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Abstract We consider a spatial stochastic model for telecommunication networks, the

stochastic subscriber line model, and we investigate the distribution of the typical short-

est path length between network components. Therefore, we derive a representation

formula for the probability density of this distribution which is based on functionals of

the so-called typical serving zone. Using this formula, we construct an estimator for

the density of the typical shortest path length and we analyze the statistical properties

of this estimator. Moreover, we introduce new simulation algorithms for the typical

serving zone which are used in a numerical study in order to estimate the density and

moments of the typical shortest path length for different specific models.

Keywords Point Processes · Stochastic Geometry · Random Tessellations ·
Telecommunication Systems · Palm Calculus

1 Introduction

In the present paper, we consider models for hierarchical telecommunication networks.

These networks consist of higher-level components (HLC) and lower-level components

(LLC) located along the underlying road system of the network. Then to each HLC

a domain is associated which we call serving zone. Now a LLC in this serving zone
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is connected to the corresponding HLC on the shortest path along the road system.

Such telecommunication networks were recently investigated based on the stochastic

subscriber line model (SSLM), a spatial stochastic model for the telecommunication

access networks. The SSLM represents the road system of the network by random

segment systems and both the locations of LLC and HLC are modelled by random

point processes. In this context, the typical shortest path connection length C∗ from

LLC to their associated HLC is an important performance characteristic in the analysis

of telecommunication networks. Formally, the distribution of C∗ is defined in terms of

Palm distributions ([1,16]). However, it can be shown that under some extra conditions

the empirical distribution of the shortest path lengths of the LLC inside a sampling

window W converges to the distribution of C∗ if W increases unboundedly. So in view

of this convergence result C∗ can be considered as the shortest path from a LLC chosen

at random among all LLC. Estimators for the mean typical shortest path length as well

as the mean typical subscriber line length were introduced in [6]. In the present paper,

we generalize these results in different ways, i.e., we consider a more general model

and we introduce estimators for the density of the typical shortest path length which

can be computed based on Monte Carlo simulations of the segment system inside the

typical serving zone.

The paper is organized as follows. First, we introduce the SSLM and give exact

mathematical definitons of all considered model components. In particular, we define

the typical shortest path length C∗. Then, using Palm theory for stationary marked

point processes, we derive a representation formula for the density of C∗ which is based

on some functional of the typical segment system S∗
H inside the typical serving zone.

By means of this formula, we construct estimators for the density of C∗ based on i.i.d.

observations of S∗
H which can be obtained by Monte Carlo simulation. It is then shown

that these estimators possess excellent statistical properties. Simulation algorithms for

S∗
H are known for specific cases of the model ([2,4,19]) and we introduce new simulation

algorithms for the case that the HLC are modelled by thinnings of the nodes of the

underlying segment system. Finally, the results are evaluated in a numerical study.

2 Stochastic modelling of hierarchical telecommunication networks

In this introductory section we briefly describe the stochastic network model which

is considered in the present paper. This model is suitable e.g. for applications to

hierarchical telecommunication access networks [3,5,6,10,19]. The model is based on

(marked) point processes and random tessellations. We briefly explain some mathe-

matical background on these topics and introduce the notation we are using. Further

details can be found e.g. in [1,15,16,17].

2.1 Marked point processes

Marked point processes can be used e.g. to model the locations of network components

and subscribers in telecommunication networks. We first recall some basic results

regarding marked point processes and introduce the notions we are using. Let B2

denote the Borel-σ-algebra in R2 and N the family of locally finite counting measures

on B2 which are simple. This means that they have no multiple atoms. Each ϕ ∈ N can

then be represented by the set {xn} of its atoms, i.e., if δx denotes the Dirac measure
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with δx(B) = 1 if x ∈ B and δx(B) = 0 if x 6∈ B, it holds that ϕ =
∑

n δxn . The

σ-algebra on N generated by the sets {ϕ ∈ N : ϕ(B) = j} for j ≥ 0 and B ∈ B2 is

denoted by N and we define the shift operator Tx : N 7→ N by Txϕ(B) = ϕ(B + x)

for x ∈ R2 and B ∈ B2. Here we write B + x = {x + y : y ∈ B} for the set B

shifted by the vector x. A point process X is then defined as a random element of the

measurable space (N,N ) and we identify X with the set {Xn} of its (random) atoms.

We sometimes write X = {Xn} for brevity.

Now let M be some Polish space and let BM denote its Borel-σ-algebra. The

family of all counting measures on B2 ⊗ BM which are simple and in addition locally

finite in the first component is then denoted by NM. Again, the counting measure

ψ =
∑

n δ(xn,mn) ∈ NM can be identified with its atoms (xn,mn) which now have

two components: the location xn ∈ R2 and the mark mn ∈ M. We can define the

σ-algebra NM on NM in the same way as above, but the shift operator Tx : NM 7→ NM

translates now only the first component of the atoms of ψ ∈ NM by −x, i.e. Tx(ψ) =∑
n δ(xn−x,mn). We then call a random element X = {(Xn,Mn)} of (NM,NM) a

marked point process.

2.2 Palm distributions; Neveu’s exchange formula

We define stationarity, isotropy and ergodicity of (marked) point processes in the usual

way. Let X = {(Xn,Mn)} be a stationary marked point process with intensity λ > 0,

i.e., λ = E#{n : Xn ∈ [0, 1)2}. Then its Palm mark distribution P o
X : BM → [0, 1] is

defined by

P o
X(G) =

E#{n : Xn ∈ [0, 1)2,Mn ∈ G}
λ

, G ∈ BM . (1)

We call a random variable M∗, which is distributed according to P o
X , the typical mark

of X. Furthermore, we define the Palm distribution P ∗
X : NM ⊗B(M) → [0, 1] of X by

P ∗
X (A×G) =

E#{n : Xn ∈ [0, 1)2,Mn ∈ G,TXn
XM ∈ A}

λ
, A ∈ NM, G ∈ BM . (2)

Moreover, let X(1) = {(X(1)
n ,M

(1)
n )} and X(2) = {(X(2)

n ,M
(2)
n )} be two jointly

stationary marked point processes with intensities λ1 and λ2 and mark spaces M1 and

M2, respectively. Then we can regard Y = (X(1), X(2)) as a random element of the

product space NM1,M2
= NM1

× NM2
and we can define the Palm distribution P

(i)
Y of

Y on NM1
⊗NM2

⊗BMi
with respect to the i-th component X(i) of Y , i = 1, 2, by

P
(i)
Y (A×G) =

E#{n : X
(i)
n ∈ [0, 1)2,M

(i)
n ∈ G,T

X
(i)
n
Y ∈ A}

λi
, (3)

where A ∈ NM1
⊗ NM2

and G ∈ BMi
. Notice that the Palm mark distribution P o

X(i)

of X(i) is a marginal distribution of P ∗
X(i) and P

(i)
Y , respectively.

