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SUMMARY

First moment formulae for the intersection between a fixed geometric object and one
moving according to the kinematic density constitute the basis of stereology and they
are essentially well known. The corresponding second moment formulae are less known,
however; some of them are scattered in the literature, and their proofs are often absent.
Such formulae may be useful to compute exact variances when the objects involved
have a known geometric shape on the one hand, and to obtain practical predictors of the
estimation variance on the other. The purpose of this paper is to present a partly new,
coherent set of second moment formulae for a fixed compact set intersected by mobile
flats, bounded probes, or test systems endowed with the corresponding invariant measures,
or by a stationary manifold process. We thereby contribute to a better understanding of
the so called variance 'paradoxes’, arising when a probe performs better than a higher
dimensional one. For completeness we include the necessary tools in two appendixes.

Keywords Flat, geometric covariogram, integral geometry, invariant density, Jensen-
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1. INTRODUCTION

Geometrical parameters such as volume, surface area, length, number of components,
etc., of a physical structure are of interest in many disciplines. Such properties can in
principle be estimated by intersecting the structure with a geometric probe which typically
consists of test points, lines, planes, or slabs. If the structure is fixed and bounded, then
the probe has to be endowed with a proper mechanism of randomness (Miles & Davy,
1976; Davy & Miles, 1977), whereas, if the structure can be regarded as a realization
of a random set (Stoyaat al., 1995), then the control of the probe may not have to
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be that strict. The former design is termed ’'design based’, the latter ‘'model based’;

the theory and methodology of such designs constitute the object of stereology (Weibel,
1979; Baddeley & Jensen, 2004; Howard & Reed, 2005).

The first order properties of the relevant intersection measures are relatively straight-
forward, and they constitute the well known ’fundamental equations of stereology’
(Miles, 1972; Cruz—Orive, 2002, 2003). Such equations are identities relating the
target parameters of the structure with the mathematical expectation of the corresponding
intersection measures, whereby the estimation of the parameters becomes a relatively
simple matter. The second order properties of the intersection measures, however, are

in general nontrivial and therefore less known: this paper is devoted to the study of
such properties.

Second order properties of random intersection measures may be used, for instance:

(). To obtain suitable variance models which allow the estimation of the variance of a
stereological estimator from a sample of data. Here we obtain second order results as
prerequisites to obtain further variance predictors for systematic sampling. So far the
best known cases refer to systematic sampling with test points and segments on the
real axis (Gual Arnau & Cruz-Orive, 1998; Cruz-Orive, 2006). Much further work
iIs needed for sampling on higher dimensions with systematic probes (Cruz-Orive,
1989; Kieu & Mora, 2006; Gual-Arnau & Cruz-Orive, 2006, and references therein).

(ii). To assist machine vision, automatic object detection, etc., in problems like: which
are the mean and the second moment of the area of the intersection between a square
and a hitting disk moving uniformly at random? Or, more generally, how to compute
the first two moments of the random measure of the intersection between a nonvoid
compact set and a regular grid of test points, curves, or windows?

(ii). To explain the so called 'variance paradoxes’ of stereology, one of which states
that point probes such as the four corners of a square may be more precise than
the square itself to estimate an area (Jensen & Gundersen, 1982; Baddeley & Cruz-
Orive, 1995; Voss, 2005). In the model based case, counting the lines hitting
a convex window is more precise than measuring the corresponding intersection
length to estimate the mean length per unit area of completely random straight lines

on the plane, namely of 'Poisson lines’, (Ohser, 1990; Baddeley & Cruz-Orive,
1995; Schladitz, 1996, 1999, 2000; Voss, 2005).

Our first purpose is to present a coherent and relatively comprehensive set of second
moment formulae of the type mentioned in (ii) above. Our design based results (Sections
2—4) concern a compact set of dimensionn R", hit by a geometric probe, or by a
regular lattice of probes (called a test system) of dimengicea 0,1, ..., n, such that
the relative position and orientation of object and probe are 'random’ in a well defined
sense. The basic concepts and tools, and the well known first order properties, are given
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in Appendix A. The best known second order formulae correspond to independent probes
for ¢ = 0,1,n, and they are scattered in the literature (e.g. Matérn, 1960, 1989; Enns
& Ehlers, 1978; Kellerer, 1986). For the model based case we consider second moment
results involving Poisson probes of dimensign= 0,1, ...,n, bounded or unbounded,
intersecting a bounded set of dimensiorin R”, (Section 7). Here the more familiar
results concern also the cases= 0,1, n, (Ripley, 1981; Kellerer, 1986, Stoyaet al.,

1998; Diggle, 2003). The necessary prerequisites are given in Appendix B.

Our second purpose is to deepen in the understanding of the 'variance paradoxes’
mentioned in (iii) above, extending and simplifying the known results and presenting
new insights and examples; we do this in Sections 5, 6 and 8 using the results obtained
in the earlier sections.

To facilitate reading a list of notation is supplied in Appendix D.

2. INDEPENDENT ¢—FLAT PROBES HITTING A
COMPACT SET OF DIMENSION n IN R"

Consider a compact séf C R" with dim(Y’) = n hit by an IUR ¢—flat L,(z, ),
g =1,2,....,n — 1, namely ag—flat endowed with the probability element given by
Eq. (A.6). Then the mean intersection contents is given by Eqg. (A.9). The latter
expression alone is not suitable to estimate the conigiis) directly because it contains
the mean total projectiok;v,_,(Y;), which is generally unknown; as we shall see, this
difficulty disappears with the use of test systems (Section 4). Conditioning on the hitting
event 7’ is assumed throughout.

2.1 Second moment formulae for the intersection between a
g—flat and a compact set of dimensiom in R"

Proposition 2.1 If a g—flat L,(z,t) is FUR hitting the set” with a probability element
given by Eq. (A.7), then,

E(v2(Y N Ly(2,1))|t) = ky (z)v,(dx), t € Gun_y, (2.1)

Al
yn_Q(}/;,) L,(0.t)

where ky (z) is the geometric covariogram of, see Eq. (A.33).

Proof. Throughout we use the technique of expressziﬁg) as the product of two
integrals over indicator functions, and then applying Fubini’'s theorem. We obtain,

v (VY E(Z(Y 0 Ly(2,0))]1)

= / vA(Y N Ly(2,))vn—g(d2)
Lo—q(0,t)

—[ v [ w@u@n) [ hmnd).
L, _4(0.t) Ly(z,t) Ly(zt)

(2.2)



For each poiny € L,(z,t) there is a unique point € L,(0,¢) such thatr = y + z, see
Fig. 1. Further, the Lebesgue measupecan be decomposed into the productpfon
L,(0,t) timeswy,_, on L,,_,(0,t). Therefore,

VoY) E(v3(Y N Ly(2,1))|t)

/ vy (d2) / 1y () v,(dy) / Iy (y + ) v, (d7)
L, _4(0,t) Ly(z.t) L,(0,t)

/ vy (%) / Iy () Ly (y + ) v (dy)
L,(0.t)

/ ky (x) v (dz).
Ly(0,t)

(2.3)

Figure 1 Construction used in the Lebesgue measure decomposition introduced in Subsection 2.1.

Corollary 2.1. If the g—flat is IUR hitting Y with a probability element given by
Eq. (A.6), then,

1 o]
;) / @by ky (r) dr, (2.4)
t 0

[Etyn—q

Ev2(Y N Ly(2, ) =

where ky (r) is the isotropic covariogram of, see Eq. (A.36).

Proof. Take expectations on both sides of Eq. (2.1) with respect to the probability
element given by Eq. (A.8), and recall the definition (A.36). We obtain,

Eevn—q(Y)EVZ(Y N Ly(2,t)) = /O P(dt) / o ky (z) v, (dz)

- / by (l2]) vy(d).
Lq(0,0)

(2.5)



We may parametrize the pointby the spherical polar coordinatés, «), whereby
v,(dz) = " dudr, r € (0,00), u € ST, (2.6)

and therefore,

[EtVn—q(Y;') [Eyj(Y NL,(z1t)) = / du/ ’I"q_lky(T) dr
o " (2.7)

= Oq_1/ 4 ky () dr.
0

2.2 Example: convex set hit by a IUR straight line in R?.

Consider a nonvoid convex sgtC R? hit by an IUR straight line; (2, ¢) in the same
plane. Applying in turn Corollary 2.1 and Cauchy’s projection formula (Eq. (A.11)), we
obtain,

1 oo
IEV%(Y N Ll(Z,t)) = W/O 2]{3}(7') dr
t

27 >
= V1(3Y)A ky (r)dr. (2.8)

The preceding integral is finite because the Beis bounded.

Disk hit by a IUR straight line in R?. Suppose thal” is a disk of diameter! in the
plane. Substituting Eq. (A.37) into the right hand side of Eq. (2.8) we get,

d
EV2(Y N Li(z, 1)) = % / bigion (r, d) drr = %dQ. (2.9)
0

Square hit by a IUR straight line in R?. LetY represent a square of side lengtin
the plane. Substituting Eqg. (A.38) into the right hand side of Eq. (2.8) we get,

/ ksq,l(ry 3) dr + / ksq’Q(T, S) dT:|

S LJo s

EVA(Y 1 Ln(z,1)) = [

= (log (1 + \/5) + (1 — \/5) /3)s”. (2.10)

Remark 2.1. From Eq. (2.4) it is easy to show that, in general,

Ev;(Y N Ly(z,t)) = (shape constapt (scale factoy”. (2.11)



3. INDEPENDENT BOUNDED ¢—PROBES HITTING
A COMPACT SET OF DIMENSION n IN R"

Consider a compact sét C R" with dim(Y) = n hit by a bounded IUR;—probe
T., with dim(7y0) = ¢q, ¢ = 0,1, ..., n, namely ag—probe endowed with the probability
element given by Eq. (A.18). Then the mean intersection contents is given by Eq. (A.21),
and analogous remarks apply to those made in Section 2 regarding the direct applicability
of the latter expression, because Eg. (A.21) depends on the mean Minkowski addition
Ew,. (Y & T(),t). Next we study the second moment measures.

3.1 Second moment formulae for the intersection between a bounded
probe of dimensiong and a compact set of dimensiom in R"

Proposition 3.1. If a boundedy—probeT’.; is FUR hitting the set” with the uniform
probability element given by Eq. (A.19), then,

1
EV?YﬂTZ t:—u/ / ky(y —z)v,(dz)v,(dy), t € G,m, (3.1
< 1( ¢)|> YEBTOJ,) 1o 10, y (Y ) vy(dz) vy(dy) o), (3.1)

Vn (
whereky (z) is the geometric covariogram df.

