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Abstract—The access network displays the important partic- estimation of connection lengths, are thus very sensitive to the
ularity that the locations of the network components strongly geometry of the network implantation and subject to regional
depend on geometrical features such as road systems and City'sand/or scale specificities.

architecture. This paper presents a model for access networks Perti ¢ titi | t to th twork f
arising from stochastic geometry, which takes this geometric erinent quantiies reievant to the network periormance

structure into consideration, and thus offers a relevant view on €valuation or planning are usually estimated either by extrac-
location-dependent characteristics such as point-to-point connec- tion from databases or by reconstruction. Each method has

tions as shortest paths along the road system. Closed analyticalits own advantage and drawbacks. Databases are snapshots of
formulas are derived for point-to-point distance distributions, the network and offer in principle a true picture of the reality.

explicitly depending on the morphology of this road system. .
Theoretical predictions are successfully compared to real data But they do not always describe all the network parts, are not

from fixed access networks deployed in dense urban areas. available for non—existing networks, do not contain equally
reliable data and are huge and not easy to handle. Moreover,

they are only descriptive by nature and thus do not give
l. INTRODUCTION any straightforward interpretation of the actual network state.
No more pertinent introduction to this paper could be founixhaustive reconstruction of a given network implementation
than those sentences quoted from this very ITC21 Call fecenario gives precise and local information. But it is often
Papers "Now, the networking community is facing a rapigrohibitive in computation time and thus not fitted to global
evolution and diversification of networks.[] As a matter analysis at large scale. Then by necessity, the analysis is
of fact, advances in optical and wireless technologies wikstricted to few cases that may not be representative for the
open new possibilities for networks in the near future wittotal set of possible configurations. Finally, note that these
new performance problems in terms of traffic managememwo methods are often used to recover or reconstruct the same
In addition, there is currently considerable activity worldwidglobal information.
on the design of new architecture principles and conceptsHow to deal with these seemingly contradictory require-
for future networks [..] New architectural elements andments: being able to provide rapid answers and estimation
business models are needed to finally meet user expectatiahglobal scale while being at the same time able to keep
for quality and security of their communications in a costnformation on geographical features? A solution is to turn the
effective way.” Accordingly, the scope of the model presentéditrinsic variability and the complexity of the whole network as
here is to offer an easy to use, reliable and efficient tool to th@ advantage. This is possible in the framework of stochastic
network operator for the global analysis of huge networks thatodelling where the choice of random models and parameters
explicitly takes into account the geometry of the territory whilallows to deal directly with the desired statistical information
being able to describe various technologies and architecturebile taking into account the geographical features and of-
Although perhaps not perceived by modern customers ifiering an explicit relationship between the network and the
mersed in a world of mobility, the fixed part of the accessnderlying territory morphology. In the present paper, we
network is nevertheless an important and omnipresent entpyppose the latest state of the art of the "Stochastic Subscriber
being based either on traditional (copper) or more recelnne Model” (SSLM) that was being developed in the past
(optical fibre) technologies. Due to its complexity in terms ofears [1], [2]. The mathematical tools for stochastic—geometric
variety of equipment types, geographical settings and histanodels have been greatly enriched since their first application
of successive amendments, this part of the network is for ttee global network modelling [3], [4] and now offer reliable
historical operator a major cost element as well as an importamd instantaneous formulas for distance distributions involved
source of incomes. A characteristic feature of the fixed accasshe global analysis of access networks.
network is its strong dependency on the geography and théThe paper is organized as follows. Section Il is a short
territory infrastructure, especially on the road system that description of the access network and the SSLM principles.
used as a natural guide for the physical telecommunicatiGections Il and IV briefly introduce the mathematical aspects
lines. Key components of the quality of service or the teclof spatial stochastic modelling and explain how one can obtain
nical feasibility of architecture solutions, as for example thanalytical formulas for point-to-point distance distributions,



with explicit dependence on the morphology of the underlyingjties, their overall shape and properties are very different

road system. In the last Section V, we show how the modglig. 2). Detailed road data are available in coordinate form,

fits with real analysis of networks in dense areas. but as for network databases, they are only descriptive and
need dedicated software to be handled with.

