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SUMMARY

First moment formulae for the intersection between a fixed geometric object and one
moving according to the kinematic density constitute the basis of stereology and they
are essentially well known. The corresponding second moment formulae are less known,
however; some of them are scattered in the literature, and their proofs are often absent.
Such formulae may be useful to compute exact variances when the objects involved
have a known geometric shape on the one hand, and to obtain practical predictors of the
estimation variance on the other. The purpose of this paper is to present a partly new,
coherent set of second moment formulae for a fixed compact set intersected by mobile
flats, bounded probes, or test systems endowed with the corresponding invariant measures,
or by a stationary manifold process. We thereby contribute to a better understanding of
the so called variance ’paradoxes’, arising when a probe performs better than a higher
dimensional one. For completeness we include the necessary tools in two appendixes.

Keywords: Flat, geometric covariogram, integral geometry, invariant density, Jensen-
Gundersen paradoxes, kinematic density, manifold process, Ohser paradoxes, Poisson
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1. INTRODUCTION

Geometrical parameters such as volume, surface area, length, number of components,
etc., of a physical structure are of interest in many disciplines. Such properties can in
principle be estimated by intersecting the structure with a geometric probe which typically
consists of test points, lines, planes, or slabs. If the structure is fixed and bounded, then
the probe has to be endowed with a proper mechanism of randomness (Miles & Davy,
1976; Davy & Miles, 1977), whereas, if the structure can be regarded as a realization
of a random set (Stoyanet al., 1995), then the control of the probe may not have to
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be that strict. The former design is termed ’design based’, the latter ’model based’;
the theory and methodology of such designs constitute the object of stereology (Weibel,
1979; Baddeley & Jensen, 2004; Howard & Reed, 2005).

The first order properties of the relevant intersection measures are relatively straight-
forward, and they constitute the well known ’fundamental equations of stereology’
(Miles, 1972; Cruz–Orive, 2002, 2003). Such equations are identities relating the
target parameters of the structure with the mathematical expectation of the corresponding
intersection measures, whereby the estimation of the parameters becomes a relatively
simple matter. The second order properties of the intersection measures, however, are
in general nontrivial and therefore less known: this paper is devoted to the study of
such properties.

Second order properties of random intersection measures may be used, for instance:

(i). To obtain suitable variance models which allow the estimation of the variance of a
stereological estimator from a sample of data. Here we obtain second order results as
prerequisites to obtain further variance predictors for systematic sampling. So far the
best known cases refer to systematic sampling with test points and segments on the
real axis (Gual Arnau & Cruz-Orive, 1998; Cruz-Orive, 2006). Much further work
is needed for sampling on higher dimensions with systematic probes (Cruz-Orive,
1989; Kiêu & Mora, 2006; Gual-Arnau & Cruz-Orive, 2006, and references therein).

(ii). To assist machine vision, automatic object detection, etc., in problems like: which
are the mean and the second moment of the area of the intersection between a square
and a hitting disk moving uniformly at random? Or, more generally, how to compute
the first two moments of the random measure of the intersection between a nonvoid
compact set and a regular grid of test points, curves, or windows?

(iii). To explain the so called ’variance paradoxes’ of stereology, one of which states
that point probes such as the four corners of a square may be more precise than
the square itself to estimate an area (Jensen & Gundersen, 1982; Baddeley & Cruz-
Orive, 1995; Voss, 2005). In the model based case, counting the lines hitting
a convex window is more precise than measuring the corresponding intersection
length to estimate the mean length per unit area of completely random straight lines
on the plane, namely of ’Poisson lines’, (Ohser, 1990; Baddeley & Cruz-Orive,
1995; Schladitz, 1996, 1999, 2000; Voss, 2005).

Our first purpose is to present a coherent and relatively comprehensive set of second
moment formulae of the type mentioned in (ii) above. Our design based results (Sections
2–4) concern a compact set of dimensionin n, hit by a geometric probe, or by a
regular lattice of probes (called a test system) of dimension , such that
the relative position and orientation of object and probe are ’random’ in a well defined
sense. The basic concepts and tools, and the well known first order properties, are given
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in Appendix A. The best known second order formulae correspond to independent probes
for , and they are scattered in the literature (e.g. Matérn, 1960, 1989; Enns
& Ehlers, 1978; Kellerer, 1986). For the model based case we consider second moment
results involving Poisson probes of dimension , bounded or unbounded,
intersecting a bounded set of dimensionin n, (Section 7). Here the more familiar
results concern also the cases , (Ripley, 1981; Kellerer, 1986; Stoyanet al.,
1998; Diggle, 2003). The necessary prerequisites are given in Appendix B.

Our second purpose is to deepen in the understanding of the ’variance paradoxes’
mentioned in (iii) above, extending and simplifying the known results and presenting
new insights and examples; we do this in Sections 5, 6 and 8 using the results obtained
in the earlier sections.

To facilitate reading a list of notation is supplied in Appendix D.

2. INDEPENDENT FLAT PROBES HITTING A
COMPACT SET OF DIMENSION IN n

Consider a compact set n with dim hit by an IUR flat q ,
, namely a flat endowed with the probability element given by

Eq. (A.6). Then the mean intersection contents is given by Eq. (A.9). The latter
expression alone is not suitable to estimate the contentsn directly because it contains
the mean total projection t n�q

0
t , which is generally unknown; as we shall see, this

difficulty disappears with the use of test systems (Section 4). Conditioning on the hitting
event ’ ’ is assumed throughout.

2.1 Second moment formulae for the intersection between a
flat and a compact set of dimension in n

Proposition 2.1 If a flat q is FUR hitting the set with a probability element
given by Eq. (A.7), then,

2
q q

n�q
0
t Lq(0;t)

Y q q;n�q (2.1)

where Y is the geometric covariogram of , see Eq. (A.33).

Proof. Throughout we use the technique of expressing2q as the product of two
integrals over indicator functions, and then applying Fubini’s theorem. We obtain,

n�q
0
t

2
q q

Ln�q(0;t)

2
q q n�q

Ln�q(0;t)
n�q

Lq(z;t)
Y q

Lq(z;t)
Y q

(2.2)

3



For each point q there is a unique point q such that , see
Fig. 1. Further, the Lebesgue measuren can be decomposed into the product ofq on

q times n�q on n�q . Therefore,

n�q 0
t

2
q q

Ln�q(0;t)
n�q

Lq(z;t)
Y q

Lq(0;t)
Y q

Lq(0;t)
q

n
Y Y n

Lq(0;t)
Y q

(2.3)

Figure 1 Construction used in the Lebesgue measure decomposition introduced in Subsection 2.1.

Corollary 2.1. If the flat is IUR hitting with a probability element given by
Eq. (A.6), then,

2
q q

t n�q 0
t

1

0
q

q�1
Y (2.4)

where Y is the isotropic covariogram of , see Eq. (A.36).

Proof. Take expectations on both sides of Eq. (2.1) with respect to the probability
element given by Eq. (A.8), and recall the definition (A.36). We obtain,

t n�q 0
t

2
q q

Gq;n�q Lq(0;t)
Y q

Lq(0;0)
Y q

(2.5)
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We may parametrize the pointby the spherical polar coordinates , whereby

q
q�1 q�1 (2.6)

and therefore,

t n�q
0
t

2
q q

q�1

1

0

q�1
Y

q�1
1

0

q�1
Y

(2.7)

2.2 Example: convex set hit by a IUR straight line in 2.

Consider a nonvoid convex set 2 hit by an IUR straight line 1 in the same
plane. Applying in turn Corollary 2.1 and Cauchy’s projection formula (Eq. (A.11)), we
obtain,

2
1 1

t 1
0
t

1

0
Y

1

1

0
Y (2.8)

The preceding integral is finite because the setis bounded.