Later on, we use Neveu’s exchange formula for jointly stationary marked point

processes. Using the notation introduced above, and ψ = (ψ(1), ψ(2)) for the elements

of NM1,M2
, this formula takes the following form (see e.g. [11,14]).
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Lemma 1 For any measurable f : R2 × M1 × M2 × NM1,M2
→ [0,∞), it holds that

λ1

∫

NM1,M2
×M1

∫

R2×M2

f(x,m(1),m(2),Txψ) ψ(2)(d(x,m(2)))P
(1)
Y (d(ψ,m(1)))

= λ2

∫

NM1,M2
×M2

∫

R2×M1

f(−x,m(1),m(2), ψ) ψ(1)(d(x,m(1)))P
(2)
Y (d(ψ,m(2))) .

(4)

2.3 Random tessellations

We model the underlying infrastructure of a telecommunication network, e.g. road

systems or railways, by the edge set of some random tessellation of R2. A random

tessellation T is a partition {Ξn} of R2 into random (compact and convex) polygons

Ξn which are locally finite. The polygons Ξn are called the cells of T . Note that T

can be regarded as a marked point processes {(α(Ξn), Ξo
n)}, where α(Ξn) is a random

vector such that α(Ξn) ∈ Ξn and α(Ξn + x) = α(Ξn) + x for each x ∈ R2 which

describes the location of the cell Ξn, and Ξo
n = Ξn − α(Ξn) is a copy of Ξn shifted

by −α(Ξn), i.e., Ξo
n contains the origin o. We then call the random points α(Ξn) the

nuclei of the cells Ξn of T . To each random tessellation we can define the point process

T (0) which consists of the vertices of T . Furthermore, note that we can identify T with

the edge set T (1) =
⋃

n ∂Ξn of T .

Now suppose that T is stationary. Then we define the intensity γ of T as γ =

Eν1(T
(1) ∩ [0, 1]2), i.e. the mean length of T (1) per unit area, where we denote by ν1

the 1-dimensional Hausdorff measure. Moreover, T (0) is a stationary point process if

T is stationary. In the following the road model is assumed to be the edge set of a

stationary random tessellation with intensity γ ∈ (0,∞).

2.4 Point processes on edges and vertices

For any T with intensity γ, we model the locations of HLC and LLC by point processes

H = {Hn} and L = {Ln}, respectively, which are concentrated on T (1) almost surely.

An important special case for H is given if H is a Cox process on T (1) with (linear)

intensity λℓ. Then, H is constructed by placing linear Poisson processes on the edges of

T with (linear) intensity λℓ. This means that the random driving measure Λ : B2 −→
[0,∞] of H is given by

Λ(B) = λℓν1(B ∩ T (1)), B ∈ B2 . (5)

Note that in this case H is stationary, isotropic and ergodic if the tessellation T is

stationary, isotropic and ergodic, respectively. Furthermore, if H is a stationary Cox

process on T (1), then its planar intensity λ is given by λ = λℓγ.

Another special case for H is obtained from the point process T (0) of vertices of

T by independent thinning according to a certain thinning probability p ∈ (0, 1). If T

is stationary and H a p-thinning of T (0), then H is stationary with planar intensity

λ = pλ(0), where λ(0) is the intensity of T (0).
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(a) PVT as road model (b) PLT as road model

Fig. 1 Higher-level components with their serving zones (black) and lower-level components
(grey with black boundary) with shortest paths (dashed) along the edge set of T (grey).

However, in general, we do not assume that H is a Cox process, admitting that H

is an arbitrary stationary point process on T (1) which is conditionally independent of L

given T . For stationary H we define the quotient λℓ = λ/γ as the planar intensity of H

divided by the (length) intensity of T (1). Note that for a Cox process H the intensity

quotient λℓ is exactly the linear intensity of the Poisson processes on the edges of T .

In contrast to this, L is always assumed to be a stationary Cox process on T (1)

with linear intensity λ′ℓ, possibly different from λℓ.

2.5 Service zones and shortest paths

Let TH = {ΞH,n} denote a random tessellation where the nuclei {α(ΞH,n)} of the

cells ΞH,n are given by the points Hn of H . For instance, TH can be the Voronoi

tessellation induced by H , but further examples are possible like Laguerre tessellations

([8,9]) or aggregated Voronoi tessellations ([18]). We then regard the cell ΞH,n of TH

as the serving zone of the HLC located at the point Hn of H .

Using the four modelling components T , H , L and TH introduced above, we can

construct the marked point process LC = {(Ln, Cn)}. Here the point Ln is marked

with Cn, the length of the shortest path from Ln toHj along the edge set T (1) provided

that Ln ∈ ΞH,j . It can be shown that LC is stationary if T and H are stationary.

Realizations of serving zones and shortest paths are displayed in Figure 1(a) and (b)

for a point process H on T (1), where T is a Poisson-Voronoi tessellation (PVT) and a

Poisson line tessellation (PLT), respectively.

In the following we investigate the distribution of the typical mark C∗ of LC which

we call the typical shortest path length, i.e., we are interested in the Palm mark

distribution P o
LC

of LC .

Note that we can construct the realizations of LC from the corresponding realiza-

tions of L and HS, where HS = {(Hn, S
o
H,n)} denotes the stationary marked point
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process with marks given by So
H,n = (T

(1)
γ ∩ ΞH,n) −Hn. Thus, we can consider the

vector Y = (L,HS) and its Palm distribution P
(1)
Y with respect to L, which has been

introduced in (3), instead of LC . Let (L∗, H̃S) denote a vector which is distributed

according to P
(1)
Y , where we use the notation H̃S = {(H̃n, S̃

o
H,n)}, H̃ = {H̃n}, and

T̃ (1) =
⋃

n≥1

(
S̃o

H,n + H̃n
)
. (6)

Then C∗ can be regarded as the shortest path length from the origin o to its associated

point of H̃ along the edge set T̃ (1) given in (6).

In the same way we can consider (L̃,H∗
S) distributed according to P

(2)
Y and we

use the notion T ∗(1) for the edge set of H∗
S. Note that L̃ is then a (non-stationary)

Cox process on T ∗(1) with linear intensity λ′ℓ which is independent of H∗ given T ∗(1).