Proof. Regard the set” := Y., as mobile hitting the fixedj—probe T, with the
uniform probability element given by Eq. (A.19). Then,

v (Y @ TO,t) [E(Vg (Y NT.0)t)

— / VS(T(),() NY.+)va(dz)

= [ vt [ @) [ wina) 5

= / Yy (dl’) / VQ(dy) / 1YL.{',L(_Z) 1Y_.y,z(_z + y— JJ) Vn(dz)
To,0 150 R~

_ / / ey ) wy(de) v (dp)

Corollary 3.1. If the g—probe is IUR hittingY” with the probability element given by
Eq. (A.18), then,

1
B |EtVn (Y ©® ij072‘,)

EL(Y N T.) /T /T by (ly — 2ll) vy(da) vy(dy),  (33)

where ky (r) is the isotropic covariogram of, see Eq. (A.36).
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Proof. Take expectations on both sides of EqQ. (3.1) with respect to the probability
element given by Eq. (A.20).

3.2 Special case of ag—plate probe’

Proposition 3.2. Suppose that thg—probe Ty is a '¢—plate’, namely a bounded
q—dimensional subset of a linear subspdg€0,0), ¢ = 1,2,...,n. If T.; is FUR hitting
the setY with a probability element given by Eq. (A.19), then,

1

E(2(YNT.H|t) = —
<Vq( ~7t)| ) U (Y NP Tb,t)

/ by (2) by (2) my(d2) s tE Gugs (3.4)
L,(0,t)

whereky- () is the geometric covariogram af in R", whereaskr, ,(x) is that of Tj;
in R¢, namely within its containing lineag—subspacel, (0, ).
Proof. We have,

va (Y @ Tot) E(2(Y N T2y)|t)

(3.5)
= /Rn Vn(dz) /Lq(,;t) /Lq(lﬁt) 1Y(117) 1T;,L($) 1y(y) 1T:J(y) Vq(d:l?) Vq(dy).

Sety = z+y and then use the decompositiondz) = v, (dz?) - v,_,(dz""?), where
29 ¢ L,(0,t), 2" € L,_,(0,t), ¢ =0,1,...,n. We obtain,

Up (Y S5 fO,t) [E(V(?(Y n T:t)|t>

= / v, (d2'7) / Vg (d2"79)

L,(0.t) L,.—,(0,)

X / / Iy (@) Ly (2 + ) Lny, (2 — 2)1gy (2 = 2 + §) v, (dF) ()

L, (z0r=9 t) Ly(0,t)

= [ vty [ [ @

Loy (0.t) L, (200 4) Ly (0.0) (3.6)
X / 11, (z = 2)1g, (x — 2+ y) v, (dz(q)) v,(dy) v,(dx)

L,{0.)
= [ w@nan [ [ b@ e Do, @0)

L,(0.¢t) L,_g(0,t) L,(z(n=9¢)
— [ ) b () ()

L,(0,0)



Corollary 3.2. If the bounded;—plate probé€l’. ; is IUR hitting Y with the probability
element given by Eq. (A.18), then,

. 1 >
Ev2(Y NT.,) = = / qbyr Y ky () kg, (r) dr. (3.7)
(0T = o [ b ) )

where ky (r) is the isotropic covariogram ol’, whereasks, (r) is the isotropic
covariogram ofI;, within its containing linear subspadg,(0,0).

Proof. Take expectations on both sides of EqQ. (3.4) with respect to the probability
element (A.20) and obtain first the isotropic covariograpir). Then apply Eq. (2.6)
and obtain the isotropic covariograkn, ,(r) bearing Eq. (A.35), (withh = ¢), in mind.

Remark 3.1. It should be stressed that Eq. (3.4), (3.7) holdf is of full dimensiong
within L,(0,0). For instance, ify = 1 thenZ; , may be a straight line segment, whereas
if ¢ = 2 thenTy, may be a platelet, but not a planar curve.

Remark 3.2. In the literature, the best known results in the present context correspond
to EqQ. (3.3) withg = 0, n.

3.3 Examples for n = 2.

We present five examples with a double purpose, namely to illustrate the foregoing
propositions in the first place, and then to obtain the results which will be used in
Subsections 5.3, 5.4. The first example illustrates Eq. (3.7) with n = 2. The
second, third, and fourth examples refer to 1-dimensional probes, ngmely n = 2;
however, whereas in the second example Eq. (3.7) may be used, in the third and fourth
ones we have to resort to Eq. (3.3) directly. Finally, the fifth example illustrates the case
g = 0, n = 2, which uses Eg. (3.3) as well.

Here, and in the rest of the paper, we do not display the explicit expressions of the
integrals involved (whenever available), first because they are not particularly illumi-
nating, and second because they can be computed readily with a suitable mathematical
package. For the relevant plots we extensively used the comMiartcegr at e[ ] from
MATHEMATICA [.

Probe of dimensiong = 2: disk hit by a square. Let Y C R? represent a disk of
diameterd and T,y C R* a square probe of side length If 7., is IUR hitting Y,
then Eq. (3.7) yields,

1
E:rs (Y % T{).t

Evy(Y NT.;) = ] / N 2nrky (1) kg, o (1) dr. (3.8)
0



The denominator in the right hand side of the preceding expression is directly available
from Eq. (A.23), namely,

Enn(Y @Th,) = nd* /4 + s> + 2sd, (3.9)

whereas the geometric covariogrars(r) and kr,,(r) are given by Eq. (A.37) and
Eq. (A.38) respectively. We obtain,

2m) 'Enn(Y @ Toy) -EV3(Y NT.,)

r

/ deisk(ry d) sql r, 5 dT +/ dezsk T d sq, 2(T78) d’l", <0 S S S d/\/§)7

0

= 9 / rkaisk(r, d) ksg1(r, s dr—l—/ Tkaisk (7, d) ksgo(r, s)dr, (d/\/§ <s< d),

0

d
/ Tkaisk (7, d) ksg1(r, s)dr, (d < s < o).

\ /0
(3.10)
As s — oo the square will contain the disk with probability 1, and from the first of
the preceding equations it can be verified thaf (Y N T.,) converges to(7rd2/4)2, as
expected.

Probe of dimensiong = 1: disk hit by a straight line segment. Consider a disk” C
R? of diameterd and a straight line segmefft , C R? of length!, see Fig. 2(a). Ifl.,

Tz,t

() (b)
Figure 2 Fixed disk hit by a straight line segment probe (a) and with a pair of test points (b)
equipped with the kinematic measure in the plane.

is IUR hitting Y, then Eq. (3.7) applies. Making use of Eqg. (A.37) and (A.39) we obtain,
Ein(Y @ To,t) Evi(YNT.,) = / 2ky (1) kr, . (r) dr
0
2 [ kaisi(r,d) - (I—r)dr, (0 <1<d), (G11)

2 [ ki (ry d) - (1= r)dr,  (d <1 < 00),
where, in this case,
Ews(Y @ Tp,) = wd*/4 + 1d. (3.12)

Logically as/ — oo the second moment converges to the right hand side of Eq. (2.9).
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Probe of dimensiong = 1: square hit by the boundary of a circle. =~ Suppose now
that the probely, C R? is the boundary of a disk, namely a circle of diameter
hitting a squar&” c R? of side lengths uniformly at random. Since the circle is not a
subset of a straight line, we have to use Eq. (3.3) instead of Eq. (3.7), namely

1
EZ(YNT.,) = . / / ky (lly — z|]) v (dz) vi(dy). (3.13)
(0T = e Jo, S, B (= el (@) va(dy)

Consider a mobile point(!) € T, wherel denotes the arc length from a fixed point
y € Too to z(l), (Fig. 3). Then||ly — xz(l)|| = d -sin(l/d) and, recalling Eq. (A.38),
Eq. (3.13) becomes,

wd
En(Y & Tor) - EVA(Y NT.,) = / v (dy) / by (d-sin(1/d)) Al (3.14)
TU,O 0

(@) (b)

Figure 3 (a), square hit by a uniform random circle. (b), illustration of the relevant distance
lly — «(l)|| = d sin(l/d), see the example in Subsection 3.3.

Thus,

(rd)" Enn(Y @ To,) - Evi(Y NT.,)

(s D g (- sin (1d), 5) di
+ fd’((/f/ D lopn(d - sin (1/d, ) dl, (0 < s < d/V/3), (3.15)
) [ D (d-sin (1/d), s) dlL (d/vV2 < s <d),
7 K (d - sin (1/d), s) dl, (d< s < o).

On the other hand,

2(rd®/4 — kaisk(s,d)) +2sd, (0< s <d/V2),

rd* /4 + s* + 2sd, (d/vV2 < s < 0) (3.16)

Eivy (Y S TOJ,) = {
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For larged, series expansion of the first Eq. (3.16) yields,
4sd — °/(3d) + O(s’/d*), d > s. (3.17)

On the other hand, as— oo the square will contain the circle with probability 1, and
the second moment tends ted)’, as expected.

Probe of dimensiong = 1: square hit by the boundary of another square. Here

the probeT,, C R? is the boundary of a square of side lengthitting a fixed square

Y C R? of side lengthd isotropically and uniformly at random. Agaify, is not a
subset of a straight line, and therefore we have to use Eq. (3.13). Consider two points
&,monTyy, and letx, y denote the respective distances of each of these points from say
the leftward, or the downward (as applicable) endpoint of the side containing the point,
(0 < z,y < s). Then the required distandg — n|| is equal to|z — y| if both points lie

on the same side, t§/z? + 2 if they lie on adjacent sides, and \\g/(:p — )’ + 52 if
they lie on opposite sides of the square probe. Therefore,

= (Y D To,t) - Ev? (Y N Tm) = 4/ l/ ky (| —y|) dy + 2/ k:y(\/xQ + yQ) dy
o LJo 0
+ / ky (\/(:13 — )’ + 32> dy] dz.
’ (3.18)

Depending on the relative sizes ofd the preceding expression takes different forms.
The details are given in Appendix C.1. Moreover,

(Lgg 25 (0 <s<d/V2),
y g7 252 _ gsd\/j
E.L Y@T7 .y 7r/ T T s (319)
t 2( 0t> -l—%(d?-l-SQ) cos~! (,5\(}5)’ (d/\/i<3§d)’
@+ 5%+ Lsd, (d <5 <c0).

Probe of dimensiong = 0: disk hit by the vertices of a square. Consider a disk
Y c R? of diameterd hit uniformly at random with a O—prob&,, C R? consisting of
the union of the four vertice$z, x5, x3, x4} Of a square of side length The proper
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choice, namely Eg. (3.3), reduces in this case to a double summation namely,

Evn(Y ® Ty, ER(Y NT.)

4
>k (llai — )

=1 j=1

~.

3.20
= 4y (0) + 8hy (s) + 4hy (sv2) (3.20)
Td? + 8 kaisk (8, d) + 4 kaisk (8\/57 d), (0<s< d/\/§)
- 7Td2+8kdisk(37d)7 (d/\/§< S S d))
md?, (d < s < 00).
On the other hand,
%Wd? + 32 - 2kdisk(37 d)7 <0 S S S d/ﬂ))
Ewn(Y @Tos) = wd® — 4kgig(s, d) (d/V2 < s < d), (3.21)
md? (d < s < o0),

namely the area of the union of four disks of diametecentred at the vertices of
a square of side length. As s — 0 it is easily verified thatEvi(Y NT.;) — 16,
(naturally P(vp(Y N 7T.,) = 4) — 1 ass — 0).