Disk hit by a IUR straight line in 2. Suppose that is a disk of diameter in the
plane. Substituting Eq. (A.37) into the right hand side of Eq. (2.8) we get,

2
1 1

d

0

disk
2 (2.9)

Square hit by a IUR straight line in 2. Let represent a square of side lengthin
the plane. Substituting Eq. (A.38) into the right hand side of Eq. (2.8) we get,

2
1 1

s

0
sq;1

s
p
2

s
sq;2

2 (2.10)

Remark 2.1. From Eq. (2.4) it is easy to show that, in general,

2
q q shape constant scale factor2q (2.11)
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3. INDEPENDENT BOUNDED PROBES HITTING
A COMPACT SET OF DIMENSION IN n

Consider a compact set n with dim hit by a bounded IUR probe

z;t with dim 0;0 , , namely a probe endowed with the probability
element given by Eq. (A.18). Then the mean intersection contents is given by Eq. (A.21),
and analogous remarks apply to those made in Section 2 regarding the direct applicability
of the latter expression, because Eq. (A.21) depends on the mean Minkowski addition

t n 0;t . Next we study the second moment measures.

3.1 Second moment formulae for the intersection between a bounded
probe of dimension and a compact set of dimension in n

Proposition 3.1. If a bounded probe z;t is FUR hitting the set with the uniform
probability element given by Eq. (A.19), then,

2
q z;t

n 0;t T0;0 T0;0
Y q q n[0] (3.1)

where Y is the geometric covariogram of .

Proof. Regard the set z;t as mobile hitting the fixed probe 0;0 with the
uniform probability element given by Eq. (A.19). Then,

n 0;t
2
q z;t

n

2
q 0;0 z;t n

n
n

T0;0
Yz;t q

T0;0
Yz;t q

T0;0
q

T0;0
q

n
Y�x;t Y�x;t n

T0;0 T0;0
Y q q

(3.2)

Corollary 3.1. If the probe is IUR hitting with the probability element given by
Eq. (A.18), then,

2
q z;t

t n 0;t T0;0 T0;0
Y q q (3.3)

where Y is the isotropic covariogram of , see Eq. (A.36).
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Proof. Take expectations on both sides of Eq. (3.1) with respect to the probability
element given by Eq. (A.20).

3.2 Special case of a ’ plate probe’

Proposition 3.2. Suppose that the probe 0;0 is a ’ plate’, namely a bounded
dimensional subset of a linear subspaceq , . If z;t is FUR hitting

the set with a probability element given by Eq. (A.19), then,

2
q z;t

n 0;t Lq(0;t)
Y T0;t q n[0] (3.4)

where Y is the geometric covariogram of in n, whereas T0;t
is that of 0;t

in q, namely within its containing linear subspace q .

Proof. We have,

n 0;t
2
q z;t

n
n

Lq(z;t) Lq(z;t)
Y Tz;t Y Tz;t q q

(3.5)

Set and then use the decompositionn q
(q)

n�q (n�q) , where
(q)

q
(n�q)

n�q , . We obtain,

n 0;t
2
q z;t

Lq(0;t)

q
(q)

Ln�q(0;t)

n�q (n�q)

Lq(z(n�q);t) Lq(0;t)

Y Y T0;t T0;t q q

Ln�q(0;t)

n�q (n�q)

Lq(z(n�q);t) Lq(0;t)

Y Y

Lq(0;t)

T0;t T0;t q
(q)

q q

Lq(0;t)

T0;t q

Ln�q(0;t) Lq(z(n�q);t)

Y Y q n�q (n�q)

Lq(0;t)

Y T0;t q

(3.6)
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Corollary 3.2. If the bounded plate probe z;t is IUR hitting with the probability
element given by Eq. (A.18), then,

2
q z;t

t n 0;t

1

0
q

q�1
Y T0;0 (3.7)

where Y is the isotropic covariogram of , whereas T0;0 is the isotropic
covariogram of 0;0 within its containing linear subspaceq .

Proof. Take expectations on both sides of Eq. (3.4) with respect to the probability
element (A.20) and obtain first the isotropic covariogramY . Then apply Eq. (2.6)
and obtain the isotropic covariogramT0;t bearing Eq. (A.35), (with ), in mind.

Remark 3.1. It should be stressed that Eq. (3.4), (3.7) hold if0;0 is of full dimension
within q . For instance, if then 0;0 may be a straight line segment, whereas
if then 0;0 may be a platelet, but not a planar curve.

Remark 3.2. In the literature, the best known results in the present context correspond
to Eq. (3.3) with .

3.3 Examples for .

We present five examples with a double purpose, namely to illustrate the foregoing
propositions in the first place, and then to obtain the results which will be used in
Subsections 5.3, 5.4. The first example illustrates Eq. (3.7) with . The
second, third, and fourth examples refer to 1–dimensional probes, namely ;
however, whereas in the second example Eq. (3.7) may be used, in the third and fourth
ones we have to resort to Eq. (3.3) directly. Finally, the fifth example illustrates the case

, which uses Eq. (3.3) as well.

Here, and in the rest of the paper, we do not display the explicit expressions of the
integrals involved (whenever available), first because they are not particularly illumi-
nating, and second because they can be computed readily with a suitable mathematical
package. For the relevant plots we extensively used the commandNIntegrate[] from
MATHEMATICA  .

Probe of dimension : disk hit by a square. Let 2 represent a disk of
diameter and 0;0

2 a square probe of side length. If z;t is IUR hitting ,
then Eq. (3.7) yields,

2
2 z;t

t 2 0;t

1

0
Y T0;0 (3.8)
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The denominator in the right hand side of the preceding expression is directly available
from Eq. (A.23), namely,

t 2 0;t
2 2 (3.9)

whereas the geometric covariogramsY and T0;0 are given by Eq. (A.37) and
Eq. (A.38) respectively. We obtain,

�1
t 2 0;t

2
2 z;t

s

0
disk sq;1

s
p
2

s
disk sq;2

s

0
disk sq;1

d

s
disk sq;2

d

0
disk sq;1

(3.10)

As the square will contain the disk with probability 1, and from the first of
the preceding equations it can be verified that22 z;t converges to 2 2

, as
expected.

Probe of dimension : disk hit by a straight line segment. Consider a disk
2 of diameter and a straight line segment0;0 2 of length , see Fig. 2(a). If z;t

(a) (b)

Figure 2 Fixed disk hit by a straight line segment probe (a) and with a pair of test points (b)

equipped with the kinematic measure in the plane.

is IUR hitting , then Eq. (3.7) applies. Making use of Eq. (A.37) and (A.39) we obtain,

t 2 0;t
2
1 z;t

1

0
Y T0;0

l

0 disk

d

0 disk

(3.11)

where, in this case,

t 2 0;t
2 (3.12)

Logically as the second moment converges to the right hand side of Eq. (2.9).
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Probe of dimension : square hit by the boundary of a circle. Suppose now
that the probe 0;0

2 is the boundary of a disk, namely a circle of diameter
hitting a square 2 of side length uniformly at random. Since the circle is not a
subset of a straight line, we have to use Eq. (3.3) instead of Eq. (3.7), namely

2
1 z;t

t 2 0;t T0;0 T0;0
Y 1 1 (3.13)

Consider a mobile point 0;0, where denotes the arc length from a fixed point

0;0 to , (Fig. 3). Then and, recalling Eq. (A.38),
Eq. (3.13) becomes,

t 2 0;t
2
1 z;t

T0;0
1

�d

0
Y (3.14)

(a) (b)

Figure 3 (a), square hit by a uniform random circle. (b), illustration of the relevant distance

y x(l) = d sin (l=d), see the example in Subsection 3.3.

Thus,

�1
t 2 0;t

2
1 z;t

d sin�1 (s=d)
0 sq;1

d sin�1 s
p
2=d

d sin�1 (s=d) sq;2

d sin�1 (s=d)
0 sq;1

�d

0 sq;1

(3.15)

On the other hand,

t 2 0;t

2
disk

2 2 (3.16)
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For large , series expansion of the first Eq. (3.16) yields,

3 5 3 (3.17)

On the other hand, as the square will contain the circle with probability 1, and
the second moment tends to 2, as expected.

