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Abstract— The access network displays the important partic-
ularity that the locations of the network components strongly
depend on geometrical features such as road systems and city’s
architecture. This paper presents a model for access networks
arising from stochastic geometry, which takes this geometric
structure into consideration, and thus offers a relevant view on
location-dependent characteristics such as point-to-point connec-
tions as shortest paths along the road system. Closed analytical
formulas are derived for point-to-point distance distributions,
explicitly depending on the morphology of this road system.
Theoretical predictions are successfully compared to real data
from fixed access networks deployed in dense urban areas.

I. I NTRODUCTION

No more pertinent introduction to this paper could be found
than those sentences quoted from this very ITC21 Call for
Papers ”Now, the networking community is facing a rapid
evolution and diversification of networks [. . .] As a matter
of fact, advances in optical and wireless technologies will
open new possibilities for networks in the near future with
new performance problems in terms of traffic management.
In addition, there is currently considerable activity worldwide
on the design of new architecture principles and concepts
for future networks [. . .] New architectural elements and
business models are needed to finally meet user expectations
for quality and security of their communications in a cost-
effective way.” Accordingly, the scope of the model presented
here is to offer an easy to use, reliable and efficient tool to the
network operator for the global analysis of huge networks that
explicitly takes into account the geometry of the territory while
being able to describe various technologies and architectures.

Although perhaps not perceived by modern customers im-
mersed in a world of mobility, the fixed part of the access
network is nevertheless an important and omnipresent entity,
being based either on traditional (copper) or more recent
(optical fibre) technologies. Due to its complexity in terms of
variety of equipment types, geographical settings and history
of successive amendments, this part of the network is for the
historical operator a major cost element as well as an important
source of incomes. A characteristic feature of the fixed access
network is its strong dependency on the geography and the
territory infrastructure, especially on the road system that is
used as a natural guide for the physical telecommunication
lines. Key components of the quality of service or the tech-
nical feasibility of architecture solutions, as for example the

estimation of connection lengths, are thus very sensitive to the
geometry of the network implantation and subject to regional
and/or scale specificities.

Pertinent quantities relevant to the network performance
evaluation or planning are usually estimated either by extrac-
tion from databases or by reconstruction. Each method has
its own advantage and drawbacks. Databases are snapshots of
the network and offer in principle a true picture of the reality.
But they do not always describe all the network parts, are not
available for non–existing networks, do not contain equally
reliable data and are huge and not easy to handle. Moreover,
they are only descriptive by nature and thus do not give
any straightforward interpretation of the actual network state.
Exhaustive reconstruction of a given network implementation
scenario gives precise and local information. But it is often
prohibitive in computation time and thus not fitted to global
analysis at large scale. Then by necessity, the analysis is
restricted to few cases that may not be representative for the
total set of possible configurations. Finally, note that these
two methods are often used to recover or reconstruct the same
global information.

How to deal with these seemingly contradictory require-
ments: being able to provide rapid answers and estimation
at global scale while being at the same time able to keep
information on geographical features? A solution is to turn the
intrinsic variability and the complexity of the whole network as
an advantage. This is possible in the framework of stochastic
modelling where the choice of random models and parameters
allows to deal directly with the desired statistical information
while taking into account the geographical features and of-
fering an explicit relationship between the network and the
underlying territory morphology. In the present paper, we
propose the latest state of the art of the ”Stochastic Subscriber
Line Model” (SSLM) that was being developed in the past
years [1], [2]. The mathematical tools for stochastic–geometric
models have been greatly enriched since their first application
to global network modelling [3], [4] and now offer reliable
and instantaneous formulas for distance distributions involved
in the global analysis of access networks.

The paper is organized as follows. Section II is a short
description of the access network and the SSLM principles.
Sections III and IV briefly introduce the mathematical aspects
of spatial stochastic modelling and explain how one can obtain
analytical formulas for point-to-point distance distributions,
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with explicit dependence on the morphology of the underlying
road system. In the last Section V, we show how the model
fits with real analysis of networks in dense areas.

II. STOCHASTIC MODELS FOR ACCESS NETWORKS

A. Technical overview of the access network

The purpose of a network is to allow connections and data
transfer between customers. The access network (or local loop)
is the lower part of the network, connecting a subscriber (the
phone or the computer at home) by a physical link to its
corresponding Wire Center Station (WCS) via intermediate
network components such as the Service Area Interface (SAI)
and Network Node Device (ND). Connections between WCS
nodes are ensured by the core network not considered here.
The three types of access nodes play a concentration role,
allowing to merge several cables of lower capacities to a single
cable of higher capacity.