4. TEST SYSTEMS OF ¢—PROBES HITTING A COMPACT
SET OF DIMENSION = IN R"

Let Y C R" represent a compact set with dith) = » hit by an IUR test system
A.; with dim(Agp) = ¢, ¢ = 0,1,...,n, (See Appendix A.3), with the probability
element given by Eq. (A.26). Then the mean intersection contents is given by Eq. (A.28).
Note that the estimation problems raised in the introductory paragraphs of Sections 2, 3
disappear here because all the quantities in Eq. (A.28) exg€épt) (which is assumed
to be the target quantity), are either known or observable. For this reason the test systems
considered here are fundamental tools in practical stereology.

In this section we extend to test systems the foregoing second order results pertaining
to independent probes.

4.1 Second moment formulae for the intersection between a test system
of bounded ¢—probes and a compact set of dimensiom in R"

Proposition 4.1 If a test system\., of boundedg—probes is FUR hitting a compact
setY C R" of dimensionn with a probability element given by the second factor in the
right hand side of Eq. (A.26), then,

E(v;(Y NA.)|t) = / / ky(y — v) v, (dz) v,(dy), t € Gy, (4.1)
Vn Joo Toe J Aoy

12



where ky () is the geometric covariogram df.

Proof.
129 (J070) E (V?(Y N Az,t) |t)

= / vy (Too NA.¢) v, (dz)
Jot

-/ () / @) / v .

— [ w@) [ W@ [ 2
J()L ’\0[ /\OL

:/ v,(dz) Z/ Iy (z + 2z + m4) v (dz) Z/ Ly (y + z + m4) v, (dy).
Jot T(Jt

kez 1ez Y To

For eachk,l € Z there is a uniqug € Z such thatr,; = 7+ + 7;;. Thus,

v (Joo) E(v7(Y NAL)|E)

/ / v,(dz)v,(dy) ZZ/ Ly, (z+ms+x—y+7) Iy, (2 + 710) va(d2)
TUt TUt

jez 1ez Yo

/TM/TM ; v(@ =y + 7j4) vg(dw) vy (dy)

B /T /\ ky (y = 2) v,(de) vy(dy).

(4.3)

Corollary 4.1. If the test system\. ; of g—probes is IUR hittingt” with the probability
element given by Eq. (A.26), then,

1
EV;(Y NA.;) = —F—— / / ky (ly — z||) v,(dz) v,(dy), (4.4)
VIL ‘][) 0 TU 0 AU,U

whereky (r) is the isotropic covariogram of, see Eq. (A.36).

Proof. First, take expectations on both sides of Eq. (4.1) with respect top the probability
element given by the first factor in the right hand side of Eqg. (A.26). Then, apply the
inverse rotationt~! to the setY’, whereby the domains of integratidh ;, Ao, become
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To.0, Moo respectively. Since the measurgis rotation invariant, we obtain,

VIL(J(),()) IEV;(Y N A:‘t)

- / la) / ) / )P .

-/ ity / ey = 2l ().

4.2 Special case of a test system a@f—plates

Here we extend the concept gfplate probe introduced in Subsection 3.2 to test
systems. To achieve this we restrict ourselves to test systeymswvith fundamental
'box’ tiles of the form

J(),() = [0,(11) X [07a2) X X [Oaan)7 a; > 07 1= 1727“'777" (46)

Further we assume that the fundamental probe gs-dimensional bounded subset of a
linear g—subspace, namely,
T070 C Lq(0,0), dim(T(),()) =q,q=0,1,....n,

4.7)
Too C [0,a1) X [0,a2) X «-- X [0,a,).

L_4(0,0) Ao ) L bl

(b)
Figure 4 (a), illustration of the notation used in Subsection 4.2 to construct a test system of
g—plates. (b), illustration of Eq. (4.11).

For the translations; used to construct\,, we adopt the following notation, see
also Fig. 4(a),

. rj("‘_‘” C L,—,(0,0), j € Z are translations lying in the orthogonal complement of the
linear g—subspace,(0,0) (which containsj).

e 1) € Ly(~7""",0), j,k € Z are translations lying in the linegr-subspace parallel
to Ty, and shifted by the translationr;"~".
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Proposition 4.2. For a FUR test system. , of g—plate probes constructed as above,
hitting a compact set” ¢ R" of dimensionn with a probability element given by the
second factor in the right hand side of Eq. (A.26) we have,

q)
Ev q(YﬂA 0 Vn Joo ZZ/ (*Q)o kfoo(z—l—TL )Vq(dz), (4.8)

JEL keZ

whereky (x) is the geometric covariogram of defined inR", whereasky, ,(z) is the
geometric covariogram olj defined inRe.

Proof. Making use of Eq. (4.1) and setting— = = z we obtain,

v (Joo) EVZ(Y NALg) = /T Vq(dy)/\ ky (y — x) vy(dz)

No,0

(4.9)
_ /H kv (2) vy (d2) / () Taao (¥ = 2) vy (dy).

The inner integral in the last expression is zero unlesies in the linearg—subspace
containingZy, i.e.,

n—q) .
/ 1To.0 (y) 11\0,0 (y - Z) Vq(dy) = { Vq(T()’O N szo)’ Z € Lq< " 0) Vj S Z’
R 0, otherwise.
(4.10)

Further, bearing in mind that th@—probes{ 007 k,j € Z} constitutingA. , are

disjoint for eachz € Lq(—rj(”_q),O), see Fig. 4(b), and recalling the definition of the
covariogram, we have,

v(Too N A.o) ZZ%(T( _ 0)

JEZ kel

_ZZkToo z+7—fj ZELq< ’(nq )7VJEZ

jEZ kel

(4.11)

Substituting the preceding results into the right hand side of EqQ. (4.9) we obtain the
proposed result.

Corollary 4.2. If the test systemA.,; of g—plate probes is IUR hitting” with the
probability element given by Eq. (A.26), then,

B 0 ) = o 22/ g B B+ 5) (02, 412
n ()() T

JjEZ keZ

where ky (r) is the isotropic covariogram of’, whereaskr, ,(x) is the geometric
covariogram of7;, defined inR?, namely in its containing—subspace.
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Proof. Start from Eq. (4.4), then follow similar steps as in the preceding proof, namely
as in Eq. (4.9)-(4.11) to establish the required result.

Remark 4.1. SinceT, is bounded and its translations always disjoint, there is only a
finite number of nonzero terms in the double summations of Eq. (4.8), (4.12).

Remark 4.2. For a 'sparse’ test system with the property that there is only one nonzero
term in the double summations of Eq. (4.8), (4.12), the latter two expressions are
analogous to Eq. (3.4), (3.7), respectively, valid for independent boundpldte probes.

Remark 4.3. Corollary 4.2 may not be easy to use in practice unlgss 0,1, (see

the examples below), because the argumerit;pf is not a scalar but a—dimensional

vector. Even in the simplest cases, however, the exact results usually have to be computed
numerically.

4.3 Examples forn = 2

The first two examples below illustrate simple applications of Eq. (4.4), whereas the
third example uses Eq. (4.12). The second example can nonetheless be regarded as a
special case of the third one. In all cases the hit object is a¥diskR? of finite diameter
d. Thus, the results do not depend on the orientation of the test system.

Test system of dimension; = 0: square grid of test points hitting a disk. The test
systemA, is a square grid of test points of side As fundamental tileJy, we

adopt the squar¢d, s) x [0,s) and the basic point prob&;, is the origin, whereby
Moo = {(js,ks), j,k € Z}. It is convenient to apply Eq. (4.4) directly with= 0 and

the inner integral is a summation, namely,

1
Evf(Y NA) == > ky([lail)

S

zi€Aoyo
X (4.13)
=2 > ky (Sx/j2+k2),
JREZ; 54/ j2+k2<d

(Kellerer, 1986), wheréy (r) = kqsx(r, d), see EqQ. (A.37). Since the sEtis a disk the
support of the corresponding covariogram is also a disk (of dian2efeand therefore

we can evaluate the preceding summation using symmetry properties (Fig. 5(a)). First
we compute the term at the origin (namely(0) = »(Y")), then four times the terms

at the points{(js,0), j € N} on the horizontal half axis, then four times the terms at
the points{(ss,js), 7 € N} on the diagonal of the first quadrant, and finally eight times
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the terms at the grid points lying between the horizontal half axis and the diagonal of
the first quadrant. Thus, Eqg. (4.13) becomes,

—p ) L/(sv2)]
SERY NAL) = T 443 kaiisd) +4 Y huio(jsv2.d)
j=1 j=1

(4.14)

V] s | VT
+38 Z Z Kaisk (3 Vi + k2, d) :

j=2 k=1

where | z| denotes the floor of.

h

kh o

7
.
e
d
77
//
ad

0 d )

+ + + +

+
5t
(a) (b)

Figure 5 (a), illustration of the four different subsets of test points corresponding to the four

terms in the right hand side of Eq. (4.14). (b) construction used in the derivation of Eq.(4.15)
for a Cavalieri grid of test lines.

Test system of dimensiory = 1: parallel straight lines (Cavalieri grid) hitting a disk.

The test system\, consists of parallel straight lines a distancapart, (namely\
is a "Cavalieri grid’ inR?). As fundamental tile/y, we adopt the rectangle, 1) x [0, h)
with the basic probd, being the straight line segmejtt, 1). Again it is simplest to
apply Eg. (4.4) directly; with reference to Fig. 5(b), first we get twice the integral along
the horizontal half axis, and then four times the integrals along the remaining half lines
in the first quadrant. Thus,

9 d
|EV12 (Y N Azﬂf) = E / k(lisk(r7 d) dr
0

/i) (4.15)

4 £\ d2=(kh)? 5
- . 2
+ - ; /O kdwk(\/r + (kh) ,d) dr.