Probe of dimension : square hit by the boundary of another square. Here
the probe 0;0

2 is the boundary of a square of side lengthhitting a fixed square
2 of side length isotropically and uniformly at random. Again0;0 is not a

subset of a straight line, and therefore we have to use Eq. (3.13). Consider two points
on 0;0, and let denote the respective distances of each of these points from say

the leftward, or the downward (as applicable) endpoint of the side containing the point,
. Then the required distance is equal to if both points lie

on the same side, to 2 2 if they lie on adjacent sides, and to 2 2 if
they lie on opposite sides of the square probe. Therefore,

t 2 0;t
2
1 z;t

s

0

s

0
Y

s

0
Y

2 2

s

0
Y

2 2

(3.18)

Depending on the relative sizes of the preceding expression takes different forms.
The details are given in Appendix C.1. Moreover,

t 2 0;t

16
�

2
�

2

16
�

2
�

2 6
�

d2

s2

4
�

2 2 �1 d
s
p
2

2 2 8
�

(3.19)

Probe of dimension : disk hit by the vertices of a square. Consider a disk
2 of diameter hit uniformly at random with a 0–probe0;0 2 consisting of

the union of the four vertices 1 2 3 4 of a square of side length. The proper
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choice, namely Eq. (3.3), reduces in this case to a double summation namely,

t 2 0;t
2
0 z;t

4

i=1

4

j=1

Y i j

Y Y Y

2
disk disk

2
disk

2

(3.20)

On the other hand,

t 2 0;t

3
4

2 2
disk

2
disk

2

(3.21)

namely the area of the union of four disks of diametercentred at the vertices of
a square of side length. As it is easily verified that 2

0 z;t ,
(naturally 0 z;t as ).

4. TEST SYSTEMS OF PROBES HITTING A COMPACT
SET OF DIMENSION IN n

Let n represent a compact set with dim hit by an IUR test system

z;t with dim 0;0 , , (see Appendix A.3), with the probability
element given by Eq. (A.26). Then the mean intersection contents is given by Eq. (A.28).
Note that the estimation problems raised in the introductory paragraphs of Sections 2, 3
disappear here because all the quantities in Eq. (A.28) exceptk k (which is assumed
to be the target quantity), are either known or observable. For this reason the test systems
considered here are fundamental tools in practical stereology.

In this section we extend to test systems the foregoing second order results pertaining
to independent probes.

4.1 Second moment formulae for the intersection between a test system
of bounded probes and a compact set of dimension in n

Proposition 4.1 If a test system z;t of bounded probes is FUR hitting a compact
set n of dimension with a probability element given by the second factor in the
right hand side of Eq. (A.26), then,

2
q z;t

n 0;0 T0;t �0;t

Y q q n[0] (4.1)
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where Y is the geometric covariogram of .

Proof.

n 0;0
2
q z;t

J0;t

2
q 0;0 z;t n

J0;t
n

�z;t

Y q
�z;t

Y q

J0;t
n

�0;t

Y q
�0;t

Y q

J0;t
n

k2 T0;t
Y k;t q

l2 T0;t
Y l;t q

(4.2)

For each there is a unique such that k;t l;t j;t. Thus,

n 0;0
2
q z;t

T0;t T0;t
q q

j2 l2 J0;t
Y�y l;t j;t Y�y l;t n

T0;t T0;t j2
Y j;t q q

T0;t �0;t

Y q q

(4.3)

Corollary 4.1. If the test system z;t of probes is IUR hitting with the probability
element given by Eq. (A.26), then,

2
q z;t

n 0;0 T0;0 �0;0

Y q q (4.4)

where Y is the isotropic covariogram of , see Eq. (A.36).

Proof. First, take expectations on both sides of Eq. (4.1) with respect top the probability
element given by the first factor in the right hand side of Eq. (A.26). Then, apply the
inverse rotation �1 to the set , whereby the domains of integration0;t 0;t become
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0;0 0;0 respectively. Since the measureq is rotation invariant, we obtain,

n 0;0
2
q z;t

T0;0

q
�0;0

q
Gn[0]

Y0;t�1

T0;0

q
�0;0

Y q

(4.5)

4.2 Special case of a test system of plates

Here we extend the concept of plate probe introduced in Subsection 3.2 to test
systems. To achieve this we restrict ourselves to test systems0;0 with fundamental
’box’ tiles of the form

0;0 1 2 n i (4.6)

Further we assume that the fundamental probe is adimensional bounded subset of a
linear subspace, namely,

0;0 q dim 0;0

0;0 1 2 n

(4.7)

(a) (b)

Figure 4 (a), illustration of the notation used in Subsection 4.2 to construct a test system of

q plates. (b), illustration of Eq. (4.11).

For the translationsk used to construct 0;0 we adopt the following notation, see
also Fig. 4(a),

• (n�q)
j n�q are translations lying in the orthogonal complement of the

linear subspace q (which contains 0;0).

• (q)
k;j q

(n�q)
j are translations lying in the linear subspace parallel

to 0;0 and shifted by the translation (n�q)
j .
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Proposition 4.2. For a FUR test system z;0 of plate probes constructed as above,
hitting a compact set n of dimension with a probability element given by the
second factor in the right hand side of Eq. (A.26) we have,

2
q z;0

n 0;0 j2 k2 Lq �
(n�q)

j ;0
Y T0;0

(q)
k;j q (4.8)

where Y is the geometric covariogram of defined in n, whereas T0;0 is the
geometric covariogram of 0;0 defined in q.

Proof. Making use of Eq. (4.1) and setting we obtain,

n 0;0
2
q z;0

T0;0

q
�0;0

Y q

n
Y q

n
T0;0 �0;0 q

(4.9)

The inner integral in the last expression is zero unlesslies in the linear subspace
containing 0;0, i.e.,

n
T0;0 �0;0 q

q 0;0 z;0 q
(n�q)
j

otherwise.
(4.10)

Further, bearing in mind that the probes
z+�

(q)

k;j
;0

constituting z;0 are

disjoint for each q
(n�q)
j , see Fig. 4(b), and recalling the definition of the

covariogram, we have,

q 0;0 z;0

j2 k2
q 0;0 z+�

(q)

k;j
;0

j2 k2
T0;0

(q)
k;j q

(n�q)
j

(4.11)

Substituting the preceding results into the right hand side of Eq. (4.9) we obtain the
proposed result.

Corollary 4.2. If the test system z;t of plate probes is IUR hitting with the
probability element given by Eq. (A.26), then,

2
q z;0

n 0;0 j2 k2 Lq �
(n�q)

j
;0

Y T0;0

(q)
k;j q (4.12)

where Y is the isotropic covariogram of , whereas T0;0 is the geometric
covariogram of 0;0 defined in q, namely in its containing subspace.
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Proof. Start from Eq. (4.4), then follow similar steps as in the preceding proof, namely
as in Eq. (4.9)-(4.11) to establish the required result.

Remark 4.1. Since 0;0 is bounded and its translations always disjoint, there is only a
finite number of nonzero terms in the double summations of Eq. (4.8), (4.12).

Remark 4.2. For a ’sparse’ test system with the property that there is only one nonzero
term in the double summations of Eq. (4.8), (4.12), the latter two expressions are
analogous to Eq. (3.4), (3.7), respectively, valid for independent boundedplate probes.

Remark 4.3. Corollary 4.2 may not be easy to use in practice unless , (see
the examples below), because the argument ofT0;0 is not a scalar but a dimensional
vector. Even in the simplest cases, however, the exact results usually have to be computed
numerically.

4.3 Examples for

The first two examples below illustrate simple applications of Eq. (4.4), whereas the
third example uses Eq. (4.12). The second example can nonetheless be regarded as a
special case of the third one. In all cases the hit object is a disk 2 of finite diameter
. Thus, the results do not depend on the orientation of the test system.