In a given area, the road system is built or planned in order
to offer communication ways and/or access to the whole area.
It is pre-existent to the telecommunication network: either
in time or during the territory planning process. Since both
kinds of networks have similar goals in connecting people,
it is natural for the telecommunication network to use the
road system that itself reaches the customers. Then access
network nodes as well as connections strongly depend on
the morphology of the road system. The cables run under
pavements in trenches forming the civil engineering part of the
whole telecommunication network: the fixed access network
can be considered as the place, where the telecommunication
network merges into civil engineering (Fig. 1). The set up of

Fig. 1. The access network merges in the urban road system.

a network with hierarchical architecture aims at decreasing
its costs with economy of scale induced by the merging of
cables. A delicate trade-off has to be found between the costs
of individual nodes and the costs of the cables depending on
their capacities, while ensuring the technical feasibility of the
solution: node capacities vs. demand, length of connections
vs. path loss requirements. It is then of extreme importance to
be able to take into account the spatial structure of the road
system in the process of network analysis or planning.

The underlying road system is itself a very complicated
object. Its morphology depends on the scale of analysis,
on the population density, the geographical constraints, the
economic activity, etc. Since national roads and motorways
are designed to connect major towns and since small streets
or dead ends are designed to give access everywhere in inner

cities, their overall shape and properties are very different
(Fig. 2). Detailed road data are available in coordinate form,
but as for network databases, they are only descriptive and
need dedicated software to be handled with.

Fig. 2. The morphology of road systems depends on the scale of analysis.

In order to study such topics as the impact of the morphol-
ogy of road systems on the performance of a given architecture
and thus to propose a geographically based network analysis
accounting for regional specificities in the analysis of fixed
access networks, a natural way is to consider separately the
geographical and purely telecommunication network compo-
nents. This requires that reliable and fast models are available
for each of the three building blocks: 1) geometrical support
(i.e. the underlying road system), 2) locations of network nodes
with respect to roads, and 3) connection topology (i.e. physical
paths).

Such a description allows to deal with a variety of realistic
situations by simply combining various models for these three
parts of the network.

B. Stochastic modelling principles

The power of stochastic modelling is to take advantage of
the complexity of the system. It is particularly suited to our
purpose which is to develop pertinent and reliable tools to
analyse the network at global scale in order to compare various
architectures and technologies.

Let us consider an example: knowing the exact distance
from a given customer to its corresponding WCS may be
of importance locally, but this kind of information, given for
all the customers would be too huge to be handled with and
also impossible to be reconstructed exactly for every scenario
one should want to test. But if one considers the whole set
of customers and their connection distances to WCS, one
observes a variability that can be interpreted in a statistical
way as a distance distribution. This distribution contains
useful global information, say for example the percentage
of customers that can be reached within a length threshold
imposed by the technology.

At a macroscopic scale, global rules of connection or
location are more relevant than minute details annihilating
each other. Being able to directly link statistical distributions
to some pertinent parameters of each of the three blocks
(geometrical support, network nodes location and connection
topology) is the key of stochastic modelling. Systems of
randomly located lines or points are mathematical objects
described in the framework of the theory of spatial processes.
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They are defined by a small number of parameters while
reproducing the geometrical and statistical features of real data
and are ideal components for the SSLM blocks.

Geometrical support. Objects (lines, points) are thrown in
a random way to generate a paving of the plane (a ”tessella-
tion”) the edges of which can be used as a model for road sys-
tems. Several simple models (Fig. 3) are available: tessellations
constructed from lines (Poisson Line Tessellation PLT), from
links between points (Poisson-Delaunay Tessellation PDT) or
from areas around points (Poisson-Voronoı̈ Tessellation PVT).
Iterated tessellations obtained by combinations, and the possi-
bility to include a fraction of empty areas, provide even more
realistic models. Under the Poisson assumption of maximum
randomness (the objects are located independently from each
other and their number follows a Poissonian law), a simple
homogeneous random tessellation is fully defined by a single
parameter: its intensity. Then, mathematical developments can
lead to exact analytical formulas relating statistical features of
the tessellation to its type and intensity [5], [6]. The vector

Fig. 3. Realizations of simple tessellations of the plane, PLT, PVT and PDT

T = (number of crossings, number of quarters, total length of
streets, number of streets segments) of averaged quantities per
unit area computed on the set of all possible realizations of the
tessellation (or equivalently on an infinitely large realization)
statistically describes the morphology of the road system.
One can define the distance between a theoretical random
model and the real road system by comparing the theoretical
T to the vector of corresponding empirical quantities using,
for example, the relative Euclidean norm. From the explicit
dependence ofT = T (type, γ) on the type of model and its
intensity γ, it is possible to choose the best model among a
given set of candidates by minimizing the distance. This fitting
procedure is described in [7]. The best model statistically
reproduces the morphology of the real road system while being
described only by its type and intensity, see Fig. 4.