Il. STOCHASTIC MODELS FOR ACCESS NETWORKS

Inner city and suburbs Town Nationwide
motorways, national roads &

A. Technical overview of the access network of Lyon Amiens some secondary roeds

The purpose of a network is to allow connections and data
transfer between customers. The access network (or local loop
is the lower part of the network, connecting a subscriber (the .=
phone or the computer at home) by a physical link to its
corresponding Wire Center Station (WCS) via intermediate
network components such as the Service Area Interface (SAI)
and Network Node Device (ND). Connections between WCS
nodes are ensured by the core network not considered hg{g.2. The morphology of road systems depends on the scale of analysis.
The three types of access nodes play a concentration role,

allowing to merge several cables of lower capacities to a single;, orger to study such topics as the impact of the morphol-

cable Of, higher capacity. . . . ogy of road systems on the performance of a given architecture
In & given area, the road system is built or planned in ordgf thys to propose a geographically based network analysis
to offer communication ways and/or access to the whole areg.qnting for regional specificities in the analysis of fixed
It is pre-existent to the telecommunication network: €ithe{;cess networks, a natural way is to consider separately the
in time or during the territory planning process. Since botfographical and purely telecommunication network compo-
kinds of networks have similar goals in connecting peoplfents. This requires that reliable and fast models are available
it is natural for thg telecommunication network to use thg. aach of the three building blocks: 1) geometrical support
road system that itself reaches the customers. Then aCRSS the underlying road system), 2) locations of network nodes

network nodes as well as connections strongly depend @, respect to roads, and 3) connection topology (i.e. physical
the morphology of the road system. The cables run undgtin

pavements in trenches forming the civil engineering part of theSucH a description allows to deal with a variety of realistic

whole telecommunication network: the fixed access netwoglsations by simply combining various models for these three
can be considered as the place, where the telecommunlcawap[S of the network.

network merges into civil engineering (Fig. 1). The set up of

B. Stochastic modelling principles

The power of stochastic modelling is to take advantage of
the complexity of the system. It is particularly suited to our
purpose which is to develop pertinent and reliable tools to
analyse the network at global scale in order to compare various
architectures and technologies.

Let us consider an example: knowing the exact distance
from a given customer to its corresponding WCS may be
of importance locally, but this kind of information, given for
Fig. 1. The access network merges in the urban road system. all the customers would be too huge to be handled with and

also impossible to be reconstructed exactly for every scenario
a network with hierarchical architecture aims at decreasioge should want to test. But if one considers the whole set
its costs with economy of scale induced by the merging of customers and their connection distances to WCS, one
cables. A delicate trade-off has to be found between the costserves a variability that can be interpreted in a statistical
of individual nodes and the costs of the cables depending way as a distance distribution. This distribution contains
their capacities, while ensuring the technical feasibility of theseful global information, say for example the percentage
solution: node capacities vs. demand, length of connectioniscustomers that can be reached within a length threshold
vs. path loss requirements. It is then of extreme importanceitoposed by the technology.
be able to take into account the spatial structure of the roadAt a macroscopic scale, global rules of connection or
system in the process of network analysis or planning. location are more relevant than minute details annihilating

The underlying road system is itself a very complicatedach other. Being able to directly link statistical distributions
object. Its morphology depends on the scale of analysts, some pertinent parameters of each of the three blocks
on the population density, the geographical constraints, tfgeeometrical support, network nodes location and connection
economic activity, etc. Since national roads and motorwajgpology) is the key of stochastic modelling. Systems of
are designed to connect major towns and since small streetsdomly located lines or points are mathematical objects
or dead ends are designed to give access everywhere in irdescribed in the framework of the theory of spatial processes.




They are defined by a small number of parameters while
reproducing the geometrical and statistical features of real data
and are ideal components for the SSLM blocks.

Geometrical support. Objects (lines, points) are thrown in .

a random way to generate a paving of the plane (a "tessella-
tion”) the edges of which can be used as a model for road sys-
tems. Several simple models (Fig. 3) are available: tessellations
constructed from lines (Poisson Line Tessellation PLT), from . _ _ _
links between points (_POissor_]'DeIaunE}y Tesse"a_ltion PDT) gjc?ljnii.ary)Hvbi(t:hVs\l;:grtt:setlrpaslfrgl?dgaszr?gg)sagglrz:it(r)leaggglél_sit((%rree);/)\.lvgrt]reﬂ?ﬁodeI
from areas around points (Poisson-Vorbfiessellation PVT). pvT (eft) or PLT (right).
Iterated tessellations obtained by combinations, and the possi-
bility to include a fraction of empty areas, provide even more
realistic models. Under the Poisson assumption of maximumetworks involving two types of nodes: low-level components
randomness (the objects are located independently from eéchC) and high-level components (HLC). Both types of nodes
other and their number follows a Poissonian law), a simpée independently and randomly located with respect to the
homogeneous random tessellation is fully defined by a singtead model. This reflects the variability of situations encoun-
parameter: its intensity. Then, mathematical developments dared in real networks, where the simplest model is also here a
lead to exact analytical formulas relating statistical features lofcation of nodes under the homogeneous Poisson assumption.
the tessellation to its type and intensity [5], [6]. The vectoFhen given a street, the intensity, i.e. the mean number of
nodes per unit length of the street, is the only parameter
required to fully determine the mathematical model for each
node type. LLC are assumed to be logically connected to their
nearest HLC, in the straight-line sense. This defines the serving
zone of each HLC as the set of those points in the plane that
are closest to it, see Fig. 5.

