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Distributional properties of Euclidean distances in
wireless networks involving road systems

Florian Voss1, Catherine Gloaguen2, Frank Fleischer3, Volker Schmidt1

Abstract—Stochastic models for hierarchical telecommunica-
tion networks are considered, which can be applied to the
analysis and planning of large wireless networks. The network
geometry is modelled by random geometric graphs, and the
locations of network nodes by point processes on the edges of
these graphs. In particular, the locations of high-level components
(HLC) are modeled by Cox processes concentrated on the edge
sets of random graphs, where their serving zones are the cells
of Voronoi tessellations induced by these Cox processes. The
locations of low-level components (LLC) are either modeled by
planar Poisson processes or by Cox processes concentrated on the
same edge sets as the HLC. Distributional properties of distances
between the locations of network nodes are closely related with
the interference geometry and, consequently, the performance of
wireless networks.

Representation formulas are derived for the distribution func-
tion and density of the typical Euclidean connection distance
between LLC and HLC. They lead to suitable estimators of
these characteristics, which can be computed by Monte Carlo
simulation of the typical serving zone and the typical segment
system in it, respectively.

Index Terms : POINT PROCESSES, GEOMETRIC MODELING, POIS-
SON PROCESSES, MONTE CARLO METHODS, ESTIMATION, INTER-
FERENCE, MOBILE COMMUNICATION, NETWORKS

I. INTRODUCTION

In recent years, wireless networks have been deployed in or-
der to meet the increasing demand for mobile communications.
Due to the range of frequencies used and to the increasing
number of users, it is necessary to achieve performance and
capacity analysis in order to meet the expectation of customers
regarding the quality of service (QoS). Estimation of QoS
is an important topic for the operator since it reflects the
degree of satisfaction that the customers will find using a
given service. Thus, specific algorithms have been developed
to study how radio resources are shared in the area of an access
point (AP), to understand the impact of contention models,
for example, or to investigate inter-node connections in sensor
networks of mesh WiFi. Such studies are relevant at the scale
of the whole network, where the locations of AP and users
are assumed to be unknown and modelled following general
principles: on regular patterns (grid topology, hexagonal mesh)
or randomly as Poisson processes in the plane (homogeneous
or non-homogeneous following the users density; [1]). For
example, in the development of algorithms in order to derive
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contention models for WiFi ([2]), the bandwidth sharing model
explicitly needs to express the signal-to-interference ratio as
a function of the distance between a user and its AP, both
assumed to be located in the plane. In the particular case of
WiFi networks deployed in dense urban areas, the typical size
of an AP area is in the range of a few hundred meters. Such
an area is typically crossed by few street segments. One can
then wonder if these streets considered as physical supports
for the locations of AP in the performance algorithms could
impact on the results.

A first attempt to include street systems into stochastic
models for telecommunication networks has been reported e.g.
in [3]. Later on, spatial stochastic models for street systems
have been considered mainly for the purpose of fixed access
network analysis, see e.g. [4], [5], [6]. These random street
models depend on a few number of parameters and reproduce
the statistical features of the real streets system: number of
crossings, length of streets segments, number of quarters, total
length of streets measured per unit area. The parameters and
choice of best models are recovered by the fitting procedure
described in [4]. Hierarchical two-levels networks connecting
low-level components (LLC) to their nearest high-level com-
ponent (HLC) with a physical link that follows the shortest
path on the streets, have been developed in this framework
([5]). Since the locations of LLC and HLC as well as the street
systems themselves are all modelled by random processes, it is
possible, using tools from spatial probability theory, to derive
closed analytical formulas for location-dependent quantities.
For example, point-to-point length distributions can be given
by parametric formulas depending on the parameters of the
underlying random street model. We emphasize that this class
of models explicitly takes into account the morphology of real
street systems; it has been proven to be realistic by comparison
of theoretical (parametric) length distributions to connection-
length histograms from real fixed access network data, even
in the simplest setting for street models ([6]).

In the context of wireless networks, direct (Euclidean)
distances between the locations of network nodes are closely
related with the interference geometry and, consequently, the
network performance. In particular, in wireless networks with
two hierarchy levels one is interested in the direct (Euclidean)
distances between the locations of LLC and HLC. Neverthe-
less, we still assume that LLC and/or HLC are located along
street systems, which leads to new classes of non-Poissonian
point processes for node locations in wireless networks, see
Fig. 1. In this way, we are in a position to offer new parametric
formulas for distance distributions that can be used in order
to enhance wireless network planning by explicitly taking into
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Fig. 1. H on PDT (top), PLT (middle), PVT (bottom) with serving zones
(black) and connection distances (dashed) for L Poisson (left) and Cox (right)

account the physical support of network nodes, replacing real
street system by random geometric graphs, in particular by the
edge sets of random tessellations.