Test system of dimension : square grid of test points hitting a disk. The test
system 0;0 is a square grid of test points of side. As fundamental tile 0;0 we
adopt the square and the basic point probe0;0 is the origin, whereby

0;0 . It is convenient to apply Eq. (4.4) directly with and
the inner integral is a summation, namely,

2
0 z;t 2

xi2�0;0

Y i

2

j;k2 ; s j2+k2�d

Y
2 2

(4.13)

(Kellerer, 1986), whereY disk , see Eq. (A.37). Since the setis a disk the
support of the corresponding covariogram is also a disk (of diameter) and therefore
we can evaluate the preceding summation using symmetry properties (Fig. 5(a)). First
we compute the term at the origin (namelyY 2 ), then four times the terms
at the points on the horizontal half axis, then four times the terms at
the points on the diagonal of the first quadrant, and finally eight times
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the terms at the grid points lying between the horizontal half axis and the diagonal of
the first quadrant. Thus, Eq. (4.13) becomes,

2 2
0 z;t

2 bd=sc

j=1

disk

d= s
p
2

j=1

disk

(d=s)2�1

j=2

inf j�1; (d=s)2�j2

k=1

disk
2 2

(4.14)

where denotes the floor of .

(a) (b)

Figure 5 (a), illustration of the four different subsets of test points corresponding to the four

terms in the right hand side of Eq. (4.14). (b) construction used in the derivation of Eq.(4.15)

for a Cavalieri grid of test lines.

Test system of dimension : parallel straight lines (Cavalieri grid) hitting a disk.
The test system 0;0 consists of parallel straight lines a distanceapart, (namely 0;0

is a ’Cavalieri grid’ in 2). As fundamental tile 0;0 we adopt the rectangle
with the basic probe 0;0 being the straight line segment . Again it is simplest to
apply Eq. (4.4) directly; with reference to Fig. 5(b), first we get twice the integral along
the horizontal half axis, and then four times the integrals along the remaining half lines
in the first quadrant. Thus,

2
1 z;t

d

0
disk

bd=hc

k=1

d2�(kh)2

0
disk

2 2

(4.15)

Test system of dimension : parallel straight line segments hitting a disk. Here
the fundamental tile 0;0 of the test system 0;0 is the rectangle , and the
basic probe 0;0 is the straight line segment , where is fixed. Thus, 0;0

consists of parallel straight line segments of fixed length. The test system may be
regarded as one of plate probes, and Eq. (4.12) may be applied. First we operate on
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the axis of abscissas, then on each of the parallel lines a distanceapart on the upper half
plane, see Fig. 6. The result has the following expression, which is amenable to direct

frac frac

d

(a) (b)

Figure 6 Construction used to evaluate the second moment of the intersection between a fixed

disk Y of diameterd and a uniform random test system of parallel straight line segments, see

Eq. (4.16). The two disks have radiusd because they correspond to the geometric covariogram

of Y .

computation using for instance the commandNIntegrate[] from MATHEMATICA  ,

2
1 z;0

bd=sc

j=�dd=se+U (p;s;d)

inf fd;js+psg

sup f�d;jsg
disk seg

bd=hc

k=1

d2�(kh)2=s

j=� d2�(kh)2=s +U p;s; d2�(kh)2

inf d2�(kh)2;js+ps

sup � d2�(kh)2;js
disk

2 2
seg

(4.16)

where denote the floor and the ceiling of, respectively, whereas

[0;1] frac (4.17)

and frac represents the fractional part of. For instance for the example
illustrated in Fig. 6(a), whereas in Fig. 6(b). In MATHEMATICA the
corresponding function isUnitStep[]. The first term of the right hand side of Eq. (4.16)
bears a factor “2” because the range of integration ofseg on the horizontal axis
is a subset of the interval , and by symmetry the result is identical for the interval

. In addition, the second term pertains to the upper half plane only (namely
), hence the factor “4”.
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5. VARIANCE COMPARISONS FOR BOUNDED TEST PROBES

Let k
n denote a bounded dimensional set , , with k k , which is

the quantity to be estimated. To this end consider two alternative bounded probes, namely
a dimensional probe (q)

0;0 and a dimensional subprobe (r)
0;0 such that (r)

0;0
(q)
0;0

and . Our purpose is to compare the variances of the corresponding
estimators of k k obtained with either probe.

Suppose that the probe is IUR hitting k with the probability element given by
Eq. (A.18). Then by virtue of Eq. (A.21) the estimator

k k k;q;n k+q�n
(q)
x;t (5.1)

is a one stage unbiased estimator ofk k , where k;q;n is a constant of dimension
. In the following two subsections we distinguish between two different sampling

regimes, namely lower dimensional subsampling, and direct lower dimensional sampling,
respectively.

5.1 Probe sampling with independent subsampling

Here we consider the classical situation in which the probe(q)0;0 and the subprobe
(r)
0;0 are used to estimatek k by a two stage sampling procedure (Cochran, 1977) in

which the subprobe is randomized for each position of the primary probe (Cruz-Orive,
1980). More precisely, for each pair the subprobe (r)

0;0 is IUR hitting the first

stage intersectionk
(q)
x;t whereby we obtain an unbiased estimatork+q�n

(q)
x;t

of k+q�n
(q)
x;t . Therefore,

k k k;q;n k+q�n
(q)
x;t (5.2)

is a two stage unbiased estimator ofk k . Under the preceding conditions the following
version of the classical Rao-Blackwell theorem holds (Baddeley & Cruz-Orive, 1995).

Theorem 5.1, (stereological Rao-Blackwell).

k k k k (5.3)

5.2 Direct lower dimensional sampling: Variance
paradoxes of Jensen–Gundersen type

Suppose that the subprobe(r)0;0 is IUR hitting the set k directly, namely (r)
0;0 is not

used to estimate a first stage statistic such ask+q�n
(q)
x;t , but to estimate k k

directly. In other words, when the primary probe(q)0;0 is IUR hitting k, the subprobe
(r)
0;0 is not randomized, but instead it remains rigidly attached to(q)0;0 and we observe
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k
(r)
x;t directly. Under such circumstances we do not obtain a second stage unbiased

estimator k+q�n
(q)
x;t of k+q�n

(q)
x;t , and therefore the inequality (5.3) does

not need to apply even if .

The preceding fact originated a lively controversy for years after Jensen & Gundersen
(1982) described an example in which2 2 was a disk of diameter and the
target parameter was the boundary length to area ratio 1 2 2 2 . To estimate

two alternative probes were used:(2)0;0 was the unit square whereas(0)0;0 was the union

of the four vertices of the unit square. For IUR(2)0;0 hitting 2 they first considered the
direct estimator of namely,

1 2
(2)
x;t

2 2
(2)
x;t

(5.4)

that is, the ratio of the observable circle length to disk area in the square probe. On the
other hand they constructed the alternative estimator

0 2
(2)
x;t

0 2
(0)
x;t

(5.5)

namely times the ratio of the number of intersections between disk and square
boundaries to the number of vertices inside the disk. For each estimator the ratio of the
expectations of numerator and denominator is equal to the target ratiobut, intuitively

would seem to be more precise thanbecause it incorporates more information. Yet,
the aforementioned authors discovered that, at least for , . A
similar example was reworked in Baddeley & Cruz-Orive (1995) for variable.

A key question is: which precise shape conditions should a lower dimensional
subprobe (r)

0;0 enjoy to be more precise than its containing probe(q)0;0 ? This question
can hitherto not be answered in its full generality, but as shown below some additional
light may be thrown into it with the aid of new examples.