Connection topology.Physical connection is established as
Fig. 3. Realizations of simple tessellations of the plane, PLT, PVT and pOfi€ shortest path from LLC to HLC following the streets.

This appears to be a realistic assumption for the fixed ac-

T = (number of crossings, number of quarters, total length 6€ss network. Then in SSLM, the point-to-point distances
streets, number of streets segments) of averaged quantitiesgsercomputed as the lengths of shortest paths following the
unit area computed on the set of all possible realizations of tB&eets, linking two sets of nodes located on the streets,
tessellation (or equivalently on an infinitely large realizatioriyhich themselves are modelled as random processes (Fig. 5).
statistically describes the morphology of the road systerhhis framework is sufficiently well defined so that one can
One can define the distance between a theoretical randéafive analytical formulas for the distribution of distances
model and the real road system by comparing the theoretibgtween nodes, with explicit dependence on the topology
T to the vector of corresponding empirical quantities usingf the underlying road system. More detailed insight into
for example, the relative Euclidean norm. From the explicihathematical methods is given below.
dependence of = T (type,v) on the type of model and its
intensity , it is possible to choose the best model among a 1. M ATHEMATICAL METHODS AND RESULTS
given set of_cand|da.tes by minimizing the distance. Th|§ f_|tt|n _ The Stochastic Subscriber Line Model
procedure is described in [7]. The best model statistically

reproduces the morphology of the real road system while beingn this section we briefly describe the mathematical back-
described only by its type and intensity, see Fig. 4. ground of the stochastic network model which is considered

in the present paper. More details can be found e.g. in [1],
[7]-[9]. The model is based on (marked) point processes and
random tessellations, see [5], [10], [11] for details.

Random tessellationsA random tessellatiofl” is a parti-
tion {Z,} of R? into random (compact and convex) polygons

=I'i='l'='_ﬂ%i"-\ =, which are locally finite. Thg pollygonEn are palled t_hg
ggii'i‘;iﬂﬁ,ﬁ-‘- cells of T. A random tessellation is called stationary if its
G distribution is invariant with respect to shifts of the origin

We can identifyT" with its edge se"™ = |J0Z,, i.e., the
Fig. 4. A real road system (528 crossing, 324 quarters, 849 street segmeyi}ndaries of the cells &f. Now suppose thdf is stationary.

and 97 km total street length) is replaced by a simple random PVT giving . . . _ 1 9
the average (585 crossing, 293 quarters, 878 street segments and 82 km J@?ﬁn we define the 'mens'WOf T asy = Eyl(T( N [07 1] ),

street length) i.e. the mean length of'(V) per unit area. In the following,
we assume thdf is either a PLT, a PVT or a PDT, see Fig. 3.
Locations of network nodes. Since we are interested Typical shortest path length. For anyT" with intensity -,
in point-to-point distances, it is sufficient to consider subwe model the locations of HLC and LLC by (linear) Poisson



processesXy = {Xy,} and X, = {X ,}, respectively,

on the edges'™™) of T with (linear) intensities\, and A7,
respectively. Then the planar intensities, i.e., the mean number
of points per unit area) and \’ are given by\ = ),y and

X = X;7. Now we associate to each HLC its Voronoi cell with
respect taX g as its serving zone. All LLC are then connected
to the HLC in whose serving zone they are located. In this way
we can associate to each LLC a length, namely the shortest
path alongZ7(!) to its closest HLC (Fig. 5). Thus we get a
marl_<ed innt proces,Xc = {(XL,na Cn)} II’.l the following Egéaibe%}éafggt(i::;%tizegment§1,...,SM (left) and single segment with
we investigate the distribution of the typical shortest pat

length C* of X. Formally, the distribution of* is defined

as the Palm mark distribution ([10], Chapter 13.4) X, \here the segment systent; is divided into line segments
but it can be regarded as the limit of empmcal d|str|but|on§1, ..., Sx with endpoints Ay, By, ..., Ay, By such that
of the shortest path lengths of all LLC in a sequence of  _ Uf\ilsi and v,(S; N S;) = 0 for i # j, where