Fig. 4. A real road system (528 crossing, 324 quarters, 849 street segments
and 97 km total street length) is replaced by a simple random PVT giving in
the average (585 crossing, 293 quarters, 878 street segments and 82 km total
street length)

Locations of network nodes. Since we are interested
in point-to-point distances, it is sufficient to consider sub-

Fig. 5. HLC with their serving zones (black) and LLC (grey with black
boundary) with shortest paths (dashed) along the edge set (grey). Street model
PVT (left) or PLT (right).

networks involving two types of nodes: low-level components
(LLC) and high-level components (HLC). Both types of nodes
are independently and randomly located with respect to the
road model. This reflects the variability of situations encoun-
tered in real networks, where the simplest model is also here a
location of nodes under the homogeneous Poisson assumption.
Then given a street, the intensity, i.e. the mean number of
nodes per unit length of the street, is the only parameter
required to fully determine the mathematical model for each
node type. LLC are assumed to be logically connected to their
nearest HLC, in the straight-line sense. This defines the serving
zone of each HLC as the set of those points in the plane that
are closest to it, see Fig. 5.

Connection topology.Physical connection is established as
the shortest path from LLC to HLC following the streets.
This appears to be a realistic assumption for the fixed ac-
cess network. Then in SSLM, the point-to-point distances
are computed as the lengths of shortest paths following the
streets, linking two sets of nodes located on the streets,
which themselves are modelled as random processes (Fig. 5).
This framework is sufficiently well defined so that one can
derive analytical formulas for the distribution of distances
between nodes, with explicit dependence on the topology
of the underlying road system. More detailed insight into
mathematical methods is given below.

III. M ATHEMATICAL METHODS AND RESULTS

A. The Stochastic Subscriber Line Model

In this section we briefly describe the mathematical back-
ground of the stochastic network model which is considered
in the present paper. More details can be found e.g. in [1],
[7]–[9]. The model is based on (marked) point processes and
random tessellations, see [5], [10], [11] for details.

Random tessellations.A random tessellationT is a parti-
tion {Ξn} of R2 into random (compact and convex) polygons
Ξn which are locally finite. The polygonsΞn are called the
cells of T . A random tessellation is called stationary if its
distribution is invariant with respect to shifts of the origino.
We can identifyT with its edge setT (1) =

⋃
∂Ξn, i.e., the

boundaries of the cells ofT . Now suppose thatT is stationary.
Then we define the intensityγ of T asγ = Eν1(T (1)∩[0, 1]2),
i.e. the mean length ofT (1) per unit area. In the following,
we assume thatT is either a PLT, a PVT or a PDT, see Fig. 3.

Typical shortest path length. For anyT with intensityγ,
we model the locations of HLC and LLC by (linear) Poisson
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processesXH = {XH,n} and XL = {XL,n}, respectively,
on the edgesT (1) of T with (linear) intensitiesλ` and λ′`,
respectively. Then the planar intensities, i.e., the mean number
of points per unit area,λ and λ′ are given byλ = λ`γ and
λ′ = λ′`γ. Now we associate to each HLC its Voronoi cell with
respect toXH as its serving zone. All LLC are then connected
to the HLC in whose serving zone they are located. In this way
we can associate to each LLC a lengthCn, namely the shortest
path alongT (1) to its closest HLC (Fig. 5). Thus we get a
marked point processXC = {(XL,n, Cn)}. In the following
we investigate the distribution of the typical shortest path
lengthC∗ of XC . Formally, the distribution ofC∗ is defined
as the Palm mark distribution ([10], Chapter 13.4) ofXC ,
but it can be regarded as the limit of empirical distributions
of the shortest path lengths of all LLC in a sequence of
unboundedly increasing sampling windows. Suppose e.g. that
Wn = [−n, n]2 andh : R+ 7−→ R+ is some function, then

Eh(C∗) = lim
n→∞

1
#{j : XL,j ∈ Wn}

∑
XL,j∈Wn

h(Cj) (1)

almost surely. Equation (1) motivates why we are interested
in C∗, see also Section II-B. Furthermore, we can also regard
C∗ as the shortest path length from the origino to its nearest
HLC under the condition that there is a LLC ato.