Furthermore, it holds that

Eν1(S
∗
H) = γ/λ = 1/λℓ , (7)

where S∗
H denotes the typical mark of HS , i.e., the typical segment system inside

the typical serving zone. This can be easily obtained from Campbell’s theorem for

stationary marked point processes which gives that

γ = E

∞∑

n=1

ν1
(
(So

H,n +Hn) ∩ [0, 1)2
)

= λ

∫

R2

Eν1(S
∗
H ∩ ([0, 1)2 − x)) ν2(dx)

= λE
[ ∫

S∗

H

∫

R2

1I[0,1)2−x(y) ν2(dy) ν1(dx)
]

= λEν1(S
∗
H) .

3 Distribution of typical shortest path length and its estimation

We now analyze the distribution of the typical shortest path length C∗. First we derive

a representation formula for the density fC∗ of C∗ which expresses the distribution

of C∗ in terms of the Palm distribution P ∗
HS

of HS by the help of Neveu’s exchange

formula stated in Lemma 1. Using this representation formula we first show that the

density is piecewise continuous and construct estimators for fC∗ based on i.i.d. samples

of the typical segment system S∗
H . Such samples can be obtained from Monte Carlo

simulation of S∗
H which is e.g. possible for Voronoi tessellations TH if T is a PLT, PVT

and a Poisson-Delaunay tessellation (PDT), respectively, and H is a Cox process on

T (1) ([2,4,19]) or if H is a p-thinning of T (0), see Section 4. Finally, we discuss some

useful properties of the proposed estimators for fC∗ .

3.1 Probability density of typical shortest path length

In this section we show a theorem which can be used to compute the probability density

of the typical shortest path length C∗. In order to proof this theorem we first state an

auxiliary result which allows us to represent the quantity Eh(C∗) for each non-negative

measurable function h : R 7−→ [0,∞) in terms of the Palm distribution of HS.
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Lemma 2 Let h : R 7−→ [0,∞) be an arbitrary measurable function. Then,

Eh(C∗) = λℓE

∫

S∗

H

h(c(y)) ν1(dy) , (8)

where H∗
S is distributed according to P ∗

HS
, S∗

H denotes the typical segment system

centred at o of H∗
S and c(y) denotes the shortest path length from y to o along the

segments of H∗
S.

Proof Let L be the family of all locally finite segment systems in R2 containing the

origin. We apply Neveu’s exchange formula (see Lemma 1) in order to show (8).

Consider the function f : R2 × [0,∞) ×L× N[0,∞),L → [0,∞) given by

f(x, c, ξ, ψ) =

{
h(c) if x ∈ ξ ,

0 otherwise .

Then, using (4) with the function f defined above, we get that

Eh(C∗) =
λ

γλ′ℓ
E

(∫

S∗

H

h(c(x)) L̃(dx)

)

=
λℓ

λ′ℓ
E

(
E

( ∫

S∗

H

h(c(x)) L̃(dx)
∣∣ T ∗(1)

))
,

where L̃ is a (conditional) Poisson process, given T ∗(1), with linear intensity λ′ℓ on

T ∗(1). Thus Campbell’s theorem yields

E

( ∫

S∗

H

h(c(x)) L̃(dx)
∣∣ T ∗(1)

)
= λ′ℓ

∫

S∗

H

h(c(y))ν1(dy) ,

which completes the proof of (8). ⊓⊔
Note that using (7) the representation of Eh(C∗) given in (8) can also be written as

Eh(C∗) =
1

Eν1(S
∗
H)

E

∫

S∗

H

h(c(y)) ν1(dy) . (9)

We also emphasize the important fact that the expectation Eh(C∗) does not depend

on the (linear) intensity λ′ℓ of the Cox process L. Moreover, we can rewrite (8) as

Eh(C∗) = λℓ E

N∑

i=1

∫ c(Bi)

c(Ai)
h(u) du , (10)

where the segment system S∗
H is divided into N line segments S1, . . . , SN with end-

points A1, B1, . . . , AN , BN such that S∗
H =

⋃N
i=1 Si and ν1(Si ∩ Sj) = 0 for i 6= j,

where c(Ai) < c(Bi) = c(Ai) + ν1(Si), see Figure 2. Some segments of S∗
H are split in

this way at so-called distance peaks, where a point z on S∗
H is called a distance peak

if there are two different shortest paths from z to o. Note that the random variable

N appearing in (10) is the random number of line segments of S∗
H obtained after the

splitting. It can be shown that

EN ≤ aEK∗ <∞ , (11)

where a > 0 is some constant and K∗ denotes the number of segments emanating

from the typical vertex of T . With the notation introduced above we can derive a

representation formula for the probability density fC∗ of typical shortest path length

which can be used in order to estimate this density.
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Fig. 2 S∗

H
divided into segments S1, . . . , SN

Theorem 1 The distribution of the typical shortest path length C∗ is absolutely con-

tinuous, where the density is given by

fC∗(x) =





λℓE
N∑

i=1
1I[c(Ai),c(Bi))(x) if x ≥ 0 ,

0 otherwise.

(12)

Proof The distribution PC∗ of C∗ can be given by PC∗(B) = E1IB(C∗) for B ∈ B(R).

Thus, using (10) with h(x) = 1IB(x), we get that for each B ∈ B(R)

PC∗(B) = λℓE

N∑

i=1

∫ c(Bi)

c(Ai)
1IB(u)1 du

= λℓE

N∑

i=1

∫

B
1I[c(Ai),c(Bi))(u) du

=

∫

B
λℓE

N∑

i=1

1I[c(Ai),c(Bi))(u) du ,

which proves the theorem. ⊓⊔

We now show that fC∗ given in (12) is right-continuous and has left-hand limits, i.e.,

fC∗ is a cadlag function on [0,∞).

Lemma 3 The density fC∗ of C∗ is a cadlag function on [0,∞). Furthermore, fC∗

is bounded and if H has no points in the vertex set T (0) of T , then fC∗(0) = 2λℓ. If

H is a p-thinning of T (0), then fC∗(0) = λℓEK
∗.