5.3 Examples: fixed disk probed by a straight line segment, and by a pair of points

The target parameter is the area2 of a disk 2 of diameter . We want to
compare the estimation variances for three alternative sampling probes, namely a straight
line segment (1)

0;0 of length , the union of the two end points(0)
0;0 of (1)

0;0 , see Fig. 2(b),

and finally a straight line segment(1)0;0 of length . To facilitate the comparisons we
assume that each probe is IUR hitting a diskof area such that 0;t ,

2[0]. Thus the common probability element is,

�1
2 (5.6)
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For (1)
0;0 the unbiased estimator of2 is,

2
(1)

1
(1)
x;t (5.7)

For the second Eq. (3.11) leads to

2
(1)

2
3 4 2

2 (5.8)

The corresponding results for(0)0;0 are,

2
(0)

0
(0)
x;t (5.9)

and, making use of Eq. (3.3),

2
(0)

Y Y
2
2

2 2
2

(5.10)

respectively. In the preceding result we have used the identitiesY 2 and

Y . It is easy to verify that the inequality

2
(0)

2
(1) (5.11)

holds for , (Fig. 7).

The preceding result looks paradoxical at first sight because(0)
0;0 consists of the two

endpoints of (1)
0;0 only. However, for each position of (1)x;t hitting , the subprobe (0)

x;t

cannot supply an unbiased estimator of (1)
z;t , and therefore Theorem 5.1 does not

need to apply. Note also that, while (1)
z;t contains indeed more information than

(0)
z;t , the extra information turns out to be not only redundant but even detrimental

for the particular task of estimating2 .

To stress the foregoing ideas consider now the estimation of2 in two stages.
The first stage probe is the straight line segment(1)

0;0 of length and the
first stage estimator is,

2
(1)

1
(1)
x;t (5.12)

with the density (5.6). The second stage probe is a pair of points(0)
z;0;0

a fixed distance apart, like (0)
0;0 ; however we assume that(0)z;0;0

(1)
0;0 and is
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uniform random in , so that (0)
z;0;0 is effectively a uniform random point grid in

(1)
0;0 . Consequently,

0
(1)
x;t

(0)
z;x;t

�1
1

(1)
x;t (5.13)

Recalling Eq. (5.12) the two stage unbiased estimator of2 may be written

2
(0)

0
(1)
x;t

(0)
z;x;t (5.14)

Since the preceding estimator is connected with2
(1) via Eq. (5.13), now Theorem

5.1 applies and therefore it can be anticipated that

2
(0)

2
(1) (5.15)

It is noteworthy that the estimator2 (0) has the same distribution as2 (0)
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Figure 7 A simple variance ’paradox’ of Jensen-Gundersen type. The system of two test points

a distancel apart can entirely sweep a test segment of length2l always remaining within the

segment, but this is not the case for a test segment of lengthl. As a consequence the longer

test segment is always the more efficient, but the segment of lengthl is not necessarily more

efficient than the two point test system. See Subsection 5.3 and Fig. 2.

because a uniform random grid of points within a line segment which moves with the
kinematic measure in 2 is a grid of points moving with the kinematic measure in2.
Thus the performance of the two end points of a segment of lengthis improved by that
of a segment of length , but not necessarily by one of length, see Fig. 7. One may
think that, in fact, point counting with the two endpoints of a IUR line segment uses
somehow information outside the segment itself, because the two points could be used
to estimate the length of a line segment twice as long.
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Remark 5.1. Consider the following three sampling probes to estimate the area2

of a disk 2 of diameter , namely: the set (0)
0;0 of the four vertices of a square of

side , the actual square (2)
0;0 of side , and another square(2)

0;0 of side . By analogy

with the preceding results we find that the estimator of2 based on (0)
0;0 is more

efficient than that based on(2)0;0 for , (Baddeley & Cruz-Orive, 1995), but

always less efficient than that based on(2)0;0 .

5.4 Examples: test probes of dimension0, 1, 2hitting a fixed square

Here the target parameter is the area2 of a square 2 of side length . We
consider, in turn, four alternative sampling probes namely: the set(0)

0;0 of the four vertices

of a square of side length, the boundary (1)
0;0 of the corresponding square, the circumdisk

(2)
0;0 of the square, (that is, a disk of diameter ), and finally the boundary (1)

0;0

Figure 8 Lower row: the four probes used in Subsection 5.4 to construct new variance paradoxes

of Jensen-Gundersen type. The square of side lengthd = 1 (upper row) represents the fixed

figure to be sampled. The corresponding results are plotted in Fig. 9.

of this disk, see Fig. 8. Thus (0)
0;0

(1)
0;0

(2)
0;0 and also (0)

0;0
(1)
0;0

(2)
0;0 . The four

probes are IUR hitting with a common probability element given by Eq. (5.6), where
is a disk of area such that (2)

0;0 . The corresponding unbiased estimators are,

2
(0)

0
(0)
x;t

2
(1)

1
(1)
x;t

2
(1)

1
(1)
x;t

2
(2)

2 2
(2)
x;t

(5.16)
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respectively. The second moments of the preceding estimators are plotted in Fig. 9.
The second moment 2

2
(0) was computed via Eq. (C.2), whereas 2

2
(1)

was computed from Eq. (C.1), 2
2

(1) from Eq. (3.15), and 2
2

(2) from
Eq. (3.10).
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Figure 9 Efficiency comparisons among the four bounded test probes represented in Fig. 8. See

discussion in Subsection 5.4.

From Fig. 9 the following conclusions may be drawn:

(1). The point counting estimator2 (0) is not necessarily less efficient than either
the length measurement estimator2 (1) with the square boundary, nor the area
measurement estimator2 (2) . This is because Theorem 5.1 is not applicable
in either case.

(2). The length measurement estimator with the circle boundary, namely2
(1) , is

not necessarily less efficient than the area measurement estimator2
(2) , and

it is always more efficient than the length measurement estimator with the square
boundary, 2

(1) , and also than the point counting estimator2 (0) . The
first fact holds because Theorem 5.1 is not applicable, and the third statement is
again a consequence of Theorem 5.1. To see this, suppose that the four point square
grid (0)

x;t of side is contained in the circle (1)
x;0 of diameter , where

represents the arc distance of one of the points of the grid from a fixed point in
(1)
x;0 . Imagine that the point grid is rotated uniformly at random within(1)x;0 , namely

that is a uniform random variable in the interval . Then clearly for each
pair the factor 1

(1)
x;t in the right hand side of the third Eq. (5.16)

may be estimated without bias with the point grid. Replacing1
(1)
x;t with the
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corresponding estimator in the right hand side of the third Eq. (5.16) we obtain a two
stage unbiased estimator of2 with identical distribution as 2

(0) , because
a uniform grid of points within a circle which moves with the kinematic measure
in 2 is a grid of points moving with the kinematic measure in2. Therefore, by
Theorem 5.1 2

(1) is always more efficient than2 (0) . Indeed, the same
result holds if the four point grid is replaced with a uniform grid ofequispaced
test points in the circle: the test grid will always be less efficient than the test circle.

6. VARIANCE COMPARISONS FOR TEST SYSTEMS

6.1 Extension from bounded test probes to test systems

The results from the preceding section trivially extend to ’dilute’ test systems of
probes, namely test systems for which the maximum number ofprobes hitting the

target set k
n is 1. To extend the mentioned results to test systems, however,

diluteness is not a necessary property — in fact, the stereological Rao-Blackwell
theorem is concerned with unbiased sampling and subsampling only, with no assumptions
whatsoever about probe shape.

In the next subsection we describe an example in which Theorem 5.1 holds, and a
second example in which the theorem does not hold. The necessary tools are borrowed
from Section 4.

6.2 Jensen–Gundersen type paradoxes for test systems

The target parameter is again the area2 of a disk 2 of diameter . First
we compare the performance of the following two test systems, see Fig. 10.

T (1)

T (0)

Figure 10 Two systems�(0) and �(1) of test points and test segments respectively, (here

represented simultaneously), whose relative efficiency is studied in Subsection 6.2. The test

point system�(0) can sweep the test segment system�(1) entirely, always remaining within

�(1). For this reason�(1) is always more efficient than�(0). See also Fig. 11.