Typical serving zone. In the next section we show how
the densityfC∗ of C∗ can be estimated based on simulations
of the typical serving zoneΞ∗H and the segment systemL∗H
inside Ξ∗H . The distribution of the typical serving zone can
be regarded again as the limit of empirical distributions of
the serving zones in a sequence of unboundedly increasing
sampling windows or as the (conditional) distribution of the
Voronoi cell ato given that there is a HLC located ato.

B. Density of shortest path length and its estimation

We now state a representation formula for the densityfC∗

of C∗ which depends only on the typical segment systemL∗H
inside the typical serving zoneΞ∗H . This formula is suitable
to construct estimators forfC∗ based on i.i.d. samples ofL∗H
which can be obtained from Monte Carlo simulation. IfT is a
PLT, PVT and PDT, respectively, then simulation algorithms
for L∗H are known, see [9], [12], [13].

Density of shortest path length.In the following, we derive
a formula which allows us to compute the probability density
of shortest path lengthC∗. But we first state a formula which
represents the quantityEh(C∗) in terms ofL∗H .

Lemma 1:Let c(y) denote the shortest path length fromy
to o. Then, for any measurableh : R+ 7−→ R+, it holds that

E h(C∗) = λ` E
∫

L∗H

h(c(y)) ν1(dy) . (2)

Eq. (2) follows from Neveu’s exchange formula for stationary
marked point processes, see [8].

An important fact is thatEh(C∗) does not depend onXL

and its linear intensityλ′`. We can rewrite (2) as

E h(C∗) = λ` E
M∑
i=1

∫ c(Bi)

c(Ai)

h(c(u)) du , (3)

Fig. 6. L∗
H split into segmentsS1, . . . , SM (left) and single segment with

distance peakB8 (right)

where the segment systemL∗H is divided into line segments
S1, . . . , SM with endpointsA1, B1, . . . , AM , BM such that
L∗H =

⋃M
i=1 Si and ν1(Si ∩ Sj) = 0 for i 6= j, where

c(Ai) < c(Bi) = c(Ai)+ν1(Si), see Fig. 6. Some segments of
L∗H are split in this way at so–called distance peaks. A point
z on L∗H is called distance peak if there are two different
shortest paths with the same length fromz to o. With the
notation introduced above we can derive a representation for
the probability densityfC∗ of C∗ which can be used in order
to estimate this density.

Corollary 1: The densityfC∗ of the typical shortest path
lengthC∗ is given byfC∗(0) = 2λ` and

fC∗(x) =

 λ` E
M∑
i=1

1I[c(Ai),c(Bi))(x) if x ≥ 0 ,

0 otherwise.
(4)

Formula (4) easily follows from (3), see [14].
Estimation of the density of shortest path length.In

order to construct an estimator̂fC∗(x) for fC∗(x), we can
use eq. (4). We are especially interested in the estimation
of fC∗ from synthetic data obtained by simulations. The
concept is then to simulate the typical serving zoneΞ∗H
together with the (typical) line segment systemL∗H in Ξ∗H .
The shortest path lengthsc(Ai) and c(Bi) to o from all
endpointsA1, B1, . . . , AM , BM in the cell are calculated using
Dijkstra’s algorithm. This procedure is then repeatedn times,
so we obtain for eachj = 1, . . . , n the shortest path lengths
c(A(j)

1 ), c(B(j)
1 ), . . . , c(A(j)

Mj
), c(B(j)

Mj
) from the endpoints of

the line segments. Finally, we can construct the estimator

f̂C∗(x;n) = λ`
1
n

n∑
j=1

Mj∑
i=1

1I
[c(A

(j)
i ),c(B

(j)
i ))

(x) . (5)

Note that the estimated function̂fC∗(x;n) is a step function.
For each pairc(A(j)

i ), c(B(j)
i ) we add λ`/n for all x ∈

[c(A(j)
i ), c(B(j)

i )) to f̂C∗(x;n). Statistical properties of the
estimatorf̂C∗(x;n) are summarized in [14].