In the present paper, we derive representation formulas
for the distribution function and density of typical Euclidean
connection distances between LLC and HLC. They lead to
suitable estimators of these characteristics, which can be
computed by Monte Carlo simulation of the typical serving
zone and the typical segment system in it, respectively. Using
these simulation algorithms, which we recently developed for
the typical cell of several types of random tessellations ([7],
[8]), we show that the distributions of Euclidean inter-node
distances clearly depend on the model type for the underlying
street system, especially for the range of parameters observed
at WiFi scale in dense urban areas. Note that simulation
algorithms for the typical serving zone are of independent
interest for performance analysis of wireless networks, since
these algorithms simultaneously yield a whole configuration
of neighboring HLC locations seen from the typical HLC.

The mathematical proofs of all theorems are summarized in
the Appendix.

II. STOCHASTIC MODELING OF SPATIAL NETWORKS

In this section we describe the kind of telecommunication
networks and the stochastic models, which we consider in
the present paper. Moreover, we briefly explain some neces-
sary mathematical background and notation. Comprehensive
surveys on the usage of stochastic geometry and random
geometric graphs in spatial modeling of telecommunication
networks can be found in [9], [10]. For further details on
marked point processes and random tessellations see e.g. [11],
[12], [13], [14] and the Appendix.

A. Stochastic network models with two hierarchy levels

We consider hierarchical telecommunication networks with
two hierarchy levels, i.e., there are LLC and HLC, the location
of which are represented by points in the Euclidean plane R

2.
With each HLC we associate its Voronoi cell as a serving zone
and link a LLC to the HLC in whose serving zone it is located.
The main goal of our investigation is the analysis of distribu-
tional properties of direct connection distances between LLC
and HLC, i.e. the Euclidean distances between the locations
of LLC and their corresponding HLC. In order to achieve this
goal we consider the so-called typical connection distance. It
can be interpreted as the Euclidean distance between a location
of LLC, which is chosen at random among all locations of
LLC, and its nearest HLC.

We assume that HLC are located on the underlying infras-
tructure of the network, e.g. (inner-city or nationwide) road
systems. In our random setting we describe the road system
as well as the locations of HLC and LLC by models from
stochastic geometry. This reflects the variability of network
components and road systems observed in real networks.
In a first step we represent the road system by a random
geometric graph. We focus on graphs which are given by
the edge set of a random tessellation T = {Ξn}, which is
a decomposition of R

2 into convex and compact polygons
Ξn, called the cells of T . Note that we can identify T with
the random segment system consisting of the segments of the
cell boundaries. In the following we will mainly interpret T
as a random segment system. For the numerical analysis we
consider three cases: T is either a Poisson-Voronoi tessellation
(PVT), Poisson-Delaunay tessellation (PDT), or Poisson-Line
tessellation (PLT), see Fig. 1. The locations of HLC are
modelled by a point process H = {Hn}, i.e., a locally finite
sequence of random points, where we assume that the points
of H are located on the segment system T . In particular, we
assume that H is a Cox point process, whose points are located
on T . Note that H can be constructed in the following way.
For a given realization of T we put linear Poisson processes
with (linear) intensity λ` > 0 on each segment of T , i.e., the
number K of points on a segment of length l is Poi(lλ`)-
distributed and given K = k these k points are independent
and uniformly distributed on the segment. Now suppose that
T is stationary, i.e., its distribution is invariant with respect to
shifts of the origin o, then we can define the intensity of T
as γ = Eν1([0, 1]

2 ∩ T ), the mean total length of segments
per unit area. Then H is stationary as well and its intensity
λ = E#{n : Hn ∈ [0, 1]2} is given by λ = λ`γ.
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The locations of LLC are also modelled by a point process
L = {Ln}, where we distinguish two cases. In the following
we either assume that L is a (planar) Poisson process with
intensity λ′ or a Cox process on T with (linear) intensity λ′

`.
This reflects either situations where all LLC are located along
the infrastructure of the network or LLC are located freely in
the plane. A point Ln is then linked to its nearest point of H ,
i.e., the serving zones are the cells of the Voronoi tessellation
TH = {ΞH,n} with respect to H and a point Ln is linked
to the centre of the Voronoi cell in which it is located. The
Euclidean distance Dn between Ln and its nearest point of H
is associated to Ln as a mark. In this way we can construct
the marked point process LD = {[Ln, Dn]}. Realizations of
these modeling components are displayed in Fig. 1.

