Random Fields II
 Exercise Sheet 8

for the Exercises on February 5th from 12.00-2.00pm in Room 220

Exercise 1 Consider the random polynomial $P=\{P(x), x \in \mathbb{R}\}$ which is given by

$$
P(x)=\frac{1}{4} c x^{2}+b x+c,
$$

where b and c are iid random variables. Calculate the expectation value of the number of real roots of P if
(a) $b, c \sim \mathcal{N}(0,1)$.
(b) $b, c \sim \operatorname{Exp}(\lambda), \lambda>0$.
(c) $b, c \sim \mathrm{U}([0,1])$.

Exercise 2 Determine the probability density function of the (random) local extreme value H of the random polynomial P from Exercise 1 in the case of
(a) $b, c \sim \mathcal{N}(0,1)$.
(b) $b, c \sim \operatorname{Exp}(\lambda), \lambda>0$.
(c) $b, c \sim \mathrm{U}([0,1])$.

Exercise 3 Calculate the expectation value $\mathbf{E} P(x)$ and the variance $\operatorname{var} P(x)$ for a point $x \in \mathbb{R}$. At which point $x \in \mathbb{R}$ does P have minimum variance?