IV. EMPIRICAL DENSITIES AND PARAMETRIC DISTANCE

DISTRIBUTIONS

Now we present some numerical results obtained from a
simulation study, where the road modelT (1) is the edge set
of a PDT, PLT and PVT, respectively, with intensityγ. Note
that the considered models are scaling invariant, i.e., for all
λ`, γ > 0 with fixed quotientκ = γ/λ` we get the same model
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Fig. 7. Density forγ = 1, κ = 10 (left), 250 (middle), 750 (right) and
PVT (grey), PDT (black), PLT (broken)

up to a scaling. Thus, for eachκ, it is sufficient to compute
numerical results for a single pair(γ, λ`) with γ/λ` = κ.
For further pairs(γ̃, λ̃`) with γ̃/λ̃` = κ the corresponding
results can then be obtained by a suitable scaling, see [8]. Note
that largeκ yield a dense network inside the serving zones,
whereas for smallκ only a small number of segments intersect
each serving zone. In the following we always consider the
case thatγ = 1 and values ofκ between1 and 2000. With
these parameter values we cover realistic network scenarios.

A. Empirical densities

In order to estimate the densityfC∗ of the typical shortest
path lengthC∗ we simulatedn = 50000 cells for values of
κ between1 and2000 and computed the estimator̂fC∗(x;n)
as explained in Section III-B for PDT, PLT and PVT. Some
empirical densities obtained in this manner are displayed in
Fig. 7. One can see that there is a clear difference between
the shapes of the densities for small and largeκ as well as for
the different considered models. The differences between the
densities for different models seem to decrease for increasing
κ, but it is still noticeable. In [15] it is shown that the typical
shortest path lengthC∗ converges in distribution toξX as
κ →∞, whereX ∼ Wei(λπ, 2) andξ ≥ 1 is some constant
depending on the tessellation model. For PLT we haveξ = 1,
but ξ > 1 for PDT and PVT. So there will always remain
some difference between the densities. Based on the estimated
densities we computed their meansEC∗, variancesVarC∗

and coefficients of variation cvC∗ = 100
√

VarC∗/EC∗. In
Table I the means and cv’s are displayed together with the
corresponding results for the parametric densities fitted in
Section IV-B to the estimated ones.

B. Fitting of parametric densities

Especially for largeκ the estimation procedure for the
densitiesfC∗ is time-consuming and the means, variances and
quantiles have to be calculated numerically. For applications it
would be of great benefit if the densities were given as para-
metric functions, with parameters only depending onκ and the
type of the underlying road modelT . Then, for real data, first
an optimal tessellationT could be fitted to the road system and
in the next step the appropriate density could be chosen. Since
the fitting procedure in [7] is done once for all, the distribution
of C∗ for the given data would then be immediately available
and time-consuming simulations could be avoided. Therefore,
the aim of this section is the construction of a whole library
of parametric distance distributions for PDT, PLT and PVT as
road models and a large range ofκ.

However, first we have to choose an appropriate parametric
family of densities{f(x; θ), θ = (θ1, . . . , θk) ∈ Θ}, where
Θ ⊂ Rk for some k ≥ 1. In [15] it was shown thatC∗

converges in distribution to the parametric limit distributions
Wei(λπ/ξ2, 2) and Exp(2λ`) for κ → ∞ and κ → 0,
respectively, whereξ ≥ 1 is some constant depending on
the road modelT . So it is reasonable to choose a parametric
family which contains the exponential- and Weibull distribu-
tion as limiting cases. Furthermore, the family{f(x; θ), θ =
(θ1, . . . , θk) ∈ Θ} should possess the following properties.

1) The dimensionk of θ = (θ1, . . . , θk) is small.
2) The parametric densityf(x; θ) fits well for PDT, PLT

and PVT and for a large range ofκ, especially with
respect to expectation and variance.

3) For eachθ ∈ Θ, it holds thatf(0; θ) = 2λ` = 2/κ.
4) The densities ofWei(α, 2), α > 0 and Exp(λ), λ > 0

are contained in{f(x; θ), θ ∈ Θ} as limiting cases.
It is not easy to choose a family of densities which fulfills all
these conditions. The limit distributionsWei(λπ/ξ2, 2) and
Exp(2λ`) are both special cases of aWei(α, β)-distribution.
Since condition 3 can not be fulfilled in general by the
Wei(α, β)-distributions, we shift their densities to the left and
truncate them at zero such that condition 3 is fulfilled. In this
way we get as one possible type of candidates the truncated
Weibull distribution with density

f(x;α, β) = C
(
x+

( 2
αβκ

) 1
β−1

)β−1

e−α
(
x+

(
2

αβκ

) 1
β−1

)β

(6)

for x ≥ 0, whereC = αβ exp((α−1(2/(βκ))β)1/(β−1)). This
density has two parameters. Another candidate is a mixture
p f1(x)+(1−p)f2(x), p ∈ (0, 1) of the densitiesf1 of Exp(λ)
and f2 of Wei(α, β), β > 1. Again, condition 3 should be
fulfilled, so we get