• A square grid (0)
0;0 of test points of side, namely 0;0 and (0)

0;0 .

• A system (1)
0;0 of parallel test segments of length , namely 0;0

and (1)
0;0 .
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When the test systems are IUR hitting, the corresponding unbiased estimators are

2
(0) 2

0
(0)
x;t

2
(1)

1
(1)
x;t

(6.1)

respectively. Direct computations from Eq. (4.14), from (4.16) for ,
and from Eq. (4.15), (which is equivalent to ), see Fig. 11, suggest that

2
(0)

2
(1) (6.2)

The preceding inequality is in fact a consequence of Theorem 5.1. To establish this
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Figure 11 Efficiency comparisons among disk area estimators obtained from test point counts

and from the total length of the intercepts determined in the disk by test systems of segments of

increasing lengthps. There appears to be a continuity in the behaviour of the square coefficient

of variation fromp = 0 (test points) andp = 1 (Cavalieri grid of parallel test lines). As explained

in the text, Subsection 5.4, and in the legend to Fig. 10, here the stereological Rao-Blackwell

theorem applies throughout.

regard the grid of segments(1)0;0 as a first stage probe, and consequently2
(1) ,

see Eq. (6.1), as a first stage estimator. Next, for each pair adopt the point grid
(0)
z;x;t

(1)
x;t, (congruent with (0)

0;0), as a subprobe of(1)x;t, where represents the distance
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of a test point of (0)
z;x;t from the left endpoint of a test segment of(1)x;t. If is a uniform

random variable in the interval , then (0)
z;x;t is a uniform random second stage

probe hitting (1)
x;t and therefore

0
(1)
x;t

(0)
z;x;t

�1
1

(1)
x;t (6.3)

which combined with the second Eq. (6.1) yields the two stage unbiased estimator

2
(0)
z

2
0

(1)
x;t

(0)
z;x;t (6.4)

Now Theorem 5.1 applies, and therefore,

2
(0)
z 2

(1) (6.5)

But 2
(0)
z and 2

(0) have identical distributions because a uniform random

grid of points (0)
z;x;t within a line segment grid (1)

x;t which moves with the kinematic
measure in 2 is a grid of points moving with the kinematic measure in2. Therefore
Eq. (6.5) may be written as Eq. (6.2).

Now we describe an example in which Theorem 5.1 does not apply. The target
parameter is the same as above, and we want to compare the performance of the following
two test systems, see Fig.12.

T (0)

T (1)∼

Figure 12 Contrary to the case illustrated in Fig. 10, here the test point system�(0) cannot

sweep the test segment system�(1) always remaining within�(1). Therefore the stereological

Rao-Blackwell theorem does not apply in this case, and�(1) is not necessarily more efficient

than�(0). See Subsection 6.2 and Fig. 13.

• The square grid (0)
0;0 of test points of side considered above.

• A system (1)
0;0 of parallel test segments of length, with fundamental tile 0;0

and (1)
0;0 .
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When the test systems are IUR hitting, the unbiased estimator corresponding to(0)0;0

is 2
(0) , see the first Eq. (6.1), whereas the one corresponding to(1)

0;0 is

2
(1)

1
(1)
x;t (6.6)

Now, however, (0)
0;0 cannot be adopted as a subprobe moving within(1)0;0, and therefore

the conditions underlying Theorem 5.1 cannot be implemented. As a consequence the
inequality

2
(0)

2
(1) (6.7)

may hold for at least some values of the ratio . This is indeed confirmed by numerical
computation from Eq. (4.16), see Fig. 13.
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Figure 13 Results anticipated in the legend to Fig. 12.

7. POISSON PROCESSES OF FLATS AND OF BOUNDED PROBES

7.1 Preliminaries

The results given in Sections 2 and 3 are extensible to Poisson processes offlats
and of dimensional bounded subsets (calledsubsets here, for short) respectively.
The basic definitions are given in Appendix B; in the present case the familyq of
subsets introduced in Section B.1 is the family ofobjects (such as flats q k k ,
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subsets (q)
xk;tk, etc.) constituting the Poisson processwith realizations in n. For

simplicity the th object will be denoted by (q)
k , . Thus, either type of Poisson

process may be represented as k2
(q)
k .

A basic difference between the design based approach adopted in the foregoing
sections and the model based approach adopted here is that the roles of the probe and
the compact set are exchanged. Thus, copies of the formerly known probes now
constitute the objects constituting an unknown random set, with realizations in

n, whose geometric parameters have to be estimated, whereas the unknown setis
replaced with a known, compact dimensional sampling window . In this context
an estimator is a function of the objects which intersect only. More precisely,

q
+ (q)

k
(q)
k (7.1)

A fundamental property of a stationary (or homogeneous) Poisson processis its
intensity �, see Eq. (B.3). A Poisson flat process of intensity� in n is equivalent
to a marked Poisson point process of intensity� in n�q with independent marks in

q;n�q . For instance, suppose thatis a homogeneous Poisson process of straight lines
in 2 (Miles, 1964), and 2 a fixed convex window. Then the mean number

of Poisson lines hitting is � 1 . Further, the mean length of
a Poisson chord in is the mean chord length of a IUR test line hitting, namely

2 1 ; hence the mean total chord length in is 1 � 2 ,
which is the original definition of �. On the other hand, a stationary Poissonsubset
process is a germ-grain model (Stoyanet al., 1995) in which the germs are the subsets

(q)
k and the germs k constitute a stationary Poisson point process of intensity(0)

� .
To simplify the exposition we assume that the(q)k are all congruent. As indicated in
Eq. (B.7), for we have,

�
(0)
� q

(q)
1 (7.2)

For a stationary Poisson process of objects in n the random number of
objects hitting a convex window , namely

(q)
k (7.3)

has Poisson distribution with mean

� t n�q
0
t if the process is of flats,

�
�1
q

(q)
1 t n t

(q)
1 if the process is of subsets.

(7.4)

where t
n denotes the window with orientation n[0].
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7.2 Second moment formulae

Suppose that the estimator, defined by Eq. (7.1) for a given convex window,
is additive, namely it satisfies the identity k2

(q)
k k2

(q)
k , and recall

Eq. (7.3), (7.4).

Proposition 7.1.
2 2 (q)

1
2 (q)

1

2
(7.5)

Proof. Recalling the basic properties of the Poisson process listed in Section B.2 and
setting k the probability function of the Poisson
distribution of mean , we have,

2 2

1

k=0

2

1

k=0

k

j=1

(q)
k

2

2 (q)
1

1

k=0

(q)
1

2
1

k=0

(7.6)

which simplifies into the required result.

Corollary 7.1.
2 (q)

1 (7.7)

Proof. Similarly as above it is easy to show that (q)
1 , and the result

follows.

As a cursory check let , the number of objects hitting the window ,
see Eq. (7.3). Then (q)

1
2 (q)

1 and Eq. (7.7) yields

(7.8)

as expected.

Suppose that is isotropic, and let q , with 0 , see
Eq. (7.3). If is a flat process, then applying Corollary 2.1 to Corollary 7.1 and
recalling the first Eq. (7.4) we obtain,

q

�

1

0
q

q�1
W

� n

(7.9)
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On the other hand, if is an isotropic plate process, then applying Corollary 3.2 to
Corollary 7.1 and recalling the second Eq. (7.4) we obtain,

q �
�1
q

(q)
1

1

0
q

q�1
W T

(q)
1

(7.10)

7.3 Special cases: isotropic Poisson line and line segment processes in2

Isotropic Poisson line process in 2. On line with the two alternative interpretations
of the intensity � given in Subsection 7.1, we can consider two natural estimators of�

based on the intersection of with a convex window namely the counting estimator

�
1

� �
1

(7.11)

and the direct estimator

�
1

2
�

�

2
2

1

0
W (7.12)

respectively. The expression for � follows on using Eq. (7.8), the first Eq. (7.4),
and Cauchy’s formula t 1

0
t 1 . On the other hand, � follows from

the first Eq. (7.9).