Test system of dimensiony = 1: parallel straight line segments hitting a disk. Here

the fundamental tilefy, of the test system, is the rectangld0, s) x [0, h), and the
basic probely  is the straight line segmeifit, ps), wherep € (0,1) is fixed. Thus,A g
consists of parallel straight line segments of fixed length The test system may be
regarded as one df—plate probes, and Eq. (4.12) may be applied. First we operate on
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the axis of abscissas, then on each of the parallel lines a disteeygart on the upper half
plane, see Fig. 6. The result has the following expression, which is amenable to direct

(b)

1—p—frac(d/s) <0 1 —p—frac(d/s) >0
Figure 6 Construction used to evaluate the second moment of the intersection between a fixed
disk Y of diameterd and a uniform random test system of parallel straight line segments, see

Eq. (4.16). The two disks have radidbecause they correspond to the geometric covariogram
of Y.

computation using for instance the commatiaht egr at e[ ] from MATHEMATICA [,

: [d/s] inf {d.js+ps}
Evi(Y NA.g) = hs Z / ’ kaisk (12, d) ksey (2 — js,ps) dz
j=—[d/s]+U (p,s,d) sup {—d.js}
ld/n] | /=7 s ]

4
+ s Z Z
k=1 i {\/m/b-‘ +U (p,s,\/m)

/illf {\/ dz—(kh,)z,js—f—ps}
X
sup {—\/ dz—(kh)z,js}

where |z |, [x] denote the floor and the ceiling af respectively, whereas

kdisk( zQ + (kh')Qa d> kse,g (Z - j87p8) dZ,
(4.16)

U(p,s,d) =1y (1 —p— frao(d/s)), (4.17)

and fra¢z) represents the fractional partef For instancé/(p, s, d) = 0 for the example
illustrated in Fig. 6(a), whereas(p, s,d) = 1 in Fig. 6(b). In MATHEMATICAO the
corresponding function isni t St ep[ ] . The first term of the right hand side of Eq. (4.16)
bears a factor “2” because the range of integratiort@f(r, ps) on the horizontal axis

is a subset of the intervdl), ps], and by symmetry the result is identical for the interval
[-ps,0]. In addition, the second term pertains to the upper half plane only (namely
k > 1), hence the factor “4”.
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5. VARIANCE COMPARISONS FOR BOUNDED TEST PROBES

Let Y, C R" denote a boundekl-dimensional setk < n, with v (Y;) > 0, which is
the quantity to be estimated. To this end consider two alternative bounded probes, namely
a g—dimensional probd}}f{,’ and ar—dimensional subprob#, such thatT(i’(')) c 1Y
andn — k < r < ¢ <n. Our purpose is to compare the variances of the corresponding
estimators ofy;(Y;) obtained with either probe.

Suppose that the—probe is IUR hittingY;, with the probability element given by
Eq. (A.18). Then by virtue of Eq. (A.21) the estimator

/V\A(Yk) = Ck,qn * Vk+q—n (Y N T;ﬁ,t)>7 (51)

is a one stage unbiased estimatorigfY;), wherec; ., is a constant of dimension

n — q. In the following two subsections we distinguish between two different sampling
regimes, namely lower dimensional subsampling, and direct lower dimensional sampling,
respectively.

5.1 Probe sampling with independent subsampling

Here we consider the classical situation in which the prﬂfgj@ and the subprobe

T(E’U) are used to estimate,(Y;) by a two stage sampling procedure (Cochran, 1977) in
which the subprobe is randomized for each position of the primary probe (Cruz-Orive,

1980). More precisely, for each par,t) the subprobéZ}i’(')) is IUR hitting the first

stage intersectiod; N Tﬁq} whereby we obtain an unbiased estimatpr,_,, (Y N T:f"t))

of Viggn (Y N Tf‘ft)) Therefore,
vak(YVL) = Ckgn * /V\la—i—q—n (Y N Tl(t)>> (52)

is a two stage unbiased estimatongfY;). Under the preceding conditions the following
version of the classical Rao-Blackwell theorem holds (Baddeley & Cruz-Orive, 1995).

Theorem 5.1, (stereological Rao-Blackwell).
Var (,(Yz)) > Var(0.(Y2)). (5.3)

5.2 Direct lower dimensional sampling: Variance
paradoxes of Jensen—Gundersen type

Suppose that the subprof#§, is IUR hitting the sety directly, namelyZ; is not
used to estimate a first stage statistic suctas_, (¥ N Tb.f"t)) but to estimate/,.(Y%)
directly. In other words, when the primary proﬂé‘{f is IUR hitting Y}, the subprobe
TO(I)) is not randomized, but instead it remains rigidly attached”o‘g@ and we observe
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YN Tﬁ’t) directly. Under such circumstances we do not obtain a second stage unbiased
estimatory.y,—, (Y NT'Y) of vp4,—n (Y N T'Y), and therefore the inequality (5.3) does
not need to apply even if < q.

The preceding fact originated a lively controversy for years after Jensen & Gundersen
(1982) described an example in whith C R? was a disk of diameted = 4 and the
target parameter was the boundary length to area fatie v1(9Y>)/1»(Y>2). To estimate
R two alternative probes were useﬂ,‘f)) was the unit square whereﬁé%) was the union
of the four vertices of the unit square. For IUZI%%) hitting Y> they first considered the
direct estimator ofR namely,

v (9% NT,7)

B _
w(YaNTY)

) (5.4)

that is, the ratio of the observable circle length to disk area in the square probe. On the
other hand they constructed the alternative estimator

B T V()<3YQ N an@t))
=3

v (Y2 N T,((?)

(5.5)

namely /2 times the ratio of the number of intersections between disk and square
boundaries to the number of vertices inside the disk. For each estimator the ratio of the
expectations of numerator and denominator is equal to the targetfidiiat, intuitively

R would seem to be more precise thRrbecause it incorporates more informaAtion. Yet,

the aforementioned authors discovered that, at least fer4, Var(R) < Var(R). A
similar example was reworked in Baddeley & Cruz-Orive (1995) for variable

A key question is: which precise shape conditions should a lower dimensional
subprobe{Z}i’(’f enjoy to be more precise than its containing prdﬂﬁg ? This question
can hitherto not be answered in its full generality, but as shown below some additional
light may be thrown into it with the aid of new examples.

5.3 Examples: fixed disk probed by a straight line segment, and by a pair of points

The target parameter is the aredY’) of a diskY c R? of diameterd. We want to
compare the estimation variances for three alternative sampling probes, namely a straight
line segmenﬂ}ﬁf of length/, the union of the two end poinfEﬁfﬁf of T&f see Fig. 2(b),
and finally a straight line segmefiﬁ}o) of length 2{. To facilitate the comparisons we
assume that each probe is IUR hitting a di$kof areaA such thaty’ & (~Ty,) C X,

Vt € Gyyp. Thus the common probability element is,

P(dz,dt) = (2r4) 'we(dz)dt, z € X, t €. (5.6)
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For TO(}O) the unbiased estimator eh(Y) is,

A
2 (Y. TV) = T (Y n T.7). (5.7)
Ford < | < oo the second Eg. (3.11) leads to

Var{t, (Y, TW)} = z% (%zcﬁ —~ %d4) —15(Y). (5.8)

The corresponding results far, 0 are,

5 oy _ A (0)

0 (Y, T = 7 (Y n T, ) (5.9)
and, making use of Eq. (3.3),

Var{D,(Y, T(0)>} (2ky (0) + 2ky (1)) — 13(Y)

(5.10)

oo:>.4>|:>.

nd® — 3 (Y),

respectively. In the preceding result we have used the identfiti¢8) = 1»(Y) and
ky(l) = 0,1 > d. It is easy to verify that the inequality

Var {0, (Y, T")} < Var{,(Y,TV)} (5.11)

holds for0 < [ < 1.3184d, (Fig. 7).

The preceding result looks paradoxical at first sight becﬁ“g%)econsists of the two
endpoints off}j;) only. However, for each position &f'}) hitting Y, the subprobe&™"")
cannot supply an unbiased estimatorYoin Tj}), and therefore Theorem 5.1 does not
need to apply. Note also that, while N TZ(? contains indeed more information than

YN Tf?, the extra information turns out to be not only redundant but even detrimental
for the particular task of estimating(Y).

To stress the foregoing ideas consider now the estimation (@f) in two stages.
The first stage probe is the straight line segn@(ﬂf [0,2]) of length 2] and the
first stage estimator is,

By, 1) = (v A7), (5.12)

with the density (5.6). The second stage probe is a pair of pdfjj% = {z,z+1}
a fixed distance apart, like Tyy; however we assume that'y, c 7;; and z is
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uniform random in[0,[), so thath(?&O is effectively a uniform random point grid in
Tyi). Consequently,

Evp(Y NT Y NTY) =174 (Y nTLY). (5.13)
Recalling Eq. (5.12) the two stage unbiased estimatar,0f ) may be written
~ ~ A ~ ~
R(Y.TV) = Su(Y nT) nT,). (5.14)

Since the preceding estimator is connected Witft, 7)) via Eq. (5.13), now Theorem
5.1 applies and therefore it can be anticipated that

Var{ﬁg (Y, T(U)) } > Var{ﬁQ (Y, T(l)) } (5.15)

It is noteworthy that the estimatoh (Y, T“))) has the same distribution as(Y,T)

1.01

0.8

0.6 1

0.4+

0.2

(Second moment of disk area estimator)/A

0.0+

Ob - d5 - fO S LS S ZO
Length | of shorter segment
Figure 7 A simple variance 'paradox’ of Jensen-Gundersen type. The system of two test points
a distance apart can entirely sweep a test segment of lerxgthlways remaining within the
segment, but this is not the case for a test segment of lengts a consequence the longer
test segment is always the more efficient, but the segment of lérigtmot necessarily more
efficient than the two point test system. See Subsection 5.3 and Fig. 2.

because a uniform random grid of points within a line segment which moves with the
kinematic measure iRR? is a grid of points moving with the kinematic measurefih

Thus the performance of the two end points of a segment of ldngthmproved by that

of a segment of lengtB/, but not necessarily by one of lengthsee Fig. 7. One may
think that, in fact, point counting with the two endpoints of a IUR line segment uses
somehow information outside the segment itself, because the two points could be used
to estimate the length of a line segment twice as long.
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Remark 5.1. Consider the following three sampling probes to estimate the :a(&a)
of a diskY C R? of diameterd, namely: the sei”(gf[? of the four vertices of a square of

side s, the actual squar@éf)) of side s, and another squatﬁ)%) of side2s. By analogy
with the preceding results we find that the estimatowgffy’) based o, is more
efficient than that based 6R\; for d/s > 0.710..., (Baddeley & Cruz-Orive, 1995), but
always less efficient than that based ﬁﬁf

5.4 Examples: test probes of dimensiorD, 1, 2 hitting a fixed square
Here the target parameter is the are@t’) of a square” C R? of side lengthd. We
consider, in turn, four alternative sampling probes namely: th@‘}gﬁabf the four vertices
of a square of side lengt) the boundaryl“é‘lo) of the corresponding square, the circumdisk
’ (1)

Té? of the square, (that is, a disk of diameter= s/2), and finally the boundar 0.0

7(0) 7(1) 7(2) 7

Figure 8 Lower row: the four probes used in Subsection 5.4 to construct new variance paradoxes
of Jensen-Gundersen type. The square of side ledigth1l (upper row) represents the fixed
figure to be sampled. The corresponding results are plotted in Fig. 9.

of this disk, see Fig. 8. Thug\y c T,y C T3 and alsolyy c Tyy C Tyy. The four
probes are IUR hitting” with a common probability element given by Eq. (5.6), where
X is a disk of areal such thaﬁf@f}gﬁ C X. The corresponding unbiased estimators are,

7//\2 (Y7 T(())) = % 40 (Y N Tl(qt))7
2A
D, (Y, T = \Zg n (Y NT.Y),

(5.16)



respectively. The second moments of the preceding estimators are plotted in Fig. 9.
The second momer&®3 (Y, T?) was computed via Eq. (C.2), whereg3 (Y, T")

was computed from Eq. (C.1E23 (Y, TV) from Eq. (3.15), andE®3 (Y, T®?) from

Eq. (3.10).