B. Typical connection distance and typical serving zone

We are interested in distributional properties of the typical
mark D∗ of LD, which can be seen as the typical connection
distance from LLC to HLC. Mathematically the typical mark
D∗ is defined by the so–called Palm mark distribution of LD.
In the ergodic case, the empirical distribution of the marks
Dn of those points Ln belonging to a sampling window Wm

converges to the distribution of the typical mark D∗ provided
that Wm unboundedly increases in all directions, e.g., let h :
R

+ 7→ R
+ and Wm = [−m,m]2, then

Eh(D∗) = lim
m→∞

1

#{n : Ln ∈Wm}
∑

Ln∈Wm

h(Dn) . (II.1)

Thus, the random variable D∗ can be interpreted as the Eu-
clidean distance between a location of LLC, which is chosen
at random among all points of L, and its nearest HLC, i.e., it
contains information about spatial averages of the connection
distances. Furthermore, D∗ can be interpreted as the distance
from the origin o to the nearest point of H under the condition
that there is a point of L located at o.

Recall that TH denotes the Voronoi tessellation induced by
the Cox process H concentrated on T . We use the notation Ξ∗

H

for the typical serving zone of TH . Formally, the distribution
of Ξ∗

H can be defined as a Palm mark distribution, where
we again have two possible interpretations. On the one hand,
the distribution of the typical cell Ξ∗

H can be seen as the
empirical distribution of all cells in a sequence of unboundedly
increasing sampling windows, see also equation (II.1), or as
the Voronoi cell of TH at o given that o is a point of H .
Moreover, we use the notation S∗

H for the segment system of
T within the typical cell Ξ∗

H . Then o ∈ S∗
H with probability 1.

III. DISTRIBUTION OF D∗ AND ITS STATISTICAL

ESTIMATION

We now derive representation formulas for the distribution
function and the probability density of the typical connection
distance D∗ which lead to suitable estimators of these char-
acteristics.

A. Representation by the typical serving zone

Using Neveu’s exchange formula (see Lemma A.1) we
can express the distribution function of D∗ in terms of (i)
the typical cell Ξ∗

H of TH and (ii) the segment system S∗
H

within Ξ∗
H , respectively. This representation does not depend

on points of L anymore.
Theorem 3.1: If L is a Poisson process, which is indepen-

dent of H , then the distribution function FD∗ : [0,∞) → [0, 1]
of D∗ is given by

FD∗(x) = λ` γ E ν2(Ξ
∗
H ∩B(o, x)) , x ≥ 0 , (III.2)

where ν2(Ξ∗
H ∩ B(o, x)) denotes the area of Ξ∗

H intersected
with the ball B(o, x) ⊂ R

2 centered at o with radius x. If L
and H are both Cox processes on T which are conditionally
independent given T , then the distribution function of D∗ is
given by

FD∗(x) = λ` E ν1(S
∗
H ∩B(o, x)) , x ≥ 0 . (III.3)

Similar representation formulas can be derived for the proba-
bility density of D∗.

Theorem 3.2: If L is a Poisson process, which is indepen-
dent of H , then the probability density fD∗ : [0,∞) → [0,∞)
of D∗ is given by

fD∗(x) = λ` γ E ν1(Ξ
∗
H ∩ C(o, x)) , x ≥ 0 , (III.4)

where ν1(Ξ∗
H ∩C(o, x)) denotes the curve length of the circle

C(o, x) centred at o with radius x inside Ξ∗
H . If L and H are

both Cox processs on T which are conditionally independent
given T , then the probability density of D∗ is given by

fD∗(x) = λ` E

(∑N∗

x

i=1

1

sinα∗
i

)
, x ≥ 0 , (III.5)

where N∗
x = |S∗

H∩C(o, x)| is the number of intersection points
of the segment system S∗

H with C(o, x) and α∗
1, . . . , α

∗
N∗

x
are

the angles at the corresponding intersection points between
their tangents to C(o, x) and the intersecting segments.
In the special case that the underlying tessellation T is a
PLT, analytical formulas can be derived for the distribution
functions FD∗ considered in (III.2) and (III.3), respectively.

Theorem 3.3: Let T be a PLT. Then, for x > 0, the
distribution function considered in (III.2) is given by

FD∗(x) = 1−exp
(
−λ` γ x2

∫ 2

0

e−λ` xs
√

4 − s2 ds
)
, (III.6)

and the distribution function considered in (III.3) is given by

FD∗(x) = 1−e−2λ` x exp
(
−λ` γ x2

∫ 2

0

e−λ` xs
√

4 − s2 ds
)
.

(III.7)
Note that analytical formulas can also be derived for the
probability densities of D∗ if T is a PLT, by computing
the derivatives of the functions given in (III.6) and (III.7),
respectively. However, if the random tessellation T is different
from a PLT, then analytical solutions seem to be impossible.