unboundedly2increasing+samplirlrg _windows. Suppose e.g. tgeﬁli) < o(Bi) = c(A;)+11(S:), see Fig. 6. Some segments of
Wy =[-n,n]" andh : R — R is some function, then  y. "5 gpit in this way at so—called distance peaks. A point
N . 1 z on L3 is called distance peak if there are two different
ER(C™) = nh~>nc}o #{j: X1 € Wy} Z h(C5) (@) shortest paths with the same length framto o. With the
’ Xr.€Wn notation introduced above we can derive a representation for
almost surely. Equation (1) motivates why we are interestdfte probability densityfc- of C* which can be used in order
in C*, see also Section II-B. Furthermore, we can also regdxl estimate this density.
C* as the shortest path length from the origito its nearest  Corollary 1. The densityfo- of the typical shortest path
HLC under the condition that there is a LLC at lengthC* is given by fo«(0) = 2\, and
Typical serving zone.In the next section we show how
the densityfc« of C* can be estimated based on simulations
of the typical serving zon&}, and the segment systef; c-(z) = ]
inside =3,. The distribution of the typical serving zone can . 0 otherwise
be regarded again as the limit of empirical distributions gformula (4) easily follows from (3), see [14].
the serving zones in a sequence of unboundedly increasingsmﬁn""t'On of the density of shortest path length.In

sampling windows or as the (conditional) distribution of th@rder to construct an estimgt(fb*_(x) for fC*_(m)’ we qan .
Voronoi cell ato given that there is a HLC located at use eqg. (4). We are especially interested in the estimation
of fo- from synthetic data obtained by simulations. The

_ _ o concept is then to simulate the typical serving zdfg
B. Density of shortest path length and its estimation together with the (typical) line segment systd, in =%,.

We now state a representation formula for the dengity The shortest path lengths(4;) and ¢(B;) to o from all
of C* which depends only on the typical segment sysigin €ndpointsd,, By, ..., Ay, By inthe cell are calculated using
inside the typical serving zong?;. This formula is suitable Dijkstra’s algorithm. This procedure is then repeatetimes,
to construct estimators fof.- based on i.i.d. samples df;, SO we obtain for eachi = 1,...,n the shortest path lengths
which can be obtained from Monte Carlo simulationTlis a  ¢(AY), ¢(BY), ... ,C(A%),C(BZ(\Z) from the endpoints of
PLT, PVT and PDT, respectively, then simulation algorithmie line segments. Finally, we can construct the estimator
for L3, are known, see [9], [12], [13]. LM

Density of shortest path length.In the following, we derive Flrm) = Xy — . ,.

a formula which allows us to compute the probability density fo-(@in) = A n Z Z H[C(AEJ))’C(B§J>))($> - O
of shortest path length’*. But we first state a formula which R
represents the quantifgh(C*) in terms of L. Note that the estimated functiofe- (x; n) is a step function.

Lemma 1:Let ¢(y) denote the shortest path length frgm For each pairc(AS), ¢(B{”)) we add A;/n for all = €
to o. Then, for any measurable: R* — R™, it holds that [c(AE”),c(BfJ))) to fe-(z;n). Statistical properties of the
estimator fc- (z;n) are summarized in [14].

(Bs)=c(Ag)*+V:(S,)

M
AME Y Tie(ay ey (@) if 220,
=1 4)

j=11i=1

Eh(C*) = \E / h(e(y)) 1 (dy) @
Eg. (2) follows from Neveu's éxchange formula for stationary V. EMPIRICAL DENSITIES AND PARAMETRIC DISTANCE
marked point processes, see [8]. DISTRIBUTIONS
An important fact is thai2h(C*) does not depend oX 1, Now we present some numerical results obtained from a
and its linear intensity\;. We can rewrite (2) as simulation study, where the road modg(" is the edge set
M (B of a PDT, PLT and PVT, respectively, with intensity Note
Eh(C*) = \E Z/ h(c(u)) du, ©) that the considered models are scaling invariant, i.e., for all
7 Je(Ad) e,y > 0 with fixed quotients = v/, we get the same model



— PDT, k=10
PVT, k=10
BLT, k=10

A T s However, first we have to choose an appropriate parametric
\ ‘ ﬂ ‘ family of densities{f(z;0),0 = (61,...,0x) € ©}, where
/ © C R* for somek > 1. In [15] it was shown thatC*