Proof For each x0 ∈ R, it holds with probability 1 that

lim
xցx0

N∑

i=1

1I[c(Ai),c(Bi))(x) =

N∑

i=1

1I[c(Ai),c(Bi))(x0) .
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Besides this, we have EN <∞, see (11). Thus, using (12), the dominated convergence

theorem yields that fC∗ is right-continuous. Furthermore, it is easy to see that the

function gC∗ : [0,∞ → [0,∞) with

gC∗(x) = λℓE

N∑

i=1

1I(c(Ai),c(Bi)](x) , x ≥ 0

is a version of the density fC∗ which is left-continuous with fC∗(x) = gC∗(x) for

each continuity point of fC∗ , i.e., the left-hand limits of fC∗ exist. Furthermore,

fC∗(x) ≤ λℓEN < ∞ for each x ∈ R, which shows that fC∗ is bounded. If H has

almost surely no points at the vertices of T , then the origin o is almost surely located in

the relative interior of a line segment of S∗
H . Thus there are almost surely 2 segments

emanating from o and, consequently, fC∗(0) = 2λℓ. On the other hand, if H coincides

with an independently thinned vertex set of T , then the expected number of segments

emanating from o under P ∗
HS

is equal to EK∗ by definition, which completes the proof.

⊓⊔

Using the representation formula for fC∗(x) stated in Theorem 1, see (12), we

are able to derive an estimator f̂C∗(x) for fC∗(x) which is based on data obtained

by simulations of the segment system S∗
H within the typical serving zone Ξ∗

H . This

is explained in more detail in the following section. Anyhow, we emphasize that by

means of this representation formula we can estimate fC∗(x) without looking at the

points of the Cox process L̃, i.e. the locations of lower–level components.

3.2 Estimation of the density of typical shortest path length

In this section we construct estimators for the density of typical shortest path length

using the representation formula derived in Theorem 1. In particular, we are interested

in estimators based on independent samples of the (typical) segment system S∗
H which

can be obtained from Monte-Carlo simulation for various models ([2,4,19]). Note that

the shortest path can partly run outside Ξ∗
H , so the line segment system has to be

simulated also outside Ξ∗
H up to a certain distance. Suppose that for some sample size

n > 0 we have n i.i.d. copies S∗
H,1, . . . , S

∗
H,n of S∗

H . For each j = 1, . . . , n, we can then

calculate the shortest path length for all nodes of S∗
H,j . If there are line segments with

a distance peak in their interior, they are divided into two segments as mentioned in

Section 3.1. In this way we get the segments S
(j)
1 , . . . , S

(j)
Nj

and the shortest path lengths

from the endpoints of the line segments to o, i.e., c(A
(j)
1 ), c(B

(j)
1 ), . . . , c(A

(j)
Nj

), c(B
(j)
Nj

).

Based on this data, we can then construct two slightly different estimators. The first

one is given by

f̂C∗(x;n) = λℓ
1

n

n∑

j=1

Nj∑

i=1

1I
[c(A

(j)
i ),c(B

(j)
i ))

(x) . (13)

Furthermore, using (7), still another estimator can be constructed if the expected

length of the line segment system in the typical cell is also estimated from simulated

data. This leads to

f̃C∗(x;n) =
1

n∑
j=1

ν1(S
∗
H,j)

n∑

j=1

Nj∑

i=1

1I
[c(A

(j)
i ),c(B

(j)
i ))

(x) . (14)
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x
(a) f̂C∗ ( · ;n) before adding a segment

(j) (j)
i ic(A  ) c(B  )

x
(b) Adding the contribution of a segment

with endpoints A
(j)
i and B

(j)
i

Fig. 3 Computation of the density f̂( · ;n)

Note that for practical computation of f̂C∗(x;n) and f̃C∗(x;n) we can use the fact that

f̂C∗(x;n) and f̃C∗(x;n) are step functions with respect to x. For example, in order to

compute f̂C∗(x;n), for each line segment S
(j)
i with endpoints A

(j)
i and B

(j)
i we add

the value λℓ/n if x ∈ [c(A
(j)
i ), c(B

(j)
i )), see Figure 3.

We now discuss some useful properties of the estimators f̂C∗(x;n) and f̃C∗(x;n)

introduced in (13) and (14), respectively. .

Theorem 2 For any n > 0 and x ∈ R, f̂C∗(x;n) is an unbiased estimator of fC∗(x).

Moreover, f̂C∗(x;n) and f̃C∗(x;n) are strongly consistent for each x ∈ R provided that

n→ ∞. For each measurable function h : R 7−→ [0,∞), it holds that

E

[∫

R

h(x)f̂C∗(x;n) dx

]
= Eh(C∗) (15)

and

P

(
lim

n→∞

∫

R

h(x)f̂C∗(x;n) dx = Eh(C∗)

)
= P

(
lim

n→∞

∫

R

h(x)f̃C∗(x;n) dx = Eh(C∗)

)
= 1 .

(16)

Proof The unbiasedness of f̂C∗(x;n) immediately follows from (12) and (13). Further-

more, the strong law of large numbers yields that limn−→∞ f̂C∗(x;n) = fC∗(x) with

probability 1 for each x ∈ R. Similarly, in view of (7), we get that almost surely

lim
n−→∞

1

n

n∑

j=1

ν1(S∗
H,j) =

1

λℓ
.

Thus, altogether, we have limn−→∞ f̃C∗(x;n) = fC∗(x) with probability 1. Using the

unbiasedness of f̂C∗(x;n), Fubini’s theorem yields that

E

∫

R

h(x)f̂C∗(x;n) dx =

∫

R

h(x)Ef̂C∗(x;n) dx =

∫

R

h(x)fC∗(x) dx = Eh(C∗) ,
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i.e., (15) holds. Furthermore, since

∫

R

h(x)f̂C∗(x;n) dx =
λℓ

n

n∑

j=1

∫

R

Mj∑

i=1

1I
[c(A

(j)
i ),c(B

(j)
i ))

(x)h(x) dx ,

we get by the strong law of large numbers that the first probability in (16) is equal to

1. The second equality in (16) follows in the same way. ⊓⊔

Remark 1 Note that the estimator f̃C∗(x;n) has some advantages, although it is not

unbiased. For example, for each n ≥ 1, we have

∫

R

f̃C∗(x;n) dx = 1 ,

whereas the integral over f̂C∗(x;n) is not equal to 1 in general.

Remark 2 Alternatively, for any bounded Borel set W ⊂ R2 with ν2(W ) > 0, we can

define estimators based on data in large sampling windows by

f̂W (x;n) =
λℓ

#{j : Hj ∈ nW}
∑

j≥1

1InW (Hj)

Nj∑

i=1

1I
[c(A

(j)
i

),c(B
(j)
i

))
(x) , (17)

where n ≥ 1 is any sufficiently large integer andNj denotes the number of line segments

S
(j)
1 , . . . , S

(j)
Nj

with endpoints A
(j)
1 , B

(j)
1 , . . . , A

(j)
Nj
, B

(j)
Nj

in the serving zone ΞH,j of Hj .