The results of this section can be extended in different
ways. For n ≥ 1, suppose that Ξ∗

H denotes the n-th nearest-
neighbor Voronoi cell ([12]). Then, for example, FD∗ given
in (III.2) and (III.3) is the distribution function of the typical
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distance from a point of L to its n-th nearest neighbor of H .
Furthermore, if L is a Cox process, it is worth mentioning that
FD∗ coincides with the distribution function of the typical n-
th nearest-neighbor distance between points of H . Node that
also these distributions have applications e.g. in interference
analysis of wireless networks ([15]).

Finally, we remark that the distribution of D∗ does not
depend on the specific choice of the point process L provided
that H is not a Cox process, but a (planar) Poisson process
which is independent of L. Then, D∗ has the same distribution
as the distance from o to the closest point of H , which is
Weibull distributed with parameters λπ and 2, see e.g. [15],
[16].

B. Estimators for distribution function and density

The representation formulas (III.2) – (III.4) easily lead to
suitable estimators for the distribution function and probability
density of D∗, which can be computed by Monte-Carlo
simulation of Ξ∗

H and S∗
H . Note that we do not have to

simulate L. Let Ξ∗
H,1, . . . ,Ξ

∗
H,n and S∗

H,1, . . . , S
∗
H,n be n

independent copies of Ξ∗
H and S∗

H , respectively. If L is a
Poisson process, then we can define estimators F̂D∗(x;n) and
f̂D∗(x;n) for the distribution function FD∗(x) and the density
fD∗(x), respectively, by

F̂D∗(x;n) =
λ` γ

n

∑n

i=1
ν2(Ξ

∗
H,i ∩B(o, x)) (III.8)

and

f̂D∗(x;n) =
λ` γ

n

∑n

i=1
ν1(Ξ

∗
H,i ∩ C(o, x)) . (III.9)

If L is a Cox process, then an estimator F̂D∗(x;n) for the
distribution function FD∗(x) is given by

F̂D∗(x;n) =
λ`
n

∑n

i=1
ν1(S

∗
H,i ∩B(o, x)) . (III.10)

It is clear that the estimators in (III.8) – (III.10) are unbiased
and strongly consistent for fixed x ≥ 0. However, if L is a
Cox process, it is not recommended to use formula (III.5) in
order to obtain an analogous estimator f̂D∗(x;n) for fD∗(x)
by omitting the expectation in (III.5). Computer experiments
showed that this leads to numerical instabilities. In the latter
case, it seems to be better first to compute the estimated
distribution function F̂D∗(x;n) by formula (III.10) and then to
consider a histogram obtained from this estimated distribution
function as an estimator f̂D∗(x;n) for the density fD∗(x).
Note that the estimators introduced in this section have many
advantages in comparison to estimators based on simulations
of the whole model in a large sampling window, which are
computationally more intensive and only approximate the
distribution of D∗. Moreover, they demand to simulate also
L and thus lead to a larger variability. Furthermore, it is easy
to see that even functionals of D∗, like moments of any order,
can be estimated unbiasedly using our estimators for FD∗ and
fD∗ given in (III.8) – (III.10).

IV. SIMULATION ALGORITHMS FOR Ξ∗
H AND S∗

H

In Section III-B we introduced estimators for the distribu-
tion function and density of D∗ which are based on Monte-
Carlo simulation of Ξ∗

H and S∗
H . Thus, we first recall two

simulation algorithms for Ξ∗
H and S∗

H if T is a PLT or
PVT. They have been introduced in [7] and [8], respectively.
Furthermore, we propose a new algorithm for the simulation of
Ξ∗
H and S∗

H if T is a PDT. Such simulation algorithms are of
independent interest, since they yield a whole configuration of
neighboring HLC locations seen from the typical HLC, which
is useful for performance analysis of wireless networks.

A. Cox processes on PLT and PVT

In [7] a simulation algorithm has been introduced for the
typical cell Ξ∗

H if T is a PLT, which is based on Slivnyak’s
theorem for stationary Poisson processes. In this case, the
typical segment system S∗

H is directly obtained from the edge
set T of the underlying PLT, adding a suitably chosen line
through the origin and intersecting with Ξ∗

H .
Furthermore, in [8] direct and indirect simulation algorithms

are proposed for the typical cell Ξ∗
H if T is a PVT. The idea

of the indirect algorithm is to simulate cells from which the
distribution of Ξ∗

H can be obtained by a subsequent weighting.
Then, the typical segment system S∗

H can be simulated using
a representation formula which is similar to formula (IV.2).