(Second moment of the estimator of the area of Y )/A

Diameter | of disk probe

Figure 9 Efficiency comparisons among the four bounded test probes represented in Fig. 8. See
discussion in Subsection 5.4.

().

().

From Fig. 9 the following conclusions may be drawn:

The point counting estimatek (Y, T(°>) IS not necessarily less efficient than either
the length measurement estimai‘?@(Y, T(l)) with the square boundary, nor the area
measurement estimatos (Y, T@)). This is because Theorem 5.1 is not applicable
in either case.

The length measurement estimator with the circle boundary, namgly 7V), is

not necessarily less efficient than the area measurement estifﬁ@é}om2>), and

it is always more efficient than the length measurement estimator with the square
boundary, 7, (Y, TV), and also than the point counting estimate(Y, 7). The

first fact holds because Theorem 5.1 is not applicable, and the third statement is
again a consequence of Theorem 5.1. To see this, suppose that the four point square
grid T..}) of side s is contained in the circld, of diameter! = sv/2, wheret
represents the arc distance of one of the points of the grid from a fixed point in
ffl(f Imagine that the point grid is rotated uniformly at random Wltﬁ'lfljg namely

that¢ is a uniform random variable in the intervél, 7{/4). Then clearly for each

pair (z,t) the factorv; (Y N fflt)) in the right hand side of the third Eq. (5.16)
may be estimated without bias with the point grid. Replaain@’ N7.) with the
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corresponding estimator in the right hand side of the third Eq. (5.16) we obtain a two
stage unbiased estimator sf(Y) with identical distribution a$» (Y, T'?), because

a uniform grid of points within a circle which moves with the kinematic measure
in R? is a grid of points moving with the kinematic measurelf Therefore, by
Theorem 5.1, (Y, TV) is always more efficient thai, (Y, 7(")). Indeed, the same
result holds if the four point grid is replaced with a uniform grid fokquispaced

test points in the circle: the test grid will always be less efficient than the test circle.

6. VARIANCE COMPARISONS FOR TEST SYSTEMS

6.1 Extension from bounded test probes to test systems

The results from the preceding section trivially extend to 'dilute’ test systems of
g—probes, namely test systems for which the maximum numberg@fobes hitting the
target setY;, C R" is 1. To extend the mentioned results to test systems, however,
diluteness is not a necessary property — in fact, the stereological Rao-Blackwell
theorem is concerned with unbiased sampling and subsampling only, with no assumptions
whatsoever about probe shape.

In the next subsection we describe an example in which Theorem 5.1 holds, and a
second example in which the theorem does not hold. The necessary tools are borrowed
from Section 4.

6.2 Jensen—Gundersen type paradoxes for test systems

The target parameter is again the are@t’) of a diskY c R? of diameterd. First
we compare the performance of the following two test systems, see Fig. 10.

A A
/ S
+— +— +- +— +— +— T
Y T(O)_L N
+— +— +—
+— 4+ oo
TW ips | °
+— +— +— +— +— +— —

Figure 10 Two systems\(?”) and A(!) of test points and test segments respectively, (here
represented simultaneously), whose relative efficiency is studied in Subsection 6.2. The test
point systemA(?) can sweep the test segment systafi entirely, always remaining within

A For this reasom (V) is always more efficient than(”). See also Fig. 11.

- A square grid\y), of test points of side, namely.Jy, = [0, 5) [0, 5) andZy = (0,0).

* A system Af)f()) of parallel test segments of lengfs, p € (0,1], namely Jy, =

[0,5) x [0,5) and Ty = [0, ps).
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When the test systems are IUR hittikg the corresponding unbiased estimators are

Dy (Y, A(U)) = s’y (Y N Ai(lz),
6.1

respectively. Direct computations from Eq. (4.14), from (4.16) goe 0.1,0.5,0.75,
and from Eg. (4.15), (which is equivalent to= 1), see Fig. 11, suggest that

Var{z/)g (Y, A(O)) } > Var{ﬁg (Y, A(l)) } (6.2)

The preceding inequality is in fact a consequence of Theorem 5.1. To establish this

1.00000 4 = v T
E + + T
1 el + o+ o+
«  0.10000 - NSRPEEER . —
S : pskst
g ]
E . 7*%(/ p=0.10,050, 0.75
@ 0.01000 - ¥ PN
9 7 @S ““ “ —’l ‘
X \ K Ve
2 0.00100 - /A TNV
S - E / NAT
“6 1 'A\/h\
N N |
>
O 0.00010 3
] \
0.00001 -
0.5 1.0 5.0 10.0 50.0

Mean number of test points in disk

Figure 11 Efficiency comparisons among disk area estimators obtained from test point counts
and from the total length of the intercepts determined in the disk by test systems of segments of
increasing lengthys. There appears to be a continuity in the behaviour of the square coefficient
of variation fromp = 0 (test points) angh = 1 (Cavalieri grid of parallel test lines). As explained

in the text, Subsection 5.4, and in the legend to Fig. 10, here the stereological Rao-Blackwell
theorem applies throughout.
regard the grid of segmenr/sg% as a first stage probe, and consequefn}IQ/Y, A“)),
see Eq. (6.1), as a first stage estimator. Next, for each(pai) adopt the point grid
AL, c A"}, (congruent with\}(}), as a subprobe af!'}, where: represents the distance

2,
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from the left endpoint of a test segmentmﬂ. If z is a uniform
random variable in the intervdD, ps), then A", is a uniform random second stage

zx,t
probe hittingAfiE and therefore

of a test point ofA'”)

z,x,t

Ewp(Y nA) n A

z,x,t

) = (ps)_lyl (Y N Ailg), (6.3)
which combined with the second Eq. (6.1) yields the two stage unbiased estimator

DQ (Y N A(ZU)> = 82 140 (Y N Ai{g N A(O) ) (64)

z,x,t
Now Theorem 5.1 applies, and therefore,
Var{, (Y, A”)} > Var{p, (Y, AD)}. (6.5)

But 7 (Y, A”) and (Y, A)) have identical distributions because a uniform random
grid of points A'”), within a line segment grich!!} which moves with the kinematic
measure irR? is a grid of points moving with the kinematic measurelh Therefore
Eq. (6.5) may be written as Eq. (6.2).

Now we describe an example in which Theorem 5.1 does not apply. The target
parameter is the same as above, and we want to compare the performance of the following

two test systems, see Fig.12.

A0 1)
s/ J/ 5
+— +— +— r |
| IS
L TO 4
2s

+—-+ A |

: n

R e « Y .

Figure 12 Contrary to the case illustrated in Fig. 10, here the test point syst&ntannot
sweep the test segment systar‘ﬁ) always remaining withim (), Therefore the stereological
Rao-Blackwell theorem does not apply in this case, Afd is not necessarily more efficient
than A(Y). See Subsection 6.2 and Fig. 13.

» The square grid&ff()) of test points of sides considered above.
e A system /nglg of parallel test segments of length with fundamental tileJy,y, =
[0,25) x [0,s) and Ty} = [0, s).
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When the test systems are IUR hitting the unbiased estimator correspondinq\@%
is 7, (Y, A©)), see the first Eq. (6.1), whereas the one corresponding{ois

52 (Y, K(l)> = 2s 1 (Y N 7\([172) . (6.6)

Now, however,Aff()) cannot be adopted as a subprobe moving wnNk](q]r(} and therefore
the conditions underlying Theorem 5.1 cannot be implemented. As a consequence the
inequality

Var{, (Y, A")} < Var{s(Y,AV)} 6.7)

may hold for at least some values of the rafj. This is indeed confirmed by numerical
computation from Eg. (4.16), see Fig. 13.

1.0000 1

0.1000 1

0.0100 -

CV? of disk area estimator

0.0010 -

0.0001 -

0.5 1.0 5.0 10.0 50.0
Mean number of test points in disk

Figure 13 Results anticipated in the legend to Fig. 12.

7. POISSON PROCESSES ORk—FLATS AND OF BOUNDED ¢—PROBES

7.1 Preliminaries

The results given in Sections 2 and 3 are extensible to Poisson processeiaié
and of ¢g—dimensional bounded subsets (callgdsubsets here, for short) respectively.
The basic definitions are given in Appendix B; in the present case the favhilypf
subsets introduced in Section B.1 is the familygefobjects (such ag—flats L, (z, 1),
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q—subsetST:L?Z?tk, etc.) constituting the Poisson proceBswith realizations inR". For
simplicity the kth g—object will be denoted bgr@, k € N. Thus, either type of Poisson
process may be represented®@s= [ J, Tk@.

A basic difference between the design based approach adopted in the foregoing
sections and the model based approach adopted here is that the roles of the probe and
the compact set’ are exchanged. Thus, copies of the formerly known probes now
constitute theg—objects constituting an unknown random gt with realizations in
R", whose geometric parameters have to be estimated, whereas the unknowwnsset
replaced with a known, compaeat-dimensional sampling windoWw/’. In this context
an estimatorf is a function of they—objects which intersedtV only. More precisely,

fiM, =R o) = fF{TY Co: T W # 0,k eN}). (7.1)

A fundamental property of a stationary (or homogeneous) Poisson précesss
intensity A¢, see Eq. (B.3). A Poissap-flat process of intensityig in R" is equivalent
to a marked Poisson point process of intensigyin R”~¢ with independent marks in
G4.n—q- FOr instance, suppose thatis a homogeneous Poisson process of straight lines
in R? (Miles, 1964), andW C R? a fixed convex window. Then the mean number
N of Poisson lines hittingV is EN = \g v1(0OW)/m. Further, the mean length of
a Poisson chord iV is the mean chord length of a IUR test line hittiflg, namely
(W) /11 (OW); hence the mean total chord lengthlin is Ev,(® N W) = Agua(W),
which is the original definition of\s. On the other hand, a stationary Poisgersubset
process is a germ-grain model (Stoyetral., 1995) in which the germs are the-subsets
T,Eq) and the germgx;} constitute a stationary Poisson point process of inten’éﬁ&
To simplify the exposition we assume that t]ﬁ’é” are all congruent. As indicated in
Eq. (B.7), forq < n we have,

Ap = AL v, (T1). (7.2)

For a stationary Poisson process of g—objects inR" the random number of
g—objects hitting a convex windowV, namely

N:= #{keN: WnT" £0}, (7.3)

has Poisson distribution with mean

Ao Eivy— (W) if the process is off — flats,
A:=EN = (7.4)
Ao vy (TH) B, (Wr @ T1")  if the process is off — subsets.

whereW; C R" denotes the window with orientatione G/,
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7.2 Second moment formulae

Suppose that the estimatgr defined by Eq. (7.1) for a given convex windd,
is additive, namely it satisfies the identify((,cn 7.%) = Ypen £ (T1Y), and recall
Eq. (7.3), (7.4).