; i converges in distribution to the parametric limit distributions
/ K / Wei(Ar/€%,2) and Exp(2)\,) for k — oo and k — 0,
TIOR3 wo v w s m s s s o5 w s w s % & respectively, where > 1 is some constant depending on
the road model. So it is reasonable to choose a parametric
family which contains the exponential- and Weibull distribu-
tion as limiting cases. Furthermore, the fam{ly(z;6),0 =

000 005 010 015 020 025 030

000 002 004 006 008
000 001 002 003 004 005

Fig. 7. Density fory = 1, = 10 (left), 250 (middle), 750 (right) and
PVT (grey), PDT (black), PLT (broken)

(01,...,6,) € O} should possess the following properties.
up to a scaling. Thus, for each it is sufficient to compute 1) The dimensiork of 8 = (64, ...,0;) is small.
numerical results for a single pairy, \¢) with v/\; = &. 2) The parametric density(z;8) fits well for PDT, PLT
For further pairs(7, A¢) with ¥/\, = « the corresponding and PVT and for a large range af especially with

results can then be obtained by a suitable scaling, see [8]. Note respect to expectation and variance.

that larger yield a dense network inside the serving zones, 3) For eachd € ©, it holds thatf(0;60) = 2\, = 2/k.

whereas for smak: only a small number of segments intersect 4) The densities oiWei(«,2),« > 0 and Ezp(A), A > 0

each serving zone. In the following we always consider the  are contained i f(z;6),6 € ©} as limiting cases.

case thaty = 1 and values ofx betweenl and 2000. With |t is not easy to choose a family of densities which fulfills all

these parameter values we cover realistic network scenariqhese conditions. The limit distributiorid’ei(\r/£2,2) and

Exp(2),) are both special cases ofiHei(«, 3)-distribution.

A. Empirical densities Since condition 3 can not be fulfilled in general by the
In order to estimate the densiti-- of the typical shortest W ei(a, 8)-distributions, we shift their densities to the left and

path lengthC* we simulatedn = 50000 cells for values of truncate them at zero sugh that condition 3is fulfilled. In this

% betweenl and2000 and computed the estimat@e- (z;n) W&y We get as one possmle type of candidates the truncated

as explained in Section III-B for PDT, PLT and PVT. SomdVeibull distribution with density

empirical densities obtained in this manner are displayed in 2 L ,Bfla(x_i_(L)m)ﬁ

Fig. 7. One can see that there is a clear difference between/(z;a,3) = C(H(aiﬁn)ﬁ 1) e aBw (6)

the shapes of the densities for small and latges well as for

the different considered models. The differences between 86 = > 0, whereC = aexp((a~'(2/(8x))?)"/P=1). This

densities for different models seem to decrease for increasf#fjIsity has two parameters. Another candidate is a mixture

%, but it is still noticeable. In [15] it is shown that the typical f1(z)+(1—p) f2(z),p € (0, 1) of the densitiesf; of Eap())

shortest path lengti©* converges in distribution tgX as and f> of Wei(a,3), 8 > 1. Again, condition 3 should be

K — 0o, whereX ~ Wei(Ar,2) and¢ > 1 is some constant fulfilled, so we get

depending on the tessellation model. For PLT we havel, . o1 _ -z -1 B—1 —az®

but ¢ > 1 for PDT and PVT. So there will always remain (@i B, 4) =267 €7 4 (1= 2(A0) 7 Jafia e (7’)

some difference between the densities. Based on the estim%ﬁgch has three parameters. We used Matlab to perform

de33|t|esﬁ.vvle (t:om:coute(_:i tt_he|r é’,kneiﬁgiod Vsr'%]fe]ggir(’; a weighted least squares fit of these parametric densities
and coefficients of variation = 100vVarC*/EC*. In data(for (1), .. fo- (,)) obtained from the em-

Table | the means and cv’'s are displayed together with tBﬁical densities for a vector(x.,...,z,) with equidis-

corresponding results for the parametric densities fitted 0t components. As weights we chose the reciprocals
Section IV-B to the estimated ones. :