If n→ ∞, consistency results similar to those considered in Theorem 2 are valid for the

estimator defined in (17) provided that B(o, r) ⊂W for some r > 0. This can be shown

by means of the individual ergodic theorem for stationary point processes, see e.g. [1],

Corollary 12.2.V. Nevertheless, we focus on the estimators introduced in (13) and (14)

which are based on samples of the typical segment system S∗
H . These estimators are

less computer-intensive. In addition, the estimator defined in (17) suffers from the fact

that neighboring serving zones are highly correlated and that there are always edge

effects at the boundary of the sampling window. On the other hand, these problems

can be avoided by regarding i.i.d. samples of S∗
H .

Remark 3 In [20], so-called capacities are investigated which are required at the points

of stationary Cox processes on T (1). It is shown that the distribution of the typical

capacity only depends on the length of a certain subtree within the shortest-path tree

of the typical point of such Cox processes. This is the reason why an estimator for

density fν1(T∗

sub
) of the typical subtree length ν1(T

∗
sub) is constructed in [20]. This

estimator is defined by

f̂ν1(T∗

sub
)(x;n) = λℓ

1

n

n∑

j=1

Nj∑

i=1

1I
[l(B

(j)
i ),l(A

(j)
i ))

(x) , (18)

where the segment system S∗
H is subdivided in the same way as in (13) and (14).

Besides, l(B
(j)
i ) denotes the subtree length at the endpoint B

(j)
i of S

(j)
i , and l(A

(j)
i ) =

ν1(S
(j)
i ) + l(B

(j)
i ). Note that also the estimator given in (18) has useful statistical

properties which are similar to those considered in Theorem 2.
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3.3 Almost sure convergence of the maximum error

In Theorem 2 we proved that the estimator f̂C∗(x;n) of fC∗(x) is unbiased and consis-

tent for each fixed x ∈ R. We now show that f̂C∗(x;n) converges to fC∗(x) uniformly

in x. In order to prove this result we need some further notation. For any B ∈ B(R)

and j = 1, . . . , n, let Zj(B) =
∑Nj

i=1

(
1IB(c(A

(j)
i )) + 1IB(c(B

(j)
i ))

)
. Then Z1, . . . , Zn

are i.i.d. (non-simple) point processes on [0,∞) with finite intensity measure since

EZj(R) ≤ 2ENj <∞. Furthermore, let Q ⊂ R denote the set of rational numbers.

Theorem 3 It holds that

P

(
lim

n−→∞
sup
x∈R

|f̂C∗(x;n) − fC∗(x)| = 0

)
= 1 . (19)

Proof It is sufficient to show that for almost all ω ∈ Ω and ε > 0 there exists an integer

N(ε, ω) ≥ 1 such that |f̂C∗(x;n, ω) − fC∗(x)| ≤ ε for all n > N(ε, ω) and x ∈ R. For

each q ∈ Q, we have

|f̂C∗(x;n, ω) − fC∗(x)| (20)

≤ |f̂C∗(x;n, ω) −f̂C∗(q;n, ω)| + |f̂C∗(q;n, ω) −fC∗(q)| + |fC∗(q) −fC∗(x)| .

Now let ε > 0 and q, q′ ∈ Q such that q < q′ and x ∈ [q, q′). Then we get that

|f̂C∗(x;n, ω) − f̂C∗(q;n, ω)| ≤ λℓ

n

n∑

j=1

Zj((q, q
′), ω) . (21)

Furthermore, since the point processes Z1, . . . , Zn are i.i.d., we get from the strong law

of large numbers that with probability 1

lim
n→∞

1

n

n∑

j=1

Zj((q, q
′)) = EZ1((q, q

′)) .

On the other hand, since EZ1([0,∞)) <∞, limx−→∞ fC∗(x) = 0 and fC∗ is a cadlag

function on [0,∞), we can choose q0, . . . , qm ∈ Q with q0 = 0 < q1 < · · · < qm <

qm+1 = ∞ such that for all i = 0, . . . , m and x ∈ [qi, qi+1) we get that

λℓEZ1((qi, qi+1)) <
ε

3
, |fC∗(x) − fC∗(qi)| <

ε

3
. (22)

Moreover, we then have almost surely

lim
n−→∞

λℓ

n

n∑

j=1

Zj((qi, qi+1)) = λℓEN1((qi, qi+1)) <
ε

3

and limn−→∞ f̂C∗(qi;n, ω) = fC∗(qi) for all i = 0, . . . ,m. This means that we can

choose N(ε, ω) ≥ 1 such that

λℓ

n

n∑

j=1

Zj((qi, qi+1), ω) <
ε

3
and |f̂C∗(qi;n, ω) − fC∗(qi)| <

ε

3
(23)

for all i = 0, . . . ,m and n > N(ε, ω). Hence, combining the inequalities in (20) - (23)

we get for each ε > 0 and almost all ω ∈ Ω that there exists N(ε, ω) ≥ 1 such that

|f̂C∗(x;n, ω) − fC∗(x)| < ε

for all x ∈ R and n ≥ N(ε, ω) which completes the proof. ⊓⊔
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Remark 4 The result of Theorem 3 is also valid for the estimator f̂W (x;n) introduced

in (17), provided that B(o, r) ⊂W for some r > 0. Then,

P

(
lim

n−→∞
sup
x∈R

|f̂W (x;n) − fC∗(x)| = 0

)
= 1 .

Moreover, in a similar way, it can be shown that

P

(
lim

n−→∞
sup
x∈R

|f̂ν1(T∗

sub
)(x;n) − fν1(T∗

sub
)(x)| = 0

)
= 1 ,

where f̂ν1(T∗

sub
) is the estimator defined in (18).

3.4 Rates of convergence and estimation variance

Using our approach we can avoid the simulation of LLC when estimating the probability

density of C∗. This has some advantages with respect to performance of the estimator

given in (13), in comparison to estimators based on explicit simulation of LLC and

their shortest path lengths.

A common measure for the deviation of an estimator f̂ from a probability density f

to be estimated is the mean integrated squared error of f̂ which is denoted by MISE(f̂),

where

MISE(f̂) = E

∫

R

(f̂(x) − f(x))2 dx . (24)

Note that for the estimator f̂C∗(x;n) of fC∗(x) introduced in (13) we have

MISE (f̂C∗) = E

∫

R

(f̂C∗(x;n) − fC∗(x))2 dx

=
λ2

ℓ

n

∫

R

Var
( N∑

i=1

1I[c(Ai),c(Bi))(x)
)
dx

≤ λ2
ℓ

n

∫

R

E

( N∑

i,j=1

1I[c(Ai),c(Bi))(x))1I[c(Aj),c(Bj))(x)
)
dx

=
λ2

ℓ

n
E

N∑

i,j=1

ν1([c(Ai), c(Bi)) ∩ [c(Aj), c(Bj))) ≤
λ2

ℓ

n
E(Nν1(S

∗
H)) .