Proposition 7.1.
Ef2(®) = AEL(T) + N (EF(TIV))’. (7.5)
Proof. Recalling the basic properties of the Poisson process listed in Section B.2 and

settingp(k; \) = Mexp(—A)/k!, k = 0,1, ..., the probability function of the Poisson
distribution of mean\, we have,

Ef(®) = E{E(f*(®)|N)}

> ok N E(f2(@)|N = k)

>~
o

ip(k; ) [E(Z f(Tzfq)>) o)

k=0 j=1

[s'e)

CEP(T) S ki )+ (EF(T)) S0 Rk — Dplhi ),

k=0 k=0

which simplifies into the required result.

Corollary 7.1.
Var f(®) = AEf*(T\Y). (7.7)

Proof. Similarly as above it is easy to show tHaf(®) = )\[Ef(Tl(q)), and the result
follows.

As a cursory check lef(®) = N, the number ofj—objects hitting the windowV,
see Eq. (7.3). Therf(T\*) = f2(T\*) = 1 and Eq. (7.7) yields
VarN = A, (7.8)

as expected.

Suppose tha® is isotropic, and letf(®) = v, (® N W), with (PN W) = N, see
Eq. (7.3). If® is a g—flat process, then applying Corollary 2.1 to Corollary 7.1 and
recalling the first Eq. (7.4) we obtain,

)\q>/ qbr ey (r)dr, ¢=1,2,..,n —1,
Var{r,(eNW)} = 0 (7.9)

Ao v (W), q=0.
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On the other hand, i is an isotropicg—plate process, then applying Corollary 3.2 to
Corollary 7.1 and recalling the second Eq. (7.4) we obtain,

Var{v,(®NW)} = Ao v, ! (Tl(q)) / qby 'y (1) ki (1) dr (7.10)
0

TIUI)
7.3 Special cases: isotropic Poisson line and line segment processe®tin

Isotropic Poisson line process iR?2.  On line with the two alternative interpretations
of the intensity\s given in Subsection 7.1, we can consider two natural estimatokg of
based on the intersection & with a convex windowWW namely the counting estimator

~ TN

~ T
= = _ 7.11
Ao P OW)’ Vards = Ao O’ (7.11)
and the direct estimator
Y Ul(q) N W) T Ao >
)\cp = VQ(W) 5 Var)\q) = V%(W) /O 2]{3{@ (’f’) d’l", (712)

respectively. The expression fdfar e follows on using Eq. (7.8), the first Eq. (7.4),
and Cauchy’s formuld&;v, (W/) = 11 (0W)/n. On the other handyarAs follows from
the first Eq. (7.9).

In particular, if W is a disk of diameterl we get,
32
372
respectively (for the second result we have used Eg. (2.9)). The preceding inequality is
a particular case of Ohser’s paradox, which is discussed in the next section.

Vardg = d '\ and Vardg = ——d 1 Ag > Varig, (7.13)

Isotropic Poisson segment process iR2. Here the grains are isotropically oriented
segments of length:= ul(Tfl)), and the germs are the midpoints of the segments which
constitute a stationary and isotropic Poisson point process of inte\ilgﬁtysee Eq. (7.2).
We consider two alternative unbiased estimators\@fbased on the intersection df
with a convex windowW. The first one is the counting estimaﬁxf, which is based on
the numberN of segments hitting?’, and it uses the second Eqg. (7.4). Thus,

~ NI ~ A
Av = sy Varde = Ty
EtVQ(Wt b T1 ) EtVQ(Wt © T1 )

(7.14)

becausdEN = VarN = A = Agl 'Eqn (W, ® jvl((n)_ The second estimatohs, is the
direct estimator, namely the ratio of the total segment length in the interibf od the
area of W. Thus,

~ 1/1((1) N W)

- Ao 20
_n@enw) SR T T 1 7.1
Ao (W) Varlg T2 /0 Fw (1) ka y(r) dr, (7.15)
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the latter result stemming from Eq. (7.10).
To get explicit results suppose again thdtis a disk of diameterl. Then,

8 1
T it L
Var)\q> = m an V&I’)\@ = 7Td21/4 > Var)\q>, (716)

respectively. For the second result we have applied Eg. (3.11) to the second Eq. (7.15)
for the casel > d. As expected the preceding results converge to the corresponding
ones in Eq. (7.13) a$ — oo.

8. VARIANCE COMPARISONS FOR TWO DIFFERENT DESIGNS TO
ESTIMATE THE INTENSITY OF A STATIONARY ¢—FLAT PROCESS

8.1 Paradoxes of Ohser type

Consider first a stationary and isotropic Poisson line prodesdgth realizations in
R? sampled by a fixed convex windoW, see Fig. 14. The inequality (7.13) shows that

AL AL

@ / ® /)

Figure 14 The Ohser type variance 'paradox’ for Poisson lines on the plane. In order to estimate
the intensity of the line process (hamely the mean line length per unit area) with a convex window
W, it is more efficient to count the number of test lines hitting the window (a) than the actual
line length within the window (b). See Section 8.

Varlg > Varlg whenW is a disk. More generally, for any convex winddW we have
E{vi(®NW)|N} = N - wun(W) /11 (OW), (8.1)
so that, recalling the definitions given in Eq. (7.11) and Eq. (7.12),
E(Ap|N) = 7N/ (0W) = Ag, (8.2)
and by the Rao-Blackwell theorem,
Varx@ > VarkE (X@|N) = VarXq). (8.3)
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Thus, for the stationary and isotropic Poisson line process the counting estimator (7.11) of
the intensity\s is always at least as precise as the direct estimator (7.12), (Ohser, 1990).
This is an apparent paradox becawséd N W) seems at the first sight to carry more
information thanN. On a second look, however, one realizes that the direct estimator
has two sources of variation, the first one due the varying number of lines Hitfimgqd

the second due to the varying chord lengths within whereas the counting estimator
has only the first source of variation.

Baddeley & Cruz-Orive (1995) revisited Ohser’s paradox. Further, Schladitz (1999,
2000) proved the superior efficiency of the counting estimatoof A\ over the direct
estimator \y for a stationary Poissog—flat process® with an arbitrary directional
distribution, that is,

~ N ~ v (eNW)

)\(I)Z )\(I):

SR N— Var Ao < Var \e. 8.4
[EtVn,—q(Wt,)7 Vn,(W) y ar Ag S var Ag ( )

Below we show the same result using a simpler approach.
Lemma 8.1. Let Ao represent any unbiased estimator)af. Then,

E(As|N) = Ao, (8.5)
the counting estimator.

Proof. We use a similar argument and the same notation as in the proof of Proposition
7.1. Recall also thah is given by the first Eq. (7.4). Thus,

Ao =Ede =Y p(k; N E(Xa|N = k), YA > 0. (8.6)
k=0

On the other hand,

~ > L
Ao =Ede =S plkiA) ————— VA > 0. (8.7)
; [Etyn—q<m,>

From the preceding two identities it follows that

)\}

TEQeIN = k)
k=0

VA > 0. (8.8)

Z kf IEtl/,, q(W,>
Thus we have two identical power series\imand therefore the corresponding coefficients
must be identical, whereby,

k

E(As|N = k) = e (W)

= I(ve)Aa, Yk €N, (8.9)

which implies the required result.
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Theorem 8.1. The counting estimatoks is the best unbiased estimator of the intensity
Ag Of a stationary Poissog—flat processb with an arbitrary directional distribution.

Proof. Bearing Lemma 8.1 in mind, the result is a direct consequence of the Rao-
Blackwell theorem.

8.2 Central limit theorems

Let &, represent the Poissan-flat process of intensityg, in R", generated by the
intersections ofn — ¢)—tuples of hyperplanes of a stationary Poisson hyperplane process
®,_,. Suppose tha?, _; is sampled by a window,, (), namely the:—dimensional ball
of radiusr, and consider the counting and the direct unbiased estimatoyrs, ohamely

5y #@OB(r) 5 (@0 B(r)
Ae,(r) = Vn—y(Bu—y(1))’ Ao, (7) v(Ba(r))

(8.10)

respectively. Heinrichet al. (2006) have shown that the preceding estimators are
asymptotically normally distributed and, moreover,

lim TV&I’(X@Q(T)) < lim rVar (X%(T)), (8.11)
namely the counting estimator is asymptotically more efficient than the direct estimator.
Asymptotic confidence intervals were thereby constructed to estirhatewith the
counting estimator.

9. DISCUSSION

In the foregoing sections we have presented a coherent set of second moment formulae
for the intersections between bounded sets and flats, or test systems in Euclidean spaces.
Some of these formulae were so far scattered in the literature, and even in these cases
proofs were generally unavailable. The collection is however not exhaustive because we
have assumed that the target set (or the sampling window in the model based case) was
of dimensionn in R". More research is therefore needed to endow the subject with a bit
more generality. In fact hitting a target set of dimensiomith a probe of dimension
gin R" with kK +¢ > n butk < n andq < n is important for some applications.

In particular it would be useful to predict the variance of the number of intersections
between a target set consisting of curves and a known test system of curves in the plane
(see e.g. Cruz-Orive & Gual-Arnau, 2002, Fig. 6 and 7).

The formulae are useful to compute second moments of intersection measures
specially when the intersecting geometric objects are known analytically. For instance, a
classical problem, already considered by Carl F. Gauss, is to determine the variance of
the number of lattice points inside an randomly moving oval. The result of Eq. (4.13)
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for the disk (Kellerer, 1986) is amenable to computation (Eq. (4.14)), easily extensible
to the sphere, and it looks simpler than previous solutions (Kendall, 1948, Kendall &
Rankin, 1953). In practical stereology, however, the problem is different: there one has
for instance a bounded planar set of arbitrary shape, and the problem is to predict the
variance of the point counting estimator of its area obtained with a test grid — or, one
has a three dimensional object, like a brain, and the problem is to predict the variance
of the Cavalieri estimator of volume (M&an, 1960, 1989; Gundersen & Jensen, 1987;
Cruz-Orive, 1989; Kiéu & Mora, 2006). The most popular practical approach is based
on G. Matheron'’s transitive theory (Matheron, 1971; Kéal, 1999; Garcia-Fiflana &
Cruz-Orive, 2004). In practice, however, the transitive approach is extensively used only
for the point count estimator of area, and for the Cavalieri design. Technical difficulties
arise when one tries to obtain variance predictors for other sampling schemes. In this
sense, we feel that the formulae given here constitute prerequisites to progress in the
mentioned direction. One has to rewrite them in a suitable way, eventually incorporating
harmonic analysis, and seeking suitable models for the relevant geometric covariograms.
The formulae given here have also proved useful to better understand the so called
'paradoxes’ arising when lower dimensional probes perform better that higher dimensional
ones, both in the design case (Sections 5, 6) and in the model based case (Section 8).
More work is needed, however, to establish new theorems — or at least new ’'rules of
thumb’ — which better characterize such paradoxes, if at all possible, in a general setting.
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Appendix A. BASIC TOOLS FOR GEOMETRIC SAMPLING

A.1 Unbounded flat probes

Let G, ,,—, denote the Grassmann manifold, namely the space of non-oriented linear
q—subspaced,; in R", and letF), , denote the space of-flats L,. For a vector
z € R" we have,