1/fe-(x1),...,1/fe(2,) in order to get a better fit at the
o ) N tails of the densities. Then the optical fit of the densities is
B. Fitting of parametric densities worse than without weighting, but the means and variances
Especially for largex the estimation procedure for thefit much better. Both regarded types of parametric densities
densitiesfo- is time-consuming and the means, variances affitl optically quite well for all models and a large range of
guantiles have to be calculated numerically. For applicationssit If we look at the expectations and variances of the fitted
would be of great benefit if the densities were given as partauncated Weibull distribution compared to the empirical ones,
metric functions, with parameters only depending«ceind the we can see that they match almost perfectly for all models
type of the underlying road mod&l. Then, for real data, first and a large range ok, see Table |. Moreover, it can be
an optimal tessellatiofi’ could be fitted to the road system andeen that for the mixture of the exponential and Weibull
in the next step the appropriate density could be chosen. Simigtributions the expectations fit quite good, but the variances
the fitting procedure in [7] is done once for all, the distributiodiffer clearly from the variances obtained from the empirical
of C* for the given data would then be immediately availabldensities. The reason might be that the exponential term in
and time-consuming simulations could be avoided. Therefotbe mixture dominates the tails of this distribution yielding
the aim of this section is the construction of a whole librartoo large variances. So the truncated Weibull distribution was
of parametric distance distributions for PDT, PLT and PVT ashosen for the library. Some estimated densities together with
road models and a large range raf the fitted ones are displayed in Fig. 8. We calculated the



EC* cvC* EC* cvC* EC* cvC*
K PVT Jtrunc.] mix |[PVTJtrunc.] mix |[ PLT Jtrunc.] mix |[ PLT Jtrunc.] mix PDT [trunc.] mix |[PDT] trunc.] mix
5 1.397| 1.391| 1.387|| 73.5| 73.7 | 83.7|| 1.510| 1.450| 1.511|| 95.4| 93.8 | 120.8|| 1.744| 1.723| 1.712|| 92.5| 91.8 | 80.5
10 2.054| 2.055| 2.059|| 63.5| 63.3 | 80.3|| 2.181| 2.111| 2.175|| 83.9| 78.0 | 103.6|| 2.367| 2.378| 2.373|| 76.6| 76.1 | 77.9
50 4.552| 4.511| 4.540(| 52.0| 52.9 | 69.6|| 4.505| 4.469| 4.450|| 60.2| 59.7 | 70.8 || 4.780| 4.757| 4.768|| 54.1| 54.6 | 69.0
500 || 13.46] 13.49| 13.51|| 50.9| 50.6 | 61.2|| 12.69| 12.71| 12.72|| 51.8| 51.4 | 57.5 || 13.05| 13.06| 13.08|| 49.3| 49.1 | 57.7
1000/ 18.89| 18.86| 18.87|| 50.7| 50.7 | 56.0|| 17.68| 17.60| 17.61|| 51.2| 50.8 | 55.7 || 17.89| 17.95| 17.97|| 49.9| 49.4 | 55.5
2000 26.34| 26.34| 26.36|| 51.0| 50.9 | 54.7|| 24.24| 24.30| 24.31|| 51.1| 50.7 | 54.3 || 24.72| 24.64| 24.85|| 50.4| 50.8 | 54.0
TABLE |

MEAN AND CV OF C* TOGETHER WITH THESE VALUES FOR FITTED TRUNCATEDVEIBULL AND MIXED EXPONENTIAL-WEIBULL DISTRIBUTION
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Fig. 8. Density fory = 1, k = 250, 750, 2000 and: (a) PLT, (b) PVT, (c) PDT with fitted truncated Weibull distribution

parametersy and 3 for all three considered models and aeview these steps that have been done for the area of Paris.

large range ofx, where functionsa(k), 5(x) depending on Geometrical support and node location.In this paper, we

x were fitted to the estimated parameters fo= 1. So, for shall consider only three simple tessellation models (PVT,

all three model types, the distribution 6f* is now directly PDT, PLT) that provide a sufficiently good description of the

available up to a scaling via road system. The fitting procedure applied to the road data,
X restricted to a possible choice from these simple tessellations,
Frype(; ) = f(@; Qtype (%), Brype () - proposes a PVT model of intensitypy+ = 18km~!. The

theoretical values of the following four characteristics of the

fitted PVT model are very close to the measured ones:
A

8

V. APPLICATION TO REAL NETWORK ANALYSIS

In [2] we have shown that real road systems can be replac

) u crossings | quarters street total length reguired
by best fitted models as support for nodes by successfully - SN R SZ%?SQS 2k1r26 dmplt)n
comparing the histograms of shortest path connections in thelSor a1 oace—— o —ageas o pg:;f:tirs

two settings of nodes: randomly located on the real ro | th work . ¢ terred in the datab ¢
system or on the best fitted model. This validated the firs € network equipments reterred n e databases 1o a

building block of the SSLM. In the present paper, we ggommon address are considered as geographical sites for node

further by comparing real distance distributions obtained frofffiuiPments _Iocatcta)d along ktheDstreets. vsis sh hat th
data bases for fixed access networks in dense urban areas Wit%tructure in sub-networks. Data analysis shows that the

the fitted parametric distributions that we developed above jal aread cqvered by the network can .be di_v iQed In a set of
the framework of the SSLM model. non-overlapping (macro-) zones on which distinct two-levels

sub-networks are deployed. Each of these zones contains only

one highest WCS node. This division process of the total area
A. Dealing with real data sets A is then repeated a second and a third time, producing more