B. Representation formulas for functionals of Ξ∗
H and S∗

H

The idea of the indirect simulation algorithm for the typical
cell, which has been mentioned in Section IV-A, can be used
to simulate the typical cell for Cox processes concentrated
on any stationary random tessellation T provided that T
can be simulated starting from its typical cell. We show in
Section IV-C how a similar idea can be applied in order to
get an algorithm for the simulation of random cells from
which distributional properties of the typical cell Ξ∗

H , together
with its typical segment system S∗

H , can be obtained by
a subsequent weighting. In particular, the following general
representation formulas are useful.

Let T be an arbitrary stationary tessellation. Then, by T ∗

we denote the Palm version of T with respect to its vertices,
i.e., we can assume that T ∗ is distributed according to the
conditional distribution of T given that there is a vertex at o.
Furthermore, let E∗ denote the union of segments of T ∗

emanating from the origin and let P denote the family of
all convex and compact polygons in R

2.
Theorem 4.1: Let h : P → [0,∞) be a translation-invariant

functional. Then,

Eh(Ξ∗
H) = E

(
ν1(E

∗)h(Ξ(Z))
) /

E ν1(E
∗) , (IV.1)

where Ξ(Z) denotes the Voronoi cell with respect to a Cox
process H̃ on T ∗ with linear intensity λ`, around an additional
point Z. This point Z is conditionally uniformly distributed
onE∗ and conditionally independent of H̃ given T ∗.
Note that a formula similar to (IV.1) is true for the typical
segment system S∗

H . Let L denote the family of all locally
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Fig. 2. Histograms for area (top) and perimeter (bottom) of the typical cell

finite segment systems containing the origin. Then, for each
translation-invariant functional h : L → [0,∞), we have

Eh(S∗
H) = E

(
ν1(E

∗)h(Ξ(Z) ∩ T ∗)
)/

E ν1(E
∗) . (IV.2)

C. A new algorithm for Cox processes on PDT

The formulas (IV.1) and (IV.2) can be easily applied if T is
a PDT. Then, the point process {Xn} of vertices is Poisson
and, using Slivnyak’s theorem, the Palm version of {Xn} is
obtained just by adding a point at the origin. Thus, (IV.1)
and (IV.2) lead to the following simulation algorithm for the
typical cell Ξ∗

H and the typical segment system S∗
H .

1) Simulate a planar Poisson process X = {Xn} radially
with intensity µ, add the origin o to X , which gives
X∗ = X ∪ {o}.

2) Construct the union set E∗ of edges emanating from o
of the Delaunay tessellation T ∗ of X∗.

3) Place n points H̃1, . . . , H̃n on E∗, which are condition-
ally independent and uniformly distributed on E∗, given
N = n, where N ∼ Poi(λ`ν1(E∗)).

4) Place an additional point Z on E∗, which is independent
of H̃1, . . . , H̃n and uniformly distributed on E∗.

5) Construct further edges of T ∗ and place points H̃i of H̃
on these edges according to linear Poisson processes.

6) Construct the Voronoi cell Ξ(Z) and scale h(Ξ(Z)) by
ν1(E

∗)3π
√
µ/64.

Note that the weighting factor appears due to the fact that
Eν1(E

∗) = 64/(3π
√
µ). For further details we refer to [8],

where a similar indirect algorithm for the typical cell is given
if T is a PVT. If we are interested in distributional properties
of S∗

H , then we construct the intersection Ξ(Z) ∩ T ∗ and use
the same weighting factor ν1(E

∗)3π
√
µ/64.

V. NUMERICAL RESULTS

In this section, the underlying tessellation T is assumed to
be a PDT, PLT and PVT, respectively.

A. Scaling factor κ and Poisson approximation for κ→ ∞
Recall that the Voronoi tessellation TH is fully characterized

by two parameters: λ` and γ. Moreover, a scaling invariance
can be observed which means that structural properties of
TH do not change if the x–axis and the y–axis are scaled
in the same way. This implies that with respect to numerical
computations it is sufficient to regard only a single parameter
κ = γ/λ` instead of the originally two-dimensional parameter
(λ`, γ), where the scaling factor κ is the mean edge length γ
of T per unit area divided by the mean number of points λ`
of H per unit length of T . If the x–axis and the y–axis are
scaled in the same way, then κ remains constant and the same
random structure is obtained, but on different scales. Using this
invariance property, it suffices to do numerical computations
for each κ only for one parameter pair (λ`, γ). For all other
parameter pairs with the same scaling factor κ these numerical
results can then be used to calculate, e.g., estimated mean
values of various characteristics by appropriate scaling ([7],
[8]).