Thus, the rate of convergence of MISE(f̂(x;n)) is of order 1/n if E(Nν1(S
∗
H)) < ∞.

Suppose that we simulate the points of L̃ on S∗
H , calculate the shortest path length

C̃i of each point L̃i ∈ S∗
H and then construct a kernel estimator for fC∗ . Note that

the computational effort for the kernel estimator is similar to the effort required for

f̂C∗ because for every point L̃i we have to compute the shortest path lengths to the

endpoints of the segment Sj with L̃i ∈ Sj . However, the rate of convergence of the

mean integrated squared error of kernel estimators is of order n−4/5 or slower, see

[22]. Having this in mind, it becomes clear that the estimator f̂C∗ is superior to kernel

estimators.
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We now consider an estimator F̂C∗(x) for the value FC∗(x) of the distribution

function FC∗ : R → [0, 1] of C∗ which is given by

F̂C∗(x;n) =
λℓ

n

n∑

i=1

ν1(S
∗
H,i(x)) , (25)

where S∗
H,i(x) = {y ∈ S∗

H,i : c(y) ≤ x} for x ∈ R. Note that F̂C∗(x;n) =
∫ x
0 f̂C∗(t;n) dt,

where f̂C∗(t;n) is the density estimator introduced in (13). Thus, Theorem 2 yields

that the estimator F̂C∗(x) is unbiased and strongly consistent for FC∗(x). On the

other hand, suppose that we simulate the LLC-points L̃
(i)
j of L̃(i) on S∗

H,i and com-

pute the shortest path lengths C̃
(i)
j from the LLC-points to the origin. Then the natural

estimator

F̃C∗(x;n) =
λℓ

λ′ℓ

1

n

n∑

i=1

#{L̃(i)
j ∈ S∗

H,i : C̃
(i)
j ≤ x} (26)

is another unbiased estimator for FC∗(x), see the proof of Lemma 2. Furthermore, it

holds that

E(F̃C∗(x;n) | S∗
H,i, i = 1, . . . , n) =

λℓ

λ′ℓ

1

n

n∑

i=1

E(#{L̃(i)
j ∈ S∗

H,i : C̃
(i)
j ≤ x} | S∗

H,i) .

Since L̃(i) is a Poisson process with intensity measure λ′ℓν1( · ∩ S∗
H,i) given S∗

H,i, we

can apply Campbell’s theorem to get

E(#{L̃i,j ∈ S∗
H,i : L̃i,j ≤ x} | S∗

H,i) = λ′ℓν1(S
∗
H,i(x)) .

Thus we have

F̂C∗(x;n) = E(F̃C∗(x;n) | S∗
H,i, i = 1, . . . , n) ,

and hence Var F̂C∗(x;n) ≤ Var F̃C∗(x;n), which shows that the estimator F̂C∗(x;n)

introduced in (25) is again superior to the natural estimator based on explicit measuring

the shortest path lengths for L̃.

3.5 Scaling invariance

Suppose from now on that T is a PLT, PVT and PDT, respectively, and H is a Cox

process on T (1) or H is a p-thinning of the vertices T (0). Furthermore, assume that

TH is the Voronoi tessellation induced by H . For all these models, a scaling invariance

property holds with respect to the two parameters λℓ = λ/γ and γ if the value of

the quotient κ = γ/λℓ is constant. Assume that γ = aγ̃ and λℓ = aλ̃ℓ for some

fixed values of γ̃ > 0, λ̃ℓ > 0 and a > 0. Note that the scaling of the parameters by

some a > 0 corresponds to a scaling of the model with parameters γ̃, λ̃ℓ by the factor

1/a. For instance, S∗
H(γ, λℓ)

d
= 1/a S∗

H(γ̃, λ̃ℓ), where S∗
H(γ, λℓ) denotes the typical

segment system with parameters γ and λℓ. If we then e.g. regard the typical segment

system S∗
H and the typical cell Ξ∗

H , we get that the expected number of segments of

S∗
H(γ, λℓ) stays constant, whereas Eν1(S

∗
H(γ, λℓ)) and

√
Eν2(Ξ

∗
H(γ, λℓ)) grow linearly

proportional to 1/a for γ = aγ̃ and λℓ = aλ̃ℓ, see e.g. [2,4,6]. This scaling invariance

can also be used to calculate the probability density fC∗(x; γ, λℓ) from the knowledge

of the density fC∗(x; γ̃, λ̃ℓ).
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Theorem 4 For any pair (γ, λℓ) of parameters γ, λℓ > 0, consider the density of

shortest path length fC∗(x;γ, λℓ) given in (12). Then

fC∗(x; γ, λℓ) = afC∗(ax; γ̃, λ̃ℓ) (27)

if γ/λℓ = γ̃/λ̃ℓ and a > 0 with λℓ = aλ̃ℓ.

Proof Recall that S∗
H(γ, λℓ)

d
= 1/a S∗

H(γ̃, λ̃ℓ). Thus, for each x > 0, we get that

fC∗(x;γ, λℓ) = λℓE

N∑

i=1

1I[c(Ai),c(Bi))(x)

= aλ̃ℓE

Ñ∑

i=1

1I
[c(Ãi),c(B̃i))

(a x) = afC∗(ax; γ̃, λ̃ℓ) ,

where we used that the shortest path does not change if the model is scaled, but the

shortest path length grows linearly as a 1-dimensional quantity. ⊓⊔

Because of the scaling invariance property discussed in this section, we can now con-

centrate our investigation on certain parameter pairs only. In the following we always

assume that γ = 1 and consider different values of κ which cover realistic network

scenarios. Numerical results corresponding to values of γ 6= 1 are then obtained by an

appropriate scaling. Note that for Cox processes all values of κ ∈ (0,∞) are achiev-

able. However, for p-thinnings of the vertices T (0) it is not possible to achieve arbitrary

small values of κ since λℓ = λ/γ which yields κ = γ2/(pλ(0)), where λ(0) denotes the

intensity of T (0). Thus, p = γ2/(κλ(0)) and hence κ ≥ γ2/λ(0). In particular, we have

that γ2/λ(0) = π for PLT, γ2/λ(0) = 2 for PVT and γ2/λ(0) = (32/(3π))2 ≈ 11.53 for

PDT, respectively. Note that for γ = 1 we have κ = 1/λℓ = Eν1(S
∗
H) if H is both a

Cox process on T (1) and a thinning of T (0), respectively.

