

Prof. Dr. Evgeny Spodarev Dipl.-Math. oec. Florian Timmermann Winter Term 2009/2010

Random Fields II Exercise Sheet 4

for the Exercises on December 4 from 12.00 - $2.00 \mathrm{pm}$ in Room 220

Exercise 1 For a covariance function C(s,t), which is continuous on $[a,b] \times [a,b]$ we introduce the bounded linear *Fredholm operator* $A: L^2[a,b] \to L^2[a,b]$ by

$$Af(s) = \int_a^b C(s,t)f(t) \, dt, \quad f \in L^2[a,b].$$

The function C = C(s, t) is called *integral kernel of the operator A*. Show that this operator is compact.

Exercise 2 Let W be a Gaussian white noise based on Lebesgue measure, and use it to define a random field on $\mathbb{R}^d_+ = \{(t_1, ..., t_d) : t_i \ge 0\}$ by setting

$$W(t) = W([0, t]),$$

where [0, t] is the rectangle $\prod_{i=1}^{d} [0, t_i]$. W_t is called the Brownian sheet on \mathbb{R}^d_+ , or *multiparameter* Brownian motion. If d = 1, it is the standard Brownian motion.

(a) Show that W is a centered Gaussian field on \mathbb{R}^N_+ with covariance

 $\mathbb{E}(W_s W_t) = \min(s_1, t_1) \times \cdots \times \min(s_d, t_d).$

- (b) Suppose d > 1, and fix d-k of the index variables t_i . Show that W is a scaled k-parameter Brownian sheet in the remaining variables.
- (c) Find the Karhunen-Loève expansion for W on $[0, 1]^d$.

Exercise 3 Let $T \in \mathbb{N}$ and $X = \{X(t), t \in [0, T]\}$ be a real-valued process on [0, T] with $\mathbb{E}(X(t)) = 0$ and $\mathbb{E}(X(t)^2) < \infty$ for all $t \in [0, T]$.

- (a) Suppose that $C(s,t) = \cos(2\pi(t-s))$. Show that the Karhunen-Loève expansion has only two summands and determine the terms of the expansion.
- (b) Suppose that $C(s,t) = (1 |t s|) \mathbb{1} \{ 0 \le t s \le 2T \}$. Determine the Karhunen-Loève expansion.
- (c) Suppose that $C(s,t) = \sum_{n=0}^{\infty} \frac{1}{1+n^2} \cos\left(n\frac{2\pi}{T}(t-s)\right)$. Find the eigenvalues and eigenfunctions of the Fredholm operator A from Exercise 1.