Furthermore, using tools from the general theory of weak
convergence of probability measures ([11], [17]), it can be
shown that the Cox process H weakly converges to a sta-
tionary Poisson process with intensity λ if κ → ∞, where
γ → ∞ and λ` → 0 such that λ`γ → λ. This is in
accordance with the fact that for large κ and small λ` we
only get a few points of H per edge of the tessellation T
yielding a limit point process without interaction between the
points. This implies that the typical connection distance D∗

as well as further model characteristics like the number of
vertices and the perimeter of the typical serving zone Ξ∗

H

converge in distribution to the corresponding characteristics
in the Poisson case. Note that this is of practical interest
for the numerical results regarding the Cox process H and
the Voronoi tessellation TH , because we can compare them
with corresponding results obtained from analytical formulas
known for the Poisson case.

B. Distributional properties of the typical cell

For different values of κ we simulated the typical Voronoi
cell Ξ∗

H if H is a Cox process on T being a PDT, PLT and
PVT, respectively, and we estimated the probability densities
of such characteristics like the area and perimeter of Ξ∗

H . In [8]
some of these characteristics were already investigated for Cox
processes on PLT and PVT, respectively, and for the typical
cell of PVT. However, in the present paper, we show more
comprehensive results including the case of Cox processes on
PDT and we discuss the quality of Poisson approximations for
these models as κ becomes large.

Histograms for the area and perimeter of Ξ∗
H , which are

based on 1 000 000 simulated cells, are displayed in Fig. 2
for two different values of κ. It can be seen that the estimated
probability density of both the area and perimeter of the typical
cell of a Cox process on PVT converges very fast to the
corresponding density for PVT. One can hardly distinguish
between the histograms of Cox processes on PVT and PVT
for κ = 50. The rate of convergence for Cox processes on PDT
and PLT is not that fast, since for both models there is still
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Fig. 3. Density of D
∗ if L is a Poisson process (top) or Cox process (bottom)

a larger difference also for κ = 50, although this difference
is less for PDT. This is the behavior one would expect, since
the edges of PVT are shorter and more evenly spread in the
plane compared to the edges of PDT. Furthermore, the most
irregular cells with the longest edges among the three basic
models are observed for PLT. So, from this point of view, one
expects that the dependencies between the points of H are
decreasing faster if T is a PVT rather than for PDT and PLT.
This means that the convergence to the PVT is faster for Cox
processes on PVT than for PDT which is faster than for PLT.

C. Probability density of D∗

In addition to the scenarios discussed in Section V-B we
simulated the typical Voronoi cell Ξ∗

H together with the typical
segment system S∗

H for Cox processes on T being a PDT and
PVT and for different values of κ, where we put γ = 1.
From these simulated data we then estimated the density
of D∗ for L being a Cox process and a Poisson process,
respectively, using the estimators introduced in Section III-B.
Furthermore, for Cox processes on PLT, the density of D∗ has
been determined by means of (III.6) and (III.7), respectively.
The results are displayed in Fig. 3. On the one hand, if L is
a Poisson process and T is a PVT, the histogram of D∗ can
hardly be distinguished from that of a Wei(λπ, 2)-distribution,
even for small values of κ, where the Weibull distribution
corresponds to the case that H is a planar Poisson process,
see also Section III-A.

If T is a PDT and, especially, if T is a PLT this is not the
case. On the other hand, if L is a Cox process, the distribution
of D∗ considerably differs from the Wei(λπ, 2)-distribution,
also in the case that T is a PVT. Then, even for large values of
κ, a clear difference between the Weibull distribution and the
distribution of D∗ can be observed. This discrepancy might
be caused by the fact that for a Poisson process L the typical
connection distance D∗ only depends on the shape of the
typical cell Ξ∗

H , whereas for a Cox process L it additionally

depends on the structure of the typical segment system S∗
H

within Ξ∗
H .

VI. CONCLUSIONS AND PERSPECTIVES

We derived estimators for probability densities of inter-
node distances in wireless networks that can be used in order
to enhance analysis and planning of wireless networks by
explicitly taking into account the physical support of network
nodes, replacing real street systems by random geometric
graphs. In particular, we showed how the density of the
typical connection distance can be efficiently estimated, based
on simulations of the typical cell and its typical segment
system. This density has been estimated for several models
of the underlying street system. It turned out that at the WiFi
scale (κ ≈ 10, see Fig. 3, bottom left) the density of the
typical connection distance clearly depends on the specific
choice of the street model and significantly differs from the
corresponding density for the case, where the locations of
network nodes are assumed to form a (planar) Poisson process.