4 Simulation of the typical serving zone and its segment system

We focus on the two cases special cases that H is a Cox process on the edges T (1) and

a p-thinning of the vertices T (0) of T , respectively. Furthermore, we assume that the

serving zones TH are constructed as the Voronoi tessellation induced by H .

Note that simulation algorithms for S∗
H are then available if H is a Cox process

and T is either a PDT, PLT or PVT ([2,4,19]). These algorithms were used in order

to obtain the numerical results discussed below. Now let H be a p-thinning of T (0),

then S∗
H can be simulated using the ideas explained below.

If T is a PDT, then T (0) is a Poisson process. Thus, due to Slyvniak’s theorem

which states that the Palm distribution of a Poisson process X is obtained by adding

the origin o to X, we have that T ∗ is the Delaunay tessellation with respect to the

point process X∗ = X ∪ {o} and S∗
H can be simulated as follows.

1. Simulate a stationary Poisson process X = {Xn} radially, construct X∗ = X ∪{o}
and construct the Delaunay tessellation T ∗ with respect to X∗.

2. Define H∗ = {o} and add Xi to H∗ if Ui < p, where U1, U2, . . . are i.i.d. with

Ui ∼ U [0, 1).

3. Construct the Voronoi cell Ξ∗
H at o with respect to H∗.
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4. Construct S∗
H = T ∗(1) ∩ Ξ∗

H .

Now let T be a PLT, then we have to simulate T ∗ with respect to the Palm

distribution of T (0), i.e., under the condition that there are two lines which contain

the origin. It is known that the angle Φ between the two lines ℓ1 and ℓ2 which contain

the typical point of T (0) is distributed according to the density fΦ(x) = sin(x)/2 for

x ∈ [0, π), see e.g. [13]. Furthermore, ℓ1 and ℓ2 are isotropic. Thus, S∗
H can be

simulated in the following way.

1. Simulate angles Φ1 ∼ U [0, π) and Φ ∼ fΦ and generate lines ℓ1 and ℓ2 through o

with angles Φ1 and Φ2 = Φ1 + Φ.

2. Simulate a stationary and isotropic Poisson line process {ℓ3, ℓ4, . . .} independent of

ℓ1 and ℓ2. Define T ∗ = {ℓ1, ℓ2, ℓ3, . . .}.
3. Construct {Xi} as the union of all intersection points in R2\{o} of pairs of lines

ℓj , ℓk ∈ T ∗ with j 6= k.

4. Define H∗ = {o} and add Xi to H∗ if Ui < p, where U1, U2, . . . are i.i.d. with

Ui ∼ U [0, 1).

5. Construct the Voronoi cell Ξ∗
H at o with respect to H∗.

6. Construct S∗
H = T ∗(1) ∩ Ξ∗

H .

Finally, if T is a PVT, then we can proceed as follows. The duality of PVT and PDT

yields that the dual tessellation of T ∗ is a PDT with respect to the Palm distribution of

its nuclei. Thus, we can simulate a PDT starting from its typical cell and then construct

the dual tessellation in order to obtain T ∗. Note that the distribution of the typical

cell Ξ∗
D of a PDT is known. Let Y1 = RZ1, Y2 = RZ2 and Y3 = RZ3 denote the three

vertices of Ξ∗
D, where Zi, i = 1, 2, 3 are unit vectors which we identify with their polar

angles. Then R is distributed according to the density fR(x) = 2λ2π2x3 exp(−λπx2)

for x ≥ 0 and the joint density of (Z1, Z2, Z3) is given by ν2(conv{z1, z2, z3})/(12π2)

for z1, z2, z3 ∈ [0, 2π)3, see Theorem 10.4.4 in [16]. This yields the following simulation

algorithm for S∗
H .

1. Simulate Y1, Y2 and Y3 and an independent and stationary Poisson process Y =

{Y4, Y5, . . .} in R2\B(o, R).

2. Construct T ∗ as the Voronoi tessellation with respect to {Yi; i ≥ 1}.
3. Define H∗ = {o} and add Xi ∈ T ∗(0)\{o} to H∗ if Ui < p, where U1, U2, . . . are

i.i.d. with Ui ∼ U [0, 1).

4. Construct the Voronoi cell Ξ∗
H at o with respect to H∗.

5. Construct S∗
H = T ∗(1) ∩ Ξ∗

H .

Note that for all three simulation algorithms introduced above some technical de-

tails have to be considered. For instance, we have to simulate the points radially and

we have to find good stopping criteria for the simulation. We omit such details here,

but similar problems are discussed e.g. in [2,4,19] for simulation algorithms of typical

serving zones if H is a Cox process.

5 Numerical results

In this section we estimate the probability density fC∗(x) of the typical shortest path

length for different models. We regard a random tessellation T which is a PDT, PLT

and PVT, respectively, with (length) intensity γ. Furthermore, as already mentioned
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(c) κ = 250

Fig. 4 Density for γ = 1, κ = 2.5, 10, 250 and Cox process on PVT (grey), PDT (black), PLT
(broken)
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(a) κ = 20
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Fig. 5 Density for γ = 1, κ = 20, 50, 250 and thinned vertices of PVT (grey), PDT (black),
PLT (broken)

above, we distinguish two different cases for H . On the one hand, H is assumed to be

a Cox process on T (1) with linear intensity λℓ and, on the other hand, H is the point

process constructed from the vertices T (0) of T by independent thinning according to

a probability p ∈ (0, 1). Finally, we regard the Voronoi tessellation TH induced by H .

Before we present the numerical results, we first recall that the considered models are

scaling invariant, i.e., for any λℓ, γ > 0 with fixed quotient κ = γ/λℓ we get the same

structure of the model, only on a different scale.

In order to estimate the density fC∗(x) of typical shortest path length we simulated

n = 50000 segment systems within the typical Voronoi cell for different values of κ

and Cox processes as well as p-thinnings of T (0) for PDT, PLT and PVT as road

models. Based on these simulations, we estimated the density f̂C∗(x;n) as explained

in Section 3.2. Some empirical densities which were estimated in this way are displayed

in Figures 4 and 5. One can see that there is a clear difference between the shapes of

the densities for small and large κ as well as for the different models considered in this

paper. The difference between the models seems to decrease with increasing κ, but it

is still noticeable. In [21] it is shown that for Cox processes H the typical shortest path

lengths converges in distribution to ξZ for κ → ∞, where Z ∼ Wei(λπ, 2) and ξ ≥ 1

is some constant depending on the tessellation model, e.g., ξ = 1 for PLT and ξ > 1

for PDT and PVT. So there will always remain some differences between the densities

as κ→ ∞ if H is a Cox process. We expect the same behavior for p-thinnings.
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Fig. 6 EC∗ for Voronoi tessellation TH based on different models of H.