The first step is to extract from the whole complexity of thand more disjoint two-level sub-networks, deployed in smaller

database (being the result of a long history of modificatiomsd smaller (micro-) areas, still non-overlapping, where the
and changes) a synthetic view of the network not takingnion of them coversd. The sets of zones arising at each of
into account marginal situations. Again, the philosophy dhese three steps show some variability in shape and size, but
stochastic models is to provide a global vision of a verthe ranges of their average areas are well distinct.
complex situation that involves a huge number of equipmentsThis structure has been visualized by plotting the locations
of various types, where one has to extract the main featuidsthe nodes using their geographical coordinates, where it
of the current network state from the amount of real data. Theust be kept in mind that the "frontiers” of the zones become
difficulty is to think "stochastic geometry” while analyzingmore and more fuzzy from steps 1 to 3. Still, it remains
data so that they can be matched by the SSLM building blockmssible to assume that the LLC considered at each step are
Equipment or connections are not to be sorted only accordilogjically connected to their closest HLC in flybird sense. Apart
to their usual names or obvious functions, but more by thdinom A and the road-system characteristics, the only parameter
geographical range and connection principles. Let us briefigquired to describe a typical serving zone at a given step



is the number of HLC-nodes; from which the parametet; higher level subnetwork
can be computed; = 1,2, 3. ’
Histograms for the connection lengthsThe histograms for
the connection lengths are recovered from the databases v «
respect to the above division into sub-networks. They conce
the overall lengths of the telecommunication lines from an J
LLC node to its respective HLC node, but no information i i
available about their real physical path. l Histanieg

~The SSLM model proposes a global analysis in the MQSE o 1ol serving zone of the larger scale sub-netwerk ~ 1000);
simple (idealized) setting that is compatible with the conclyneoretical distance densities compared with real data, showing that the
sion inferred from the analysis of data bases: homogene@asumption of physical connections as straight-line shortest paths is incorrect.

random street system which captures the most important

structural properties of the real street system, homogeneous

random Poisson repartition of nodes along the streets, logicallhe typical serving zone at step 2 is much smaller since
connection to the closest HLC node in straight-line sendé,contains roughly only 10 quarters in the average, where
physical connection as shortest path along the street system.~ 35 (see Fig. 10, left). The networks results concern
All the geometrical objects are idealized points or line se@!l the point-to-point connections involved at that scale, i.e.,
ments, whereas real cables do possess a reality that indubey are a mixture of links rising from various types of lower-
physical constraints as a minimum curvature radius as wkvel sub-network nodes provided that they are all connected
as necessary cable-joining in chambers, for example. THénthe same HLC node. In this case, SSLM underestimates the
the theoretical prediction for connection lengths from SSLNeality by a factoic = 1.15 on the averaged connection length.

should naturally be lower than the observed ones. Thus, the theoretical distance densjtyhas been rescaled in
order to recover the measured average,file) — f(z/c)/c,

where it is assumed that the underestimation is due to an
B. Results ; .
effect proportional to the distance. Model and real data are
In order to describe the global statistical behavior of poinktj|| close (see Fig. 10, right), whereas the distance scale (with
to-point connections in the real access network of Parigit distanceDs,) is very different from the previous one (given
structured in three distinct two-level sub-networks, the SSLU&/ Dl) The typ|ca| Serving zone at step 3is Comparab|e in
only requires the knowledge of six global parameters:
« the size|A| of network aread and the type and intensity middle level subnetwork
of the road system it contains, i.&ype, v), )
o the numbers:i;, ny andng of higher-level nodes for each ;
sub-network, where for steps 2 and 3, a HLC node may /
be part of the set of corresponding LLC nodes.

