

Prof. Dr. Evgeny Spodarev Dipl.-Math. oec. Florian Timmermann Winter Term 2009/2010

Random Fields II Exercise Sheet 6

for the Exercises on December 18 from 12.00 - $2.00 \mathrm{pm}$ in Room 220

Exercise 1 Let $X = \{X_t, t \in \mathbb{R}\}$ be a random polynomial with $X_t = Y_0 + Y_1 t + \ldots + Y_n t^n$, $Y_i \sim \mathcal{N}(0, 1)$ i.i.d., $i = 0, \ldots, n$. Determine the expected value, the variance, the covariance function and the characteristic function of X_t .

Exercise 2

- (a) Calculate the spectral density of a random process $X = \{X_t, t \in \mathbb{R}\}$ with
 - triangular covariance function $C(h) = (1 |h|)\mathbf{1}\{|h| \le 1\},\$
 - covariance function $C(h) = \frac{1}{8}e^{-|h|} (3\cos(h) + \sin|h|).$
- (b) Show that the spectral density of the Ornstein-Uhlenbeck process with covariance function $C(s,t) = \exp\{-\alpha | t - s |\}, s, t \in \mathbb{R}, \alpha > 0$, is given by

$$f(u) = \frac{1}{\pi} \frac{\alpha}{1 + \alpha^2 u^2}, \quad u \in \mathbb{R},$$

and verify that it can be interpreted as a $\operatorname{Gamma}(1/2)$ -mixture of Gaussian distributions, i. e.

$$f(u) = \int_0^\infty \left(\frac{t\alpha^2}{\pi}\right)^{\frac{1}{2}} e^{-t\alpha^2 u^2} \frac{1}{\sqrt{\pi}} e^{-t} t^{\frac{1}{2}-1} dt, \quad u \in \mathbb{R}.$$

(c) Calculate the spectral density of a random field $X = \{X_t, t \in \mathbb{R}^2\}$ with Gaussian covariance function $C(h) = e^{-\|h\|_2^2}$.

Exercise 3 Let T be a separable and compact Hausdorff space. Let \mathcal{H} be a Hilbert space of functions $g: T \to \mathbb{R}$ which admits a reproducing kernel. Show that the reproducing kernel is uniquely determined by the Hilbert space \mathcal{H} .

Exercise 4 Show that under the same assumptions of Exercise 3, the reproducing kernel of a reproducing kernel Hilbert space is positive semi-definite.