Ly=Lyo+2 2€Ljy=Luyy q=01,..n, (A.1)

(a O-flat is just a point). Thus, @flat is a linearg—subspace translated by a vector
from its unique orthogonal complemehj[o], which is in fact a lineafn — ¢)—subspace.
The densityd L[, of the rotation-invariant measure @#,,,—, is unique up to a constant
factor (Santalo, 1976). MoreovetL,, = dL,_,. On the other hand, the density,,
of the motion-invariant measure ah, , may be expressed as follows,

dL, = v,_,(d2z) A dLn_q[O], (A.2)

namely the exterior product of the density of the Lebesgue measure in the orthogonal
complement of, (which is responsible for the location &f,), times the invariant density
for the orthogonal complement, (which is responsible for the orientatiah, pf

Stereology and stochastic geometry incorporate probability theory and statistics to
the foregoing concepts of integral geometry (Miles & Davy, 1976, see Cruz-Orive, 2002,
2003 for a survey). The first step is to construct probability elements induced by the
relevant invariant densities. For instance the rotation-invariant or isotropic probability
element onG,,—, reads,

P(dt) =~ L e Gq,n—q~ (A3)



where we writedt for d Ly, for short. When convenient, we also wrifg(z,¢) for the
r—flat which is a translation of,;;o) = L,(0,0) by z. The denominator of the normalizing
constant in the right hand side of Eqg. (A.3) is the total measur@ of_,, namely,

On—lOn—Q Tt On—(
dt = AL, = L, A.4
/0 /G 70,010,250y A4

Tq,n—q q,n—q

whereO;, is the surface area of the-dimensional unit spher§*, see Appendix D. Thus
P(dt) may be regarded as a uniform probability elemen&gn_,. On the other hand the
measure or¥;, , is not finite, and consequently we may resort to defining a probability
element forg—flats hitting a compact—dimensional subset” C R", whereby the
denominator of the normalizing constant is,

/ dL, = (/ dt)/ P(dt)/ Vn—q(dz)
{L,;:YNL,#0} an—gq Gyn—yg Y/
_ ( / dt) Esvny(Y]),
Gon—yq

whereY, represents the orthogonal projectionofonto the orthogonal complement of
t € Gyn—y. Thus the probability element for a isotropic and uniform randp#flat
(IUR g—flat’, an abbreviation introduced by R.E. Miles) hitting reads,

Vn—q(dz) P(dt)
Eiv—y(Y/)

(A.5)

P(dz,dt| 1) := P(dz,dt|]Y N L,(z,t) # 0) = (A.6)

The preceding expression is valid for a directional distributi®f) which is not
necessarily isotropic. In particular, if the directions constant the;—flat is said to
be FUR (fixed uniform random) hittiny. The corresponding probability element is that
of the uniform distribution onY, namely,

Vn—q(d2)
Vn—q(¥)
Moreover, dividing the right hand side of Eq. (A.6) by that of (A.7) we obtain,

vn—q(Y}) P(dt)
Eivn—o (YY)

P(dz|t, 1) = zeY,. (A7)

P(dt| 1) = , t € Gyn_y- (A.8)

The mean contents of the intersection betweén-dimensional subsét, ¢ R" and
a lUR g—flat L,(z,t) hitting Y}, is easy to determine using the Crofton-Samt@irmula
(Santab, 1976, p. 245; De-lin, 1994, p. 157) and Eq. (A.6) with Eq. (A.3). Here and in
the sequel we assume thiatt- ¢ > n. The result is,

1 O, Ok tq—n
E:vi—y ((YL);) 010,

IEVI;—I—q—n(YVk N Lq(Z, t)| T) = : Vk(YVL) (Ag)
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For k = n we have the following formula for a FUR—flat hitting Y,,
Vn(Yn)
vy ((Ya))
Suppose that,, is a convex body and sét=n — 1, ¢ = 1. Then the left hand side
of Eqg. (A.9) is almost surely equal to 2 and we get Cauchy’s projection formula,

_ OnO()
20,104

Ev, (Y, N Lz, t)[t, 1) = (A.10)

[EtVn—l((Yn—l);) : Vn—l(Yn—l)' (All)

For instance the mean orthogonal projected length of a conveX,set R% onto an
isotropic axis isv; (9Y)/m; the mean orthogonal projected area of a convexset R*
onto an isotropic plane i (9Y)/4; etc.

Many first order formulae emerge by combining the foregoing results. In fact,
Eq. (A.9), together with Eq. (A.21) below, constitute the building bricks of the ’fun-
damental equations of stereology’.

A.2 Bounded probes: the kinematic measure

In the preceding section we have described I@Rflats as probes hitting a given
compact set’ C R". Here we consider instead a boundgdprobe, namely a bounded
manifoldT’ C R" of dimensiong = 0, 1, ...,n. With T we associate a poiat € 7" and an
orthogonaln—frame with the origin at: and rigidly attached t@’. When then—frame
is the reference frame centred at the origin ¢herobe will be denoted bmﬁ_‘{f, or To
simply if the dimension is understood. L&%, denote the special group of motionsR.

A motion g € G, of T, is a composition of a translation df,, by a vectorz € R",
(whereby we can writd’, , = Ty, + x), with an independent rotatiohc G,,[,) about
z. HereG,[,) denotes the special group of rotations acting uponmthérame associated

with T, o. The special groufr,(,| is isomorphic withSO(n), and its invariant density is
p(dt) = duy—1 Aduy—a A+ Aduy, t€ Gy, up, €S, (A.12)

wheredu,, is the area element o$f. Therefore,
/ M[O](dt) =0,-10,,9---O1. (A.13)
Gno]
Summarizing, for the transform &, by g we use the following notation,

gToo =Ty, 9= (x,t) €G,, xR, t € G, (A.14)

The required invariant density is the volume elementzQf and it called thekinematic
densityof Blaschke-Santal6. Its expression reads

p(dg) = vu(dz) A ppy(de), g € G (A.15)
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By virtue of Eq. (A.13) the invariant probability element for a rotation about the
origin can be written

p1j07(d?)
0,-10,_2-+- 0Oy’

Since the measurg(G,,) is not finite we may restrict ourselves to bounded seté&/ of
For instance, for a—dimensional compact séf ¢ R" we have,

P(dt) =

t € G- (A.16)

u({g eG,: YN gT()’o 7& @}) =0,_10,_5---01E, (Y ) T()’t) . (A.17)

Now the invariant probability element for all motiogs= (z,t) which bring Ty, into
T, such that the evert:= Y NT,; # 0 holds, becomes

n P
P, dt| 1) = 240 P (A.18)
|EtVn (Y S TO,t)
and we say that, ; is a IUR g—probe hittingY. For a FURg—probe hittingY’,
Vn(dx) 7
P(dz|t,T) = —————, v €Y & Ty,, A.19
(d[t, T) oV & o) 0.t (A.19)
the uniform distribution. Furthermore,
(Y @ Th,) P(dt
P(dt| 1) = v ) P ), t € G- (A.20)

[Etyn (Y © T}),t)

To calculate the mean contents of the intersection betwelendimensional subset
Y, ¢ R" and a bounded IUR—probe T, ; hitting it we may use the Santafformula
for bounded sets (Santald, 1976, p. 259; De-lin, 1994, p. 161) and Eq. (A.18) with
Eq. (A.16). Thus,

1 On Ok—l—q— n

[EVk—f—q—n (let N Tl?,t| T) - Etyn, (Y’L @ j}),t) OL:Oq

e (Y3) vy (Toyp)- (A.21)

For £k = n we obtain the following formula for a bounded FUR-probe hittingV,,,

Ev, (¥, 07, jt.1) = 202 tuloo)
Vn (Yn @ T(),t)

Neither Eq. (A.21) nor EqQ. (A.9) are used directly in stereology for estimation
purposes because the respective right hand sides depend on the unknown set
Nonetheless it is opportune to mention tRat, (Y, &7 ) can be computed in some cases
(notably if Y,, N T, ; is simply connected for allz,¢) € G,) by means of the kinematic
formula of Blaschke-Santal6 (Santald, 1976, p. 262). For instandg if c R® are
planar convex sets, then,

(A.22)

Ewn(Y ©T) = w(Y) +wmn(T) + (2r) 01 (Y) 11(3T). (A.23)
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A.3 Test systems

A probe which opens the way to applications in stereology is the test system (of
boundedg—probes, or ofy—flats). Details can be found in Sarda|1976, Ch. 8).

A test system of boundeg—probes may be constructed as follows.

(1). Choose dundamental tilfor a partition ofR", namely a bounded subsét, C R"
satisfying the following properties,

Iro ER": R = U Jri00s JrooNJrgo=00f k#1, (A.24)

kez

where J.; is the translate of/y, by z € R".

(2). Choose a basic prolig , of dimensiong which is contained inJy,, whereby we
obtain the following periodic set

Moo = | Trip0- (A.25)
kez

(3). Apply an isotropic and uniform random motigr= (z,t) € G,, to Ay to obtain the
required constructiogA,, = A, ; as follows. First rotate the fundamental tifg,
by t € G, with the isotropic probability element (A.16), to obtaify;; with this
fundamental tile obtain an isotropically rotated partition with tiles, ; = Jo; + 7%,
whereT;; is the translation vector;, , rotated about the origin. The prob&s , o
are rotated with the tiles containing them to dget, ;. Finally choose a uniform
random pointz € Jy;, so that the joint probability element of the pair, ¢) is

u[o](dt) yn(d:(;)
P(dz,dt) = . , te G, x € Jyy. A.26
( ) On—lon—Q Ut Ol Vy (J(),()) 0} 0! ( )
Then
Ave = Toprs (A.27)

kel
is a IUR test system.

Consider an unknowrk—dimensional compact sét;, C R". The fundamental
advantage of test systems is that, unlike Eqg. (A.6) and (A.18), the probability element
(A.26) does not depend oYj,. Using Santal6’s identity (Santal6, 1976, p. 131; see also
Cruz-Orive, 2002, 2003) we obtain,

O" Ok —n V( T ,
q n ,

: VA(Yk) (A.28)
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The generation of a test system @#fflats follows similar steps as above.

(1). Choose an isotropitn — q)—subspacd.,,_,(0,t) with ¢t € G, ,,_, according to the
probability element (A.3).

