform distribution on bounded Borel sets)

e Let the random vector X : Q@ — R™ (with distribution function F') be uniformly dis-
tributed on the cube (—1,1]™ and let B € B((—1,1]™ be an arbitrary Borel subset of
(—1,1]™ of positive Lebesgue measure |B|, where m > 1 is an arbitrary fixed integer.

e Show that distribution function G : R™ — [0,1] of the uniform distribution on B is
absolutely continuous with respect to F' and determine the (Radon—Nikodym) density.

e Write down an algorithm (using the result of Exercise 5) to generate pseudo-random
vectors y,,ys,, - . . according to the uniform distribution on B.

Exercise 7

Use the Metropolis algorithm to construct the transition matrix P of a Markov chain with
state space £ = {0,1...,1} and (ergodic) limit distribution 77 = (m, ..., m) with

_ prexp(—p)

. , Viek,
z -1l

i

where p € (0,1) and z € (0, 00) is a normalizing constant. Hint: A potential successor of state
i should be chosen uniformly on {7 — 1,7 + 1} (set =1 =0,14+1=1).