f(x;α, β, λ) = 2κ−1 e−λx + (1− 2(λκ)−1)αβxβ−1e−αxβ

,
(7)

which has three parameters. We used Matlab to perform
a weighted least squares fit of these parametric densities
to the data(f̂C∗(x1), . . . , f̂C∗(xn)) obtained from the em-
pirical densities for a vector(x1, . . . , xn) with equidis-
tant components. As weights we chose the reciprocals
1/f̂C∗(x1), . . . , 1/f̂C∗(xn) in order to get a better fit at the
tails of the densities. Then the optical fit of the densities is
worse than without weighting, but the means and variances
fit much better. Both regarded types of parametric densities
fit optically quite well for all models and a large range of
κ. If we look at the expectations and variances of the fitted
truncated Weibull distribution compared to the empirical ones,
we can see that they match almost perfectly for all models
and a large range ofκ, see Table I. Moreover, it can be
seen that for the mixture of the exponential and Weibull
distributions the expectations fit quite good, but the variances
differ clearly from the variances obtained from the empirical
densities. The reason might be that the exponential term in
the mixture dominates the tails of this distribution yielding
too large variances. So the truncated Weibull distribution was
chosen for the library. Some estimated densities together with
the fitted ones are displayed in Fig. 8. We calculated the
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EC∗

κ PVT trunc. mix

5 1.397 1.391 1.387
10 2.054 2.055 2.059
50 4.552 4.511 4.540
500 13.46 13.49 13.51
1000 18.89 18.86 18.87
2000 26.34 26.34 26.36

cvC∗

PVT trunc. mix

73.5 73.7 83.7
63.5 63.3 80.3
52.0 52.9 69.6
50.9 50.6 61.2
50.7 50.7 56.0
51.0 50.9 54.7

EC∗

PLT trunc. mix

1.510 1.450 1.511
2.181 2.111 2.175
4.505 4.469 4.450
12.69 12.71 12.72
17.68 17.60 17.61
24.24 24.30 24.31

cvC∗

PLT trunc. mix

95.4 93.8 120.8
83.9 78.0 103.6
60.2 59.7 70.8
51.8 51.4 57.5
51.2 50.8 55.7
51.1 50.7 54.3

EC∗

PDT trunc. mix

1.744 1.723 1.712
2.367 2.378 2.373
4.780 4.757 4.768
13.05 13.06 13.08
17.89 17.95 17.97
24.72 24.64 24.85

cvC∗

PDT trunc. mix

92.5 91.8 80.5
76.6 76.1 77.9
54.1 54.6 69.0
49.3 49.1 57.7
49.9 49.4 55.5
50.4 50.8 54.0

TABLE I

MEAN AND CV OF C∗ TOGETHER WITH THESE VALUES FOR FITTED TRUNCATEDWEIBULL AND MIXED EXPONENTIAL-WEIBULL DISTRIBUTION
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Fig. 8. Density forγ = 1, κ = 250, 750, 2000 and: (a) PLT, (b) PVT, (c) PDT with fitted truncated Weibull distribution

parametersα and β for all three considered models and a
large range ofκ, where functionsα(κ), β(κ) depending on
κ were fitted to the estimated parameters forγ = 1. So, for
all three model types, the distribution ofC∗ is now directly
available up to a scaling via

ftype(x;κ) = f(x;αtype(κ), βtype(κ)) . (8)

V. A PPLICATION TO REAL NETWORK ANALYSIS

In [2] we have shown that real road systems can be replaced
by best fitted models as support for nodes by successfully
comparing the histograms of shortest path connections in the
two settings of nodes: randomly located on the real road
system or on the best fitted model. This validated the first
building block of the SSLM. In the present paper, we go
further by comparing real distance distributions obtained from
data bases for fixed access networks in dense urban areas with
the fitted parametric distributions that we developed above in
the framework of the SSLM model.