In all three examples considered below, the same family of
parametric distance distributions was used, where eq. (8) was T i P [
used for the same model type (PVT), but for different values
k1, k2 and k3 directly deduced from the above parametersig. 10. Typical serving zone of the middle-scale sub-netwak ~ 35)
The whole model is proposed under the form of an Excehd (rescaled) theoretical connection-length density compared with real data.
sheet with functions encoded in Visual Basic, thus giving an
instantaneous answer and also avoiding the need of specialigiz@ with the area covered by a group of buildings; it contains
computing languages not easily accessible for managers. only a few street segments, whetg ~ 4 (see Fig. 11, left).
Note that a few features of the real network were ndthe theoretical average connection length underestimates the
mentioned above in order to simplify the presentation. Nevenieasured one by some valiie> 0. This can be explained
theless, the figures presented here integrate all the reality of hyethe fact that real lengths include a part that goes from
network including some connections that arise in a non-purdlye building to the end customer, not taken into account by
hierarchical architecture as well as exclusion areas. This d&@SLM. Since this distance simply adds to the predicted length,
not change the number of required parameters and analytided theoretical distance densify has been shifted in order
formulas and only asks for some right combination. to recover the measured average, iféx) — f(z —1) for
The typical serving zone at step 1 is relatively large com: > . This leads to a very good fit between model and real
pared to the scale of the road system since it containsdata (see Fig. 11, right). Note thatthus determined from
the average up to 200 quarters. This corresponds to a lathe comparison of model and real data is compatible with the
value of k; ~ 1000 as illustrated in the left part of Fig. 9.value currently admitted in the network community. Again,
The theoretical probability density fits extremely well with théhe distance scale is rather different from the previous ones
histogram computed from the real network data (see Fig. @iven by D, and D,, respectively).
right), in shape as well as length scale, whére denotes a  We also remark that Fig. 9 illustrates the importance to
reference distance to enable comparisons between resulttalé into account the underlying road system. The theoretical
different scales. distance distribution computed under the assumption that the

real data
mocel
------ straigth line

density

——real data
— model

density




lower level subnetwork

number of streets incoming in crossings, greatly influences the
capacities of the cables to be installed.

The analytical formulas for distance distributions depend
on the type of the road system and its parameter(s). They are
obtained as explained in Section IV using simulation proce-
dures for corresponding typical Cox—Vordraells, which can
£ ) be extended to iterated tessellations constructed from PDT,
F— PVT and PLT. On the other hand, the fitting procedure also

applies to road systems at a regional or territory scale. Thus,
we are able to adapt the SSLM model to regional scales and
to address such applications as in the process of development
of optical fibre networks in a given region. In particular,

) ) . . one can directly relate a specified network architecture to the
physical connections are straight lines (dashed graph) does‘g‘?{wmage of customer lines that will exceed a given length

fit to the histogram for real data and clearly underestimates §fesnold. This may be used to decide on which network
real average connection length. Classical studies introducea@narios are possible and thus greatly restrict the domain of

estimated correction factor for the average length, but SSLM o meters to be analyzed by detailed optimization procedures
explicitly relates it to the geometry of the underlying roaglofore implementation.

system. Single WCS sub-networks have also been satisfactory

——real data

density

— model

Fig. 11. Typical serving zone of the lower-scale sub-netw@rk ~ 4) and
(shifted) theoretical connection-length density compared with real data.

addressed by the SSLM model provided that one deals with a
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We have shown that SSLM based on methods from stochas-
tic geometry is quite a good model to address huge access
networks in a global way. SSLM relies on a small numbeP]
of parameters while taking into account the morphological
features of the underlying road system that is a key issuél
of fixed access networks. The explicit separation of three
model components (geometrical support, location of network
nodes, connection topology) offers the possibility to consider a
wide range of situations. Thus, SSLM fulfills the requirement
of the telecommunication operator who needs simple and
global tools to cope with major changes and new technologie]
to reconstruct networks of competing operators or foreign
countries and to negotiate with regulatory authorities. [5]

Probability theory and stochastic processes provide analyt-
. . - 6]
ical formulas that are formally equivalent to statistical resulté
computed on some reconstruction scheme, considering i
the possibilities compatible with the geometrical setting. The
hard work of listing and analyzing all those possibilities,
with appropriate coefficients depending on their probabilitys]
of occurrence is done by considering stochastic integrals,
Palm probabilities, and the notion of the typical cell. Any[q
reconstruction by hand, e.g. regarding the locations of nodes,
would produce a configuration already considered.

The implementation of the SSLM model has helped I%O]
improve the synthetic view of existing networks that are venyi]
complicated due to their long history, where the main focus
of the present study lies in that it quantitatively validates ti%z]
use of random road models and shortest paths connections.
Furthermore, the SSLM model can be used as a sound basid¥élr
the construction of random cabling trees (point to multipoint
connections) for which no detailed data bases are available.
Note that the explicit description of the underlying road systefl
cannot be avoided in this case since it is impossible to build
trees from straight-line connections that never share a comnjos)
path. Also, the morphology of the road system, especially the
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