In particular, if is a disk of diameter we get,

�
�1

� and � 2
�1

� � (7.13)

respectively (for the second result we have used Eq. (2.9)). The preceding inequality is
a particular case of Ohser’s paradox, which is discussed in the next section.

Isotropic Poisson segment process in2. Here the grains are isotropically oriented
segments of length 1

(1)
1 , and the germs are the midpoints of the segments which

constitute a stationary and isotropic Poisson point process of intensity(0)
� , see Eq. (7.2).

We consider two alternative unbiased estimators of� based on the intersection of
with a convex window . The first one is the counting estimator�, which is based on
the number of segments hitting , and it uses the second Eq. (7.4). Thus,

�

t 2 t
(q)
1

�
�

t 2 t
(q)
1

(7.14)

because �
�1

t 2 t
(0)
1 . The second estimator,�, is the

direct estimator, namely the ratio of the total segment length in the interior ofto the
area of . Thus,

�
1

2
�

�

2
2

1

0
W T

(1)
1

(7.15)
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the latter result stemming from Eq. (7.10).

To get explicit results suppose again that is a disk of diameter . Then,

�
�

2
and �

2
�

2 � (7.16)

respectively. For the second result we have applied Eq. (3.11) to the second Eq. (7.15)
for the case . As expected the preceding results converge to the corresponding
ones in Eq. (7.13) as .

8. VARIANCE COMPARISONS FOR TWO DIFFERENT DESIGNS TO
ESTIMATE THE INTENSITY OF A STATIONARY FLAT PROCESS

8.1 Paradoxes of Ohser type

Consider first a stationary and isotropic Poisson line processwith realizations in
2 sampled by a fixed convex window , see Fig. 14. The inequality (7.13) shows that

(a) (b)

Figure 14 The Ohser type variance ’paradox’ for Poisson lines on the plane. In order to estimate

the intensity of the line process (namely the mean line length per unit area) with a convex window

W , it is more efficient to count the number of test lines hitting the window (a) than the actual

line length within the window (b). See Section 8.

� � when is a disk. More generally, for any convex window we have

1 2 1 (8.1)

so that, recalling the definitions given in Eq. (7.11) and Eq. (7.12),

� 1 � (8.2)

and by the Rao-Blackwell theorem,

� � � (8.3)
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Thus, for the stationary and isotropic Poisson line process the counting estimator (7.11) of
the intensity � is always at least as precise as the direct estimator (7.12), (Ohser, 1990).
This is an apparent paradox because1 seems at the first sight to carry more
information than . On a second look, however, one realizes that the direct estimator
has two sources of variation, the first one due the varying number of lines hittingand
the second due to the varying chord lengths within, whereas the counting estimator
has only the first source of variation.

Baddeley & Cruz-Orive (1995) revisited Ohser’s paradox. Further, Schladitz (1999,
2000) proved the superior efficiency of the counting estimator� of � over the direct
estimator � for a stationary Poisson flat process with an arbitrary directional
distribution, that is,

�
t n�q 0

t
�

q

n
� � (8.4)

Below we show the same result using a simpler approach.

Lemma 8.1. Let � represent any unbiased estimator of�. Then,

� � (8.5)

the counting estimator.

Proof. We use a similar argument and the same notation as in the proof of Proposition
7.1. Recall also that is given by the first Eq. (7.4). Thus,

� �

1

k=0

� (8.6)

On the other hand,

� �

1

k=0 t n�q 0
t

(8.7)

From the preceding two identities it follows that

1

k=0

k

�

1

k=0

k

t n�q 0
t

(8.8)

Thus we have two identical power series in, and therefore the corresponding coefficients
must be identical, whereby,

�
t n�q 0

t
fN=kg � (8.9)

which implies the required result.

33



Theorem 8.1. The counting estimator� is the best unbiased estimator of the intensity

� of a stationary Poisson flat process with an arbitrary directional distribution.

Proof. Bearing Lemma 8.1 in mind, the result is a direct consequence of the Rao-
Blackwell theorem.

8.2 Central limit theorems

Let q represent the Poisson flat process of intensity�q
in n, generated by the

intersections of tuples of hyperplanes of a stationary Poisson hyperplane process

n�1. Suppose that n�1 is sampled by a window n , namely the dimensional ball
of radius , and consider the counting and the direct unbiased estimators of�q , namely

�q

q n

n�q n�q
�q

q q n

n n
(8.10)

respectively. Heinrichet al. (2006) have shown that the preceding estimators are
asymptotically normally distributed and, moreover,

r!1 �q
r!1 �q (8.11)

namely the counting estimator is asymptotically more efficient than the direct estimator.
Asymptotic confidence intervals were thereby constructed to estimate�q with the
counting estimator.

9. DISCUSSION

In the foregoing sections we have presented a coherent set of second moment formulae
for the intersections between bounded sets and flats, or test systems in Euclidean spaces.
Some of these formulae were so far scattered in the literature, and even in these cases
proofs were generally unavailable. The collection is however not exhaustive because we
have assumed that the target set (or the sampling window in the model based case) was
of dimension in n. More research is therefore needed to endow the subject with a bit
more generality. In fact hitting a target set of dimensionwith a probe of dimension

in n with but and is important for some applications.
In particular it would be useful to predict the variance of the number of intersections
between a target set consisting of curves and a known test system of curves in the plane
(see e.g. Cruz-Orive & Gual-Arnau, 2002, Fig. 6 and 7).

The formulae are useful to compute second moments of intersection measures
specially when the intersecting geometric objects are known analytically. For instance, a
classical problem, already considered by Carl F. Gauss, is to determine the variance of
the number of lattice points inside an randomly moving oval. The result of Eq. (4.13)
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for the disk (Kellerer, 1986) is amenable to computation (Eq. (4.14)), easily extensible
to the sphere, and it looks simpler than previous solutions (Kendall, 1948, Kendall &
Rankin, 1953). In practical stereology, however, the problem is different: there one has
for instance a bounded planar set of arbitrary shape, and the problem is to predict the
variance of the point counting estimator of its area obtained with a test grid — or, one
has a three dimensional object, like a brain, and the problem is to predict the variance
of the Cavalieri estimator of volume (Matérn, 1960, 1989; Gundersen & Jensen, 1987;
Cruz-Orive, 1989; Kiêu & Mora, 2006). The most popular practical approach is based
on G. Matheron’s transitive theory (Matheron, 1971; Kiêuet al., 1999; Garcı́a-Fiñana &
Cruz-Orive, 2004). In practice, however, the transitive approach is extensively used only
for the point count estimator of area, and for the Cavalieri design. Technical difficulties
arise when one tries to obtain variance predictors for other sampling schemes. In this
sense, we feel that the formulae given here constitute prerequisites to progress in the
mentioned direction. One has to rewrite them in a suitable way, eventually incorporating
harmonic analysis, and seeking suitable models for the relevant geometric covariograms.

The formulae given here have also proved useful to better understand the so called
’paradoxes’ arising when lower dimensional probes perform better that higher dimensional
ones, both in the design case (Sections 5, 6) and in the model based case (Section 8).
More work is needed, however, to establish new theorems — or at least new ’rules of
thumb’ — which better characterize such paradoxes, if at all possible, in a general setting.
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[15]. Garćıa-Fiñana, M. & Cruz-Orive, L.M. (2004) Improved variance prediction for
systematic sampling on. Statistics38, 243–272.

[16]. Ghosh, B. (1943) On the distribution of random distances in a rectangle.Science
and Culture8, 388.

[17]. Gual Arnau, X. & Cruz-Orive, L.M. (1998) Variance prediction under systematic
sampling with geometric probes.Adv. Appl. Probab.30, 889–903.