A. Dealing with real data sets

The first step is to extract from the whole complexity of the
database (being the result of a long history of modifications
and changes) a synthetic view of the network not taking
into account marginal situations. Again, the philosophy of
stochastic models is to provide a global vision of a very
complex situation that involves a huge number of equipments
of various types, where one has to extract the main features
of the current network state from the amount of real data. The
difficulty is to think ”stochastic geometry” while analyzing
data so that they can be matched by the SSLM building blocks.
Equipment or connections are not to be sorted only according
to their usual names or obvious functions, but more by their
geographical range and connection principles. Let us briefly

review these steps that have been done for the area of Paris.
Geometrical support and node location.In this paper, we
shall consider only three simple tessellation models (PVT,
PDT, PLT) that provide a sufficiently good description of the
road system. The fitting procedure applied to the road data,
restricted to a possible choice from these simple tessellations,
proposes a PVT model of intensityγPV T = 18km−1. The
theoretical values of the following four characteristics of the
fitted PVT model are very close to the measured ones:

crossings quarters street total length required
segments km input

real data 15462 10613 26056 2146 database
model 17692 8846 26537 1931 2 parameters

All the network equipments referred in the databases to a
common address are considered as geographical sites for node
equipments located along the streets.

Structure in sub-networks. Data analysis shows that the
total areaA covered by the network can be divided in a set of
non-overlapping (macro-) zones on which distinct two-levels
sub-networks are deployed. Each of these zones contains only
one highest WCS node. This division process of the total area
A is then repeated a second and a third time, producing more
and more disjoint two-level sub-networks, deployed in smaller
and smaller (micro-) areas, still non-overlapping, where the
union of them coversA. The sets of zones arising at each of
these three steps show some variability in shape and size, but
the ranges of their average areas are well distinct.

This structure has been visualized by plotting the locations
of the nodes using their geographical coordinates, where it
must be kept in mind that the ”frontiers” of the zones become
more and more fuzzy from steps 1 to 3. Still, it remains
possible to assume that the LLC considered at each step are
logically connected to their closest HLC in flybird sense. Apart
from A and the road-system characteristics, the only parameter
required to describe a typical serving zone at a given stepi
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is the number of HLC-nodesni from which the parameterκi

can be computed;i = 1, 2, 3.
Histograms for the connection lengths.The histograms for

the connection lengths are recovered from the databases with
respect to the above division into sub-networks. They concern
the overall lengths of the telecommunication lines from any
LLC node to its respective HLC node, but no information is
available about their real physical path.

The SSLM model proposes a global analysis in the most
simple (idealized) setting that is compatible with the conclu-
sion inferred from the analysis of data bases: homogeneous
random street system which captures the most important
structural properties of the real street system, homogeneous
random Poisson repartition of nodes along the streets, logical
connection to the closest HLC node in straight-line sense,
physical connection as shortest path along the street system.
All the geometrical objects are idealized points or line seg-
ments, whereas real cables do possess a reality that induces
physical constraints as a minimum curvature radius as well
as necessary cable-joining in chambers, for example. Then
the theoretical prediction for connection lengths from SSLM
should naturally be lower than the observed ones.

B. Results

In order to describe the global statistical behavior of point-
to-point connections in the real access network of Paris,
structured in three distinct two-level sub-networks, the SSLM
only requires the knowledge of six global parameters:

• the size|A| of network areaA and the type and intensity
of the road system it contains, i.e.(type, γ),

• the numbersn1, n2 andn3 of higher-level nodes for each
sub-network, where for steps 2 and 3, a HLC node may
be part of the set of corresponding LLC nodes.

In all three examples considered below, the same family of
parametric distance distributions was used, where eq. (8) was
used for the same model type (PVT), but for different values
κ1, κ2 and κ3 directly deduced from the above parameters.
The whole model is proposed under the form of an Excel
sheet with functions encoded in Visual Basic, thus giving an
instantaneous answer and also avoiding the need of specialized
computing languages not easily accessible for managers.

Note that a few features of the real network were not
mentioned above in order to simplify the presentation. Never-
theless, the figures presented here integrate all the reality of the
network including some connections that arise in a non-purely
hierarchical architecture as well as exclusion areas. This does
not change the number of required parameters and analytical
formulas and only asks for some right combination.

The typical serving zone at step 1 is relatively large com-
pared to the scale of the road system since it contains in
the average up to 200 quarters. This corresponds to a large
value of κ1 ' 1000 as illustrated in the left part of Fig. 9.
The theoretical probability density fits extremely well with the
histogram computed from the real network data (see Fig. 9,
right), in shape as well as length scale, whereD1 denotes a
reference distance to enable comparisons between results at
different scales.

Fig. 9. Typical serving zone of the larger scale sub-network(κ1 ' 1000);
theoretical distance densities compared with real data, showing that the
assumption of physical connections as straight-line shortest paths is incorrect.