(2). Choose a fundamental til ; of L,,_,(0,¢) and construct the corresponding periodic
set

Aos = | Lg(7aas 1), (A.29)

kez
where—7;,; is a translation vector which brings, , ; to coincide with.J,; leaving
Ao+ unchanged for alk € Z.
(3). Finally choose a uniform random poiate .J,; so that the joint probability element
of the pair(z,t) is,
Vy—q(dz) P(dt)
Vn—q(JOvO)

whereP(dt) is the isotropic density (A.3). We thereby obtain the required IUR test
system ofg—flats

P(dz,dt) = , 2 € Jor, t € Gun_ys (A.30)

Acv = Loz + mes, ). (A.31)

kel
For a IUR test system aj—flats we have the corresponding identity,

O, Ottg—n 1
Evieyyon (Vi N Azy) = = 2 - TR (A.32)
g n—g\ 0,

A.4 The geometric covariogram

Let Y denote a compacdi—dimensional set oR” andz = (r,u) € R" a point or
vector of modulusr = ||z|| and orientationu. € $"~!. The geometric covariogram of
the setY is defined as

k’y(l’) = / 1Y(y) 1Y(y + .’L‘) Vn(dy)7 x € Rnu (A.33)
HTI

(Matheron, 1971), and it has the following properties,

k‘y (.CL’)

vo(Y NY_,), whereY_, :=Y —z,

(A.34)
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If we averageky (xz) over isotropic rotations, namely with respect to the isotropic
orientation density

du
On—l ’
then we obtain the isotropic geometric covariogram

P(du) = uwe St (A.35)

ky(r) = E. ky(r,u) = / ky(r,u)P(du), r>0. (A.36)
Snfl
Examples of isotropic geometric covariograms
For a diskY c R? of diameterd we have, (Borel & Lagrange, 1925),

kaisk (1 d) = d gaisr(r/d),
e i L

5 (1 <z < o0).
For a squaré@” C R? of side lengths we have, (Ghosh, 1943),
ks{l:k(r 8) = 82 gsq ];(’I"/S) k = 17 27 37

O =

9sq.1() (7r—4:13—|—x2)/7r (0<z<1), (A.38)
Gsq2(T (45111 (1/2) + 4v2?2 — 1 — 22 —2—71')/ (1§x§\/§),
gé’fJJ( ) 0, (\/§<SL’<OO>.
Finally, for a straight line segmert ¢ R? of length/,
. [ — r, (0 S r S l)7
ey (13 0) = {0, (I <r < o). (A.39)

Appendix B. ELEMENTS OF STOCHASTIC GEOMETRY
FOR MODEL BASED STEREOLOGY

B.1 Manifold processes

As described in Mecke (1981), @&—dimensional manifold process is a random
variable® defined on a probability spa¢€?, 7, P) with values in(M,, M, ), where:

« M, is the family of closed setgp C R" with the property that the intersection with a
ball B,(z,r) is a piecewise smootl—dimensional manifold of clas§" and

v(e N By(z,r)) < oo, Vr>0, zeR" (B.1)
« M, is the smallest—algebra inM,, such that all functiong’z of the form
fe M, —=R: fplp) =v,(pnNDB) (B.2)

are measurableB € B(R"), where3(R") is the Borelo—algebra inR".
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Thus the distributiorPs of ® is a probability measure ofM,, M, ), and the choice of
M, ensures that,(® N B) is a real random variabléB € B(R").

A manifold processpb is called stationary if it has the same distribution as its translate
®., Vz € R", that is if P4 is translation invariant. Furthed is isotropic if it has the
same distribution as its rotatici®, V¢ € G, that is if Pg is rotation invariant. ¢
is both stationary and isotropic, théh, is said to be motion invariant. An important
characteristic of a manifold procedsis its intensityAg, namely

 Ev,(®N B)

Ao v (B)

for BeM,, v,(B) < oc. (B.3)

Examples of manifold processes are point procegses0) and line or fibre processes
(¢ = 1). Manifold processes are special cases of random closed sets (Matheron, 1975;
Mecke et al., 1990; Stoyaret al., 1995).

B.2 Stationary Poisson processes of pointg—flats, and ¢—subsets

A stationary Poisson point proceds of intensity A in R” is characterized by the
following two properties:

« the random variable, (B N ®) has Poisson distribution with mean,(B) VB €
B(Hn),

« the random variables, (B, N @), ..., (B N @) are independent for all disjoint
By, ...,B; € B(R") and arbitraryk € N,

A relevant consequence is that,/if(B N ®) = N for a compact seB C R", then the
N points are uniform and independent ih

A stationary Poissor—flat process (Miles, 1974) is a manifold process

¢ = U Lq(zk,tk,) (B-4)
keN

of intensity A¢ in R” such that:
« the translation$ J, ., z+ form a stationary Poisson point process of inten&ityin R" ¢,

« the orientations(t,, ¢, ...), . € G,.—, Yk € N are independent and identically
distributed.

For a compact:—dimensional windowy;, ¢ R" with £ + ¢ > n we have the following
first order formula, (analogous to Eq. (A.32)),

OnOk—l—q—n

[EVk-f—q—n((I) N n) — >\<I’ ) O;O
Uy

(Yh), (8.5)

(Mecke, 1981).
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Finally, a stationary Poisson process of congrugntdimensional subsets (or
q—subsets, for short}“z(j’ftk is a manifold process

¢ =|JT, (B.6)

kEN

of intensity A in R" such that:

* the translations J, ., z+ form a stationary Poisson point processiih of intensity
)\g)) = A\s/v, (Tflq),l), qg<n, (B.7)

* the rotationgt, t», ...), & € G,jg) Vk € N are independent and identically distributed.

Here @ is also called a germ-grain process with Poisson germs, (Steyah, 1995).
For a compact—dimensional windowY; C R” the same identity (B.5) holds also in
this case (by analogy with Eq. (A.28)).

Appendix C. DETAILS FOR THE COMPUTATION OF SECOND MOMENTS

C.1 Square hit by the boundary of another square.

We specify the limits of the double integrals in the right hand side of Eq. (3.18) to
facilitate their numerical computation for the corresponding plot in Fig. 9. The different
ranges of variation of the side lengtldss of object and probe, respectively, and the
actual domains of variation df;, 1, k,.2, (EQ. (A.38)), lead to the following expressions,

1 o
3 Eio (Y &) (),t) . [EI/1 (Y NT. )
Ill(s,d) + 2[21(S,d) + Ig1(8,d), <0 <s< d/ﬂ), (C.1)
_ LI (s, d) + 215 (s, d) + Isx(s, d), (d/\/i <s< d)» '
Lia(s,d) + 2Ips(s,d) + Is3(s,d), (d < s < dv?2),
Lia(s,d) + 21(s, d), (dV2 < s < o0),

where
(s, d) :/ dz / kg1 (z — y,d)dy, (0<s < d),
s x—d
(s,d) / d:v/ se1(z —y,d)dy + dx ksgo(z —y,d)dy

+/ dx/ kyur(z — y,d) dy, (d <s< dﬁ),
d r—d
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+/d dx/i ksq,?(\/ $2+y2,d) dy
N N =
s V2d2—z2
+/ dx/ ksqg(\/:ﬂ F y2,d> dy, (d <s< d\/§>,

0

d NI
+/ dx/ ksq,l ( V z? + y27 d> dy
d/’\/§ 0

—|—/ d:(;/ ]fsqﬂg(\/.T? + yQ,d) dy, (d\/§ <s< oo),
d 0
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Adx/{ sql(\/(ﬂf—y)?—l—SQ,d)dy, (Ogsgd/ﬁ)7

V=52 x -
132 S d / / 5g1<\/($—y)2+827d) dy
0
r—/d2—52 -
+ / / ksq,? (\/(.’L' - Z/)Z + 827 d) dy
+/ dx/ ksq,1<\/(x —y) + 32,d) dy, (d/\/§ <s< d>,

V2d?—s? x
I33(s, d) 2/ d:l?/ Fisq.2 (\/(fﬁ —y)’ + 52, d) dy
0

0

+/ dz / ksq,2<\/(x — )’ + SQ,d) dy, (d <s< d\/i).

C.2 Square hit by the vertices of another square

Here we display the necessary expressions to corriﬁﬁféY, T“))), see the first
Eq, (5.16), for the corresponding plot of Fig. 9. The prai# is the union of the four
vertices of a square of diagonal lendthitting a square of side length uniformly and
isotropically at random. The procedure is analogous to that for the disk, see Eq. (3.20).
Thus,

1 v
1 Eva (Y @ Toy) Evg (Y NT.y)

d2 + 2]{35(171 (l/\/§7 d) + kjsqvl(h d)?

(

@ + 2k 1 (1/V2, d) + ko 2(l, ), (d <1< dv/2), (€2
(
(

d2 + 2]{55(172 (l/\/§7 d>7
d?,

Appendix D. LIST OF NOTATION

* 1. hitting event.

* 1y (z): Indicator function of a subseét, that isly(z) = 1if z € Y and1ly(z) =0
otherwise. Useful properties are: (i) For a boundedset R" with associated point,
17, (y) = 17._.(y — z). (ii) For a translation invariant integrable functigh: R" — R,
Ir, fy)dy = [g, f(y + z)dy.

» ©: Minkowski addition or subset addition, namelye 7T ={y+z: ye Y,z €T}
for Y, T C R". The subset consisting of all pointssuch that7,, hits Y is precisely
Y & Ty, thatis,Y & Ty, = {z: Y NT,, # 0}

* Bi: Unit ball in R".
* Bi(x,r): Ball in R* with centrez € R* and radiusr.
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br: Volume of By, i.e. by = vi(By) = Op_1/k = o2 /T (k/2 + 1).

CV2(Z) = Var(Z)/(EZ)*, square coefficient of variation of the random variaBle
dY: Boundary of the set’.

dim(Y): dimension of the manifold .

dL,: invariant density onG,,,,.

dL,: invariant density ont), ,.

EZ: mean value, or mathematical expectation, of the random varidble
F, ,: space ofg—dimensional affine linear subspacesqorflats.

FUR: uniform random of fixed orientation.

G,n—q: Grassmann manifold, space of non oriented linpasubspaces if".
G,. special group of motions iifRR".

G, .- special group of rotations iR" about a fixed point: € R", (isomorphic with
the groupSO(n)).

IUR: isotropic and uniform random.

Jo+: fundamental tile of a partition oR", with an associated point at the origin and
orientationt € G,

A, test system of boundeg-probes, or ofg—flats.

L, = L,(#,t): g—dimensional linear affine subspaceRf with orientationt € G, ,,_,
and translation: € R"77.

L, = L,(0,t): g—dimensional linear subspace R with orientationt € G, .
p(+): kinematic measure, namely the invariant measure&zgn

p1(+): invariant measure 0K [,

te(+): invariant measure ot .

v,(-): g—dimensional volume measure Ri* (Hausdorff measure).

O;: surface area 08", i.e., v (S*) = 20 *T/2 /D ((k + 1)/2).

P(-): probability measure.

P(dz): probability element, namely the probability that a random variable takes a value
in an infinitesimal neighbourhood af. If f(.) is the density, thef®(dz) = f(x)dz.

R*: k—dimensional Euclidean space.
§*: k—dimensional unit sphere.
4. translation vector.

T, +: boundedg—dimensional probe with associated poinind orientatiort.
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. TOJ: symmetric of 7y, with respect to the origin, namelylu“o,t = —Ty: =
{—z: x €Ty}

e Var(Z) = EZ? — ([EZ)Q, variance of a random variablég.

« Y}': orthogonal projection of a s& C R" onto L,_,(0, ).
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