We introduced a new simulation algorithm for the typical
Voronoi cell of Cox processes on PDT. Such simulation
algorithms are of independent interest. One reason for this
is the necessity to simulate neighboring nodes that shape the
typical cell. Thus, we can also recover the joint distance
distribution between the center of the typical cell and its
first, second, . . . closest nodes. This provides an additional
approach to performance analysis of meshed WiFi, e.g. in
order to investigate if, at constant QoS, it is better to locate
nodes on regular patterns (grid topology, hexagonal mesh),
or randomly as Poisson processes in the plane, or as Cox
processes involving street systems.

Note that the distance densities computed in this paper can
be approximated by parametric densities depending on the type
of the underlying street model and its parameters, exploiting
similar fitting techniques as successfully used in [6] for fixed
access networks. We emphasize that even for the simple street
models considered in the present paper, the empirical distance
densities, which have been computed in [6] from real network
data, could be approximated very well by parametric densities.
We expect even better results using more sophisticated street
models like iterated tessellations ([18]), which is a subject of
ongoing research.

We also remark that the method developed in the present
paper can be adapted to stochastic models of nationwide
telecommunication networks provided that the typical serving
zone can be simulated. Possible models for such scenarios
include, for example, modulated Poisson-Voronoi tessellations
([19], [20], [21]).
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APPENDIX

A. Marked point processes and Neveu’s exchange formula

A marked point process X = {[Xn,Mn]} with some
(Polish) mark space (M,B(M)) can be regarded as a ran-
dom element of the measurable space (NM,NM), where NM

denotes the family of all sequences {(xn,mn)} ⊂ R
2 × M

such that {xn} ⊂ R
2 is locally finite, {mn} ⊂ M, and NM

denotes the usual σ-Algebra defined on NM. We say that
X is stationary if X has the same distribution as txX =
{[Xn − x,M, n]} for all x ∈ R

2. Then the intensity of X is
given by λ=E#{Xn∈ [0, 1]2}. In the following proofs we fre-
quently utilize Neveu’s exchange formula ([22]) for two jointly
stationary marked point processes X(1) = {[X(1)

n ,M
(1)
n ]}

and X(2) = {[X(2)
n ,M

(2)
n ]} with marks in M1 and M2,

respectively. Define Y = (X(1), X(2)), NM1,M2
= NM1

×NM2

and let λ(1) and λ(2) denote the intensities of X(1) and X(2),
respectively. Then the Palm distributions P

(i)
Y , i = 1, 2 on

NM1
⊗ NM2

⊗ B(Mi) with respect to the i-th component of
Y are defined by

P
(i)
Y (A×G) =

E#{n : X
(i)
n ∈ [0, 1)2,M

(i)
n ∈ G, t

X
(i)
n
Y ∈ A}

λ(i)

for any A ∈ NM1
⊗ NM2

and G ∈ B(Mi). Here txY =
(txX

(1), txX
(2)) is obtained if we shift X(1) and X(2) si-

multaneously. Note that for any A ∈ NMi
, G ∈ B(Mi)

we get that P
(1)
Y (A × NM2

× G) = P
∗

X(1)(A × G) and

P
(2)
Y (NM1

× A × G) = P
∗

X(2)(A × G), where P
∗

X(1) and
P
∗

X(2) is the ordinary Palm distribution of the marked point
process X(1) and X(2), respectively. Using the notation ψ =
(ψ(1), ψ(2)) for the elements of NM1,M2

, Neveu’s exchange
formula takes the following form, see e.g. [18].

Lemma A.1: For f : R
2 × M1 × M2 ×NM1,M2

→ [0,∞),
it holds that

λ(1)

∫ ∑

(x,m2)∈ψ(2)

f(x,m1,m2, txψ) P
(1)
Y (d(ψ,m1))

= λ(2)

∫ ∑

(x,m1)∈ψ(1)

f(−x,m1,m2, ψ) P
(2)
Y (d(ψ,m2)) .

B. Proof of Theorem 3.1

We apply Lemma A.1 to (TH , LD) in order to prove
Theorem 3.1. Note that TH = {[Hn,Ξ

o
H,n]} can be regarded

as a marked point process, where Hn is marked with its shifted
Voronoi cell ΞoH,n = ΞH,n −Hn. Put M1 = P , M2 = [0,∞)
and, for some measurable h : [0,∞) → [0,∞), consider the
function f : R

2 × P × [0,∞) × NP,[0,∞) → [0,∞) given
by f(x, ξ,m, ψ) = h(m) if o ∈ ξ + x, and f(x, ξ,m, ψ) = 0
otherwise. Then, applying Lemma A.1, we get that Eh(D∗) =
λ`γ(λ

′)−1
E

(
E

(∑
Ln∈Ξ∗

H
h(Dn) | Ξ∗

H

))
, where λ′ denotes

the intensity of L. If L is a Poisson process, we have

E

( ∑

Ln∈Ξ∗

H

h(Dn) |Ξ∗
H

)
=

∞∑

k=1

λk

eλk!

k∑

i=1

∫

Ξ∗

H

. . .