The typical serving zone at step 2 is much smaller since
it contains roughly only 10 quarters in the average, where
κ2 ' 35 (see Fig. 10, left). The networks results concern
all the point-to-point connections involved at that scale, i.e.,
they are a mixture of links rising from various types of lower-
level sub-network nodes provided that they are all connected
to the same HLC node. In this case, SSLM underestimates the
reality by a factorc = 1.15 on the averaged connection length.
Thus, the theoretical distance densityf has been rescaled in
order to recover the measured average, i.e.f(x) → f(x/c)/c,
where it is assumed that the underestimation is due to an
effect proportional to the distance. Model and real data are
still close (see Fig. 10, right), whereas the distance scale (with
unit distanceD2) is very different from the previous one (given
by D1). The typical serving zone at step 3 is comparable in

Fig. 10. Typical serving zone of the middle-scale sub-network(κ2 ' 35)
and (rescaled) theoretical connection-length density compared with real data.

size with the area covered by a group of buildings; it contains
only a few street segments, whereκ3 ' 4 (see Fig. 11, left).
The theoretical average connection length underestimates the
measured one by some valuel > 0. This can be explained
by the fact that real lengths include a part that goes from
the building to the end customer, not taken into account by
SSLM. Since this distance simply adds to the predicted length,
the theoretical distance densityf has been shifted in order
to recover the measured average, i.e.f(x) → f(x − l) for
x > l. This leads to a very good fit between model and real
data (see Fig. 11, right). Note thatl thus determined from
the comparison of model and real data is compatible with the
value currently admitted in the network community. Again,
the distance scale is rather different from the previous ones
(given byD1 andD2, respectively).

We also remark that Fig. 9 illustrates the importance to
take into account the underlying road system. The theoretical
distance distribution computed under the assumption that the
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Fig. 11. Typical serving zone of the lower-scale sub-network(κ3 ' 4) and
(shifted) theoretical connection-length density compared with real data.

physical connections are straight lines (dashed graph) does not
fit to the histogram for real data and clearly underestimates the
real average connection length. Classical studies introduce an
estimated correction factor for the average length, but SSLM
explicitly relates it to the geometry of the underlying road
system. Single WCS sub-networks have also been satisfactory
addressed by the SSLM model provided that one deals with a
sufficiently large or diversified set of connections.

VI. CONCLUSIONS ANDOUTLOOK

We have shown that SSLM based on methods from stochas-
tic geometry is quite a good model to address huge access
networks in a global way. SSLM relies on a small number
of parameters while taking into account the morphological
features of the underlying road system that is a key issue
of fixed access networks. The explicit separation of three
model components (geometrical support, location of network
nodes, connection topology) offers the possibility to consider a
wide range of situations. Thus, SSLM fulfills the requirements
of the telecommunication operator who needs simple and
global tools to cope with major changes and new technologies,
to reconstruct networks of competing operators or foreign
countries and to negotiate with regulatory authorities.

Probability theory and stochastic processes provide analyt-
ical formulas that are formally equivalent to statistical results
computed on some reconstruction scheme, considering all
the possibilities compatible with the geometrical setting. The
hard work of listing and analyzing all those possibilities,
with appropriate coefficients depending on their probability
of occurrence is done by considering stochastic integrals,
Palm probabilities, and the notion of the typical cell. Any
reconstruction by hand, e.g. regarding the locations of nodes,
would produce a configuration already considered.

The implementation of the SSLM model has helped to
improve the synthetic view of existing networks that are very
complicated due to their long history, where the main focus
of the present study lies in that it quantitatively validates the
use of random road models and shortest paths connections.
Furthermore, the SSLM model can be used as a sound basis for
the construction of random cabling trees (point to multipoint
connections) for which no detailed data bases are available.
Note that the explicit description of the underlying road system
cannot be avoided in this case since it is impossible to build
trees from straight-line connections that never share a common
path. Also, the morphology of the road system, especially the

number of streets incoming in crossings, greatly influences the
capacities of the cables to be installed.

The analytical formulas for distance distributions depend
on the type of the road system and its parameter(s). They are
obtained as explained in Section IV using simulation proce-
dures for corresponding typical Cox–Voronoı̈ cells, which can
be extended to iterated tessellations constructed from PDT,
PVT and PLT. On the other hand, the fitting procedure also
applies to road systems at a regional or territory scale. Thus,
we are able to adapt the SSLM model to regional scales and
to address such applications as in the process of development
of optical fibre networks in a given region. In particular,
one can directly relate a specified network architecture to the
percentage of customer lines that will exceed a given length
threshold. This may be used to decide on which network
scenarios are possible and thus greatly restrict the domain of
parameters to be analyzed by detailed optimization procedures
before implementation.
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