Räumliche Statistik Übungsblatt 8

Präsentation der Lösungen: Di. 21.12.2010

Aufgabe 1

Für diese Aufgabe soll die R-Bibliothek spatstat nicht verwendet werden.

- (a) Verwende den Algorithmus von Blatt 7 zur randeffektfreien Simulation eines Matern-Cluster-Prozesses auf einem rechteckigen Beobachtungsfenster $W \subset \mathbb{R}^2$. Visualisiere jeweils eine Realisierung des Matern-Cluster-Prozesses auf dem Fenster $W = [0,1000]^2$ für die Parametervektoren $(\lambda_0,\lambda^{(1)},R)$, wobei λ_0 die Werte $10^{-5},10^{-4}$ und 10^{-3} durchläuft, der Clusterradius R=50 konstant bleibt und $\lambda^{(1)}$ so gewählt wird, dass die Gesamtintensität λ stets 0.001 ist, d.h. $\lambda^{(1)} = \frac{0.001}{50^2\pi\lambda_0}$.
- (b) Implementiere eine Prozedur, die den randkorrigierten Schätzer $\hat{D}(r)$ für die Nächste-Nachbar-Abstands-Verteilungsfunktion (NNAVF) eines Punktprozesses mit messbarer Indizierung $\{S_n\}_{n\in\mathbb{N}}$ auf W berechnet, der wie folgt gegeben ist:

$$\hat{D}(r) = \frac{1}{\hat{\lambda}_H} \sum_{S_n \in W} \frac{1\!\!1_{\{\delta(S_n) < d_{\partial W}(S_n)\}} 1\!\!1_{\{0,r\}} (\delta(S_n))}{\nu_2(W \setminus \{x \in W : d_{\partial W}(x) < \delta(S_n)\})}.$$

Dabei bezeichnet $\delta(X_n)$ den Abstand des Punktes S_n zu seinem nächsten Nachbarn und $d_{\partial W}(x)$ den Abstand des Punktes x zum Rand des Fensters W. Ferner ist $\hat{\lambda}_H$ definiert als

$$\hat{\lambda}_H = \sum_{S_n \in W} \frac{\mathbb{I}_{\{\delta(S_n) < d_{\partial W}(S_n)\}}}{\nu_2(W \setminus \{x \in W : d_{\partial W}(x) < \delta(S_n)\})}.$$

(c) Visualisiere für die in (a) gegebenen Parameterkonstellationen den Schätzer der NNAVF für jeweils eine Realisierung eines Matern-Cluster-Prozesses im Vergleich zur theoretischen NNAVF eines homogenen Poisson-Prozesses mit gleicher Intensität $\lambda = 0.001$. Betrachte dabei die Werte $r = 1, 2, \dots, 50$.

Aufgabe 2

Sei $\{N_B, B \in \mathcal{B}(\mathbb{R}^2)\}$ ein stationärer Matern-Cluster-Prozess mit den Parametern $\lambda_0, \lambda^{(1)}, R > 0$ und sei $\{W_n\}_{n \in \mathbb{N}}$ eine Folge von Beobachtungsfenstern, so dass

$$\lim_{n \to \infty} \nu_2(W_n) = \infty \text{ und } \lim_{n \to \infty} \frac{\nu_2(W_n \cap (W_n - x))}{\nu_2(W_n)} = 1$$

für jedes $x \in \mathbb{R}^2$. Bestimme die asymptotische Varianz $\sigma^2 = \lim_{n \to \infty} \nu_2(W_n) Var \hat{\lambda}_{W_n}$ des Schätzers

 $\widehat{\lambda}_{W_n} = \frac{N_{W_n}}{\nu_2(W_n)}$

für die Intensität λ von $\{N_B\}$ als Funktion von $\lambda_0, \lambda^{(1)}$ und R. **Hinweis.** Verwende Lemma 3.1

Aufgabe 3

Sei $\{S_n\}$ ein Poisson-Prozess mit (lokal integrierbarer) Intensitätsfunktion $\{\lambda_0(x), x \in \mathbb{R}^d\}$ und $Z = \#\{n : S_n \in \mathbb{R}^d\}$ die (zufällige) Anzahl von Atomen von $\{S_n\}$ in \mathbb{R}^d .

Außerdem sei $\left\{N_B^{(1)}\right\}, \left\{N_B^{(2)}\right\}, \ldots$ eine Folge von unabhängigen, identitsch verteilten Poissonschen Zählmaßen, die vom Primärprozess $\{S_n\}$ unabhängig sind und die die (integrierbare) Intensitätsfunktion $\left\{\lambda^{(1)}(x), \ x \in \mathbb{R}^d\right\}$ besitzen, d. h. es gelte

$$\int_{\mathbb{R}^d} \lambda^{(1)} \mathrm{d}x < \infty.$$

Zeige, dass ein Neyman-Scott-Prozess $\{N_B, B \in \mathcal{B}(\mathbb{R}^d)\}$ mit

$$N_B = \sum_{n=1}^{Z} N_{B-S_n}^{(n)} \qquad \forall \ B \in \mathcal{B}(\mathbb{R}^d),$$

mit Wahrscheinlichkeit 1 lokal endlich ist, falls folgende Integrierbarkeitsbedingung (vgl. Gleichung (44) im Skript) erfüllt ist:

$$\int_{\mathbb{R}^d} \int_B \lambda^{(1)}(y-x) \mathrm{d}y \ \lambda_0(x) \mathrm{d}x < \infty \qquad \forall \ B \in \mathcal{B}_0(\mathbb{R}^d).$$