∫

Ξ∗

H

h(|ui|)
du1. . .duk
ν2(Ξ∗

H)k

= λ′
∫

Ξ∗

H

h(|u|)ν2(du) ,

where λ = λ′ν2(Ξ
∗
H). On the other hand, if L is a Cox process

on T , we have λ′ = λ′`γ and similar as above we get

E

( ∑

Ln∈Ξ∗

h(Dn) | Ξ∗
H

)
= λ′`

∫

S∗

H

h(|u|)ν1(du) ,

see also [21], [5]. Thus, choosing h(m) = 1I[0,x](m), the proof
is completed.
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C. Proof of Theorem 3.2

If L is a Poisson process, we can use the polar decomposi-
tion of the Lebesgue measure ν2 to get from (III.2) that

FD∗(x) = λ`γ E

∫ ∞

0

∫ 2π

0

y1IΞ∗

H
∩B(o,x)(y, φ) dφ dy

= λ`γ

∫ x

0

Eν1(Ξ
∗
H ∩ C(o, y)) dy ,

where z = (y, φ) is the representation of z ∈ R
2 in polar

coordinates. If L is a Cox process, we can use the fact
that ν1(S∗

H ∩ B(o, x)) =
∫ x
0

∑N∗

y

i=1 sin−1 α∗
i dy, where this

decomposition of the Hausdorff measure ν1 can be derived
using Theorem 2.1 of [23]. Then, in the same way as above,
we get that FD∗(x) = λ`

∫ x
0

E
(∑N∗

y

i=1 sin−1 α∗
i

)
dy, which

proves Theorem 3.2.

D. Proof of Theorem 3.3

Let H be a Cox process concentrated on the PLT T and L
a Poisson process which is independent of H . Then, using the
Independence of L and H , we get that for each x ≥ 0 that
FD∗(x) = 1 − P(#{Hn ∈ B(o, x)} = 0) and

P(#{Hn∈B(o, x)}= 0) = E exp(−λ`ν1(B(o, x) ∩ T ))

= E exp
(
−λ`xν1(B(o, 1) ∩ 1

x
T

))
.

The latter expectation can be determined in the following way.
Let M denote the random number of lines of T which intersect
B(o, x). Then M has a Poisson distribution with parameter
2γx and, given M = k, these k lines are independent and
isotropic uniform random (IUR) lines ([24]). Thus for P(M =
k) := pk we get

E exp
(
−λ`xν1(B(o, 1)∩ 1

x
T )

)

=
∑∞

k=0
pk E

(
exp

(
−λ`xν1(B(o, 1) ∩ 1

x
T )

)
| M = k

)

= exp(−2γx)
∑∞

k=0

(2γxE exp(−λ`xI))k
k!

= exp
(
−2γx

(
1 − E exp(−λ`xI)

))
,

where I is the intersection length of an IUR line hit-
ting B(o, 1). The distribution function of I can be cal-
culated as FI(s) = 1 −

√
1 − s2/4 for s ∈ [0, 2].

By partial integration we get that E exp(−λ`xI) = 1 −
(λ`/2)x

∫ 2

0
e−λ`xs

√
4 − s2 ds, which proves (III.6). If L is a

Cox process, then we can do basically the same calculations.
But, due to Slivnyak’s theorem, we then have one additional
line through the origin with probability 1 which yields the
additional factor exp(−2λ`x) in (III.7).

E. Proof of Theorem 4.1

We regard the random element Y = (TH , T ) of NP,L, i.e.,
we regard TH as H marked with the centered Voronoi cells and
T as its vertices marked with the centered segments emanating
from them. Let f : R

2 × P × L × NP,L → [0,∞) be given

by f(x, ξ, ζ, ψ) = h(ξ) if o ∈ ζ + x, and f(x, ξ, ζ, ψ) = 0
otherwise. Then we get

Eh(Ξ∗
H) =

1

2

∫ ∑

(x,ζ)∈ψ(2)

f(x, ξ, ζ, txψ) P
(1)
Y (d(ψ, ξ)) .

Now we can use again Lemma A.1 and the same arguments
as in the proof of Theorem 3.5 in [8] in order to get that
Eh(Ξ∗

H) = (λ`µ/(2λ)) E
(
ν1(E

∗)
(
h(Ξ(Z))

)
, where µ is the

intensity of the point process of vertices of T . Furthermore,
λ = λ`Eν1(T ∩ [0, 1]2), Eν1(E

∗) = (2/µ)Eν1(T ∩ [0, 1]2).
This completes the proof.