Based on the estimated densities we computed the means and coefficients of vari-

ation (where cv Z = 100 ·
√

VarZ/EZ). In Figure 6(a) the means are displayed for

a Cox process H . First it is interesting that for small values of κ the mean typical

shortest path length EC∗ is the smallest for PVT and the largest for PDT. Then, for

increasing κ, things change and EC∗ is smaller for PLT than for PVT. Finally, for

large κ, EC∗ is the smallest for PLT and the largest for PVT. This is the intuitively

expected behavior since, compared to PDT and PLT, the edges of PVT are shorter

and there are more nodes where the shortest path has to change its direction. For PLT

the direct Euclidean distance is obtained in the limit for κ→ ∞ ([21]), so the shortest

path length has to be the shortest for PLT and PDT is somewhere in the middle.

In Figure 6(b) the means are displayed if H is a thinning of T (0). This time, EC∗

is the smallest for PDT and the largest for PLT if κ is small. For increasing κ things

change again and we have that EC∗ is the smallest for PDT and the largest PVT.

Finally, for κ > 250, EC∗ is the smallest for PLT and the largest for PVT as it is

the case for large κ if H is a Cox process. If we compare the means EC∗ for H being

a Cox process and a thinning, respectively, we see that EC∗ is smaller for thinnings.

This difference is the largest for PDT which can be explained by the fact that in the

average there are 6 segments emanating from each vertex and hence all LLC on these

segments have the optimal Euclidean distance as shortest path length. This difference

is less for PVT and PLT since only 3 and 4 segments are emanating from each vertex,

but it is still observable.

The cv is displayed in Figure 7(a) for a Cox process H on PVT, PDT and PLT,

respectively. One can see that cv C∗ approaches cv Z = 52.27 for large κ for all three

models as expected. On the other hand, the behavior for small κ is quite different for

the three models. Note that C∗ converges to Z for all three models if κ → 0 and λℓ

is fixed, where Z ∼ Exp(2λℓ), see [21]. So cv C∗ should converge to cv Z = 100 for

κ → 0. However, this is only the case for PVT, for the values of κ considered in our

study. The reason might be that the convergence for PDT and PLT is much slower,

e.g., for PLT it is likely that even for small κ a line not containing the origin intersects

the typical serving zone. Then points on this additional intersecting line can have very

long shortest path lengths. With regard to equation (12) we then get heavier tails of

the distribution yielding a higher cv compared to e.g. PVT.
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Fig. 7 cv C∗ for Voronoi tessellation TH and different models of H. The horizontal lines are
at 52.27 = cv Z, where Z ∼ Wei(λπ, 2).
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(c) PLT

Fig. 8 Density for γ = 1, κ = 20 for thinned vertices (black) and Cox process (grey)

For thinnings of T (0) as HLC the cv is shown in Figure 7(b). The behavior is

quite similar as for Cox processes. However, note that the limit for κ → ∞ cannot

be considered here. Compared to the Cox process case, the cv is larger for thinnings

which might be caused by the fact that the densities for thinnings seem to have heavier

tails, see e.g. Figures 8 and 9.

In Figures 8 and 9 the densities are shown for different values of κ and for PDT,

PLT and PVT, where H is a Cox process and a thinning of T (0), respectively. One can

see that there is a large difference between the densities corresponding to Cox processes

and thinnings which is decreasing with increasing κ. However, except for PVT, the

difference is still noticeable even for larger values of κ. This difference is the largest

for PDT, where e.g. at 0 the value of the density for thinnings is twice the value of the

density for Cox processes, see also Lemma 3.

6 Discussion and Outlook

In this paper we introduced an estimator for the density of the typical shortest path

length based on the Monte Carlo simulation of the typical serving zone. This estimator
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Fig. 9 Density for γ = 1, κ = 120 for thinned vertices (black) and Cox process (grey)

generalizes estimators for the mean typical shortest path length introduced in [6]. We

have shown that this estimator possesses good statistical properties. For instance,

we have shown that the maximum difference between the estimated density and the

true density converges to zero almost surely and that we can estimate functionals of

the typical shortest path length unbiasedly. Furthermore, we have shown that our

estimator has lower variance and better convergence rates than kernel estimators.

We then used the estimator to compare the distribution of the typical shortest

path length for different models. In order to estimate the density, we used simulation

algorithms for the typical serving zone of Cox processes introduced in [4,2,19] and

we introduced new simulation algorithms for the typical serving zone and its segment

system if the locations of HLC are modelled by the thinned set of vertices of the

underlying tessellation. We compared the densities, means and coefficients of variation

and demonstrated that there are clear differences between the distribution of typical

shortest path length for the different models considered in the present paper. Thus, we

have shown that our model is flexible and can describe the distribution of connection

distances for various settings.

With the techniques developed in this paper we can obtain empirical densities

for specific models by extensive simulations. However, for practical applications it

is a great advantage to have parametric densities which are directly available in an

analytical form, where the parameters only depend on the scaling factor κ and the

type of the underlying tessellation T . Then, for given road data, an optimal model can

be chosen together with its parameters by the fitting techniques introduced in [5]. Thus,

in [7] we applied the methods developed in this paper in order to construct a whole

library of distributions for PDT, PLT and PVT and a large range of κ. Therefore, for

various values of κ, the density was estimated for PDT, PLT and PVT as road models

and for Cox processes as model for the locations of HLC. Then we shifted the density of

a Weibull distribution to the left and truncated it at 0 such that the resulting function

f fulfills f(0) = 2λℓ because of Lemma 3. This density has two parameters which are

fitted by a weighted least squares method. For real data, the optimal road model was

chosen and the parametric densities corresponding to this model were then compared

to histograms of real connection distances. The comparison revealed a very good fit

of the distributions, although so far only simple tessellations (PVT, PDT, PLT) were

considered. Further details can be found in [7]. Note that in the same way parametric

densities for C∗ can be obtained if the locations of HLC are modelled by p-thinnings

of T (0).
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In our opinion, the above summarized techniques provide an efficient method for the

analysis of telecommunication access networks. In future work, simulation algorithms

for the typical cell together with the typical segment system have to be developed for

more sophisticated tessellation models like iterated tessellations ([12]) based on PDT,

PVT and PLT in order to obtain parametric densities for these models. With these

models we expect to achieve even better fits for distance distributions observed in real

networks than those obtained in [7] with simple tessellations.
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