[18]. Gual-Arnau, X. & Cruz-Orive, L.M. (2006) New variance expressions for system-
atic sampling: the filtering approach.J. Microsc.222, 217–227.

[19]. Gundersen, H.J.G. & Jensen, E.B. (1987) The efficiency of systematic sampling in
stereology and its prediction.J. Microsc. 147, 229–263.

[20]. Heinrich L., Schmidt H. & Schmidt V. (2006) Central limit theorems for Poisson
hyperplane tessellations.Ann. Appl. Prob.16, 919-950.

[21]. Howard, C.V. & Reed, M.G. (1998)Unbiased Stereology. Three-dimensional
Measurement in Microscopy.Bios, Oxford.

[22]. Jensen, E.B. & Gundersen, H.J.G. (1982) Stereological ratio estimation based on
counts from integral test systems.J. Microsc. 125, 51–66.

[23]. Kellerer, A.M. (1986) The variance of a Poisson process of domains.
J. Appl. Probab. 23, 307–321.

[24]. Kendall, D.G. (1948) On the number of lattice points inside a random oval.
Quart. J. Math. 4, 178–189.

36



[25]. Kendall, D.G. & Rankin, R.A. (1953) On the number of points of a given lattice
in a random hypersphere.Quart. J. Math. Oxford4, 178–189.
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Appendix A. BASIC TOOLS FOR GEOMETRIC SAMPLING

A.1 Unbounded flat probes

Let q;n�q denote the Grassmann manifold, namely the space of non-oriented linear
subspaces q[0] in n, and let n;q denote the space of flats q. For a vector

n we have,

q q[0]
?
q[0] n�q[0] (A.1)

(a 0–flat is just a point). Thus, a flat is a linear subspace translated by a vector
from its unique orthogonal complement?q[0], which is in fact a linear subspace.
The density q[0] of the rotation-invariant measure onq;n�q is unique up to a constant
factor (Santaló, 1976). Moreover, q[0] n�q[0]. On the other hand, the density q

of the motion-invariant measure onn;q may be expressed as follows,

q n�q n�q[0] (A.2)

namely the exterior product of the density of the Lebesgue measure in the orthogonal
complement of q (which is responsible for the location ofq), times the invariant density
for the orthogonal complement, (which is responsible for the orientation ofq).

Stereology and stochastic geometry incorporate probability theory and statistics to
the foregoing concepts of integral geometry (Miles & Davy, 1976, see Cruz-Orive, 2002,
2003 for a survey). The first step is to construct probability elements induced by the
relevant invariant densities. For instance the rotation-invariant or isotropic probability
element on q;n�q reads,

Gq;n�q

q;n�q (A.3)
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where we write for q[0], for short. When convenient, we also writeq for the
flat which is a translation of q[0] q by . The denominator of the normalizing

constant in the right hand side of Eq. (A.3) is the total measure ofq;n�q, namely,

Gq;n�q Gq;n�q

q[0]
n�1 n�2 n�q
q�1 q�2 0

(A.4)

where k is the surface area of the dimensional unit spherek, see Appendix D. Thus
may be regarded as a uniform probability element onq;n�q . On the other hand the

measure on n;q is not finite, and consequently we may resort to defining a probability
element for flats hitting a compact dimensional subset n, whereby the
denominator of the normalizing constant is,

fLq :Y \Lq 6=;g
q

Gq;n�q Gq;n�q Y 0
t

n�q

Gq;n�q

t n�q 0
t

(A.5)

where 0
t represents the orthogonal projection ofonto the orthogonal complement of

q;n�q . Thus the probability element for a isotropic and uniform randomflat
(’IUR flat’, an abbreviation introduced by R.E. Miles) hitting reads,

q
n�q

t n�q 0
t

(A.6)

The preceding expression is valid for a directional distribution which is not
necessarily isotropic. In particular, if the directionis constant the flat is said to
be FUR (fixed uniform random) hitting . The corresponding probability element is that
of the uniform distribution on 0

t namely,

n�q
n�q 0

t

0
t (A.7)

Moreover, dividing the right hand side of Eq. (A.6) by that of (A.7) we obtain,

n�q 0
t

t n�q 0
t

q;n�q (A.8)

The mean contents of the intersection between adimensional subsetk n and
a IUR flat q hitting k is easy to determine using the Crofton-Santaló formula
(Santaĺo, 1976, p. 245; De-lin, 1994, p. 157) and Eq. (A.6) with Eq. (A.3). Here and in
the sequel we assume that . The result is,

k+q�n k q
t n�q k

0
t

n k+q�n
k q

k k (A.9)
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For we have the following formula for a FUR flat hitting n,

q n q
n n

n�q n
0
t

(A.10)

Suppose that n is a convex body and set . Then the left hand side
of Eq. (A.9) is almost surely equal to 2 and we get Cauchy’s projection formula,

t n�1 n�1
0
t

n 0

n�1 1
n�1 n�1 (A.11)

For instance the mean orthogonal projected length of a convex set2
2 onto an

isotropic axis is 1 ; the mean orthogonal projected area of a convex set3
3

onto an isotropic plane is2 ; etc.

Many first order formulae emerge by combining the foregoing results. In fact,
Eq. (A.9), together with Eq. (A.21) below, constitute the building bricks of the ’fun-
damental equations of stereology’.

A.2 Bounded probes: the kinematic measure

In the preceding section we have described IURflats as probes hitting a given
compact set n. Here we consider instead a boundedprobe, namely a bounded
manifold n of dimension . With we associate a point and an
orthogonal frame with the origin at and rigidly attached to . When the frame
is the reference frame centred at the origin theprobe will be denoted by (q)

0;0 , or 0;0

simply if the dimension is understood. Letn denote the special group of motions inn.
A motion n of 0;0 is a composition of a translation of0;0 by a vector n,
(whereby we can write x;0 0;0 ), with an independent rotation n[x] about

. Here n[x] denotes the special group of rotations acting upon theframe associated
with x;0. The special group n[x] is isomorphic with , and its invariant density is

[x] n�1 n�2 1 n[x] k
k (A.12)

where k is the area element onk. Therefore,

Gn[0]

[0] n�1 n�2 1 (A.13)

Summarizing, for the transform of0;0 by we use the following notation,

0;0 x;t n
n

n[x] (A.14)

The required invariant density is the volume element ofn, and it called thekinematic
densityof Blaschke-Santaló. Its expression reads

n [x] n (A.15)
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By virtue of Eq. (A.13) the invariant probability element for a rotation about the
origin can be written

[0]

n�1 n�2 1
n[0] (A.16)

Since the measure n is not finite we may restrict ourselves to bounded sets ofn.
For instance, for a dimensional compact set n we have,

n 0;0 n�1 n�2 1 t n 0;t (A.17)

Now the invariant probability element for all motions which bring 0;0 into

x;t such that the event x;t holds, becomes

n

t n 0;t

(A.18)

and we say that x;t is a IUR probe hitting . For a FUR probe hitting ,

n

n 0;t
0;t (A.19)

the uniform distribution. Furthermore,

n 0;t

t n 0;t
n[0] (A.20)

To calculate the mean contents of the intersection between adimensional subset

k
n and a bounded IUR probe x;t hitting it we may use the Santaló formula

for bounded sets (Santaló, 1976, p. 259; De-lin, 1994, p. 161) and Eq. (A.18) with
Eq. (A.16). Thus,

k+q�n k x;t
t n k 0;t

n k+q�n

k q
k k q 0;0 (A.21)

For we obtain the following formula for a bounded FUR probe hitting n,

q n x;t
n n q 0;0

n n 0;t

(A.22)

Neither Eq. (A.21) nor Eq. (A.9) are used directly in stereology for estimation
purposes because the respective right hand sides depend on the unknown setk.
Nonetheless it is opportune to mention thatt n n 0;t can be computed in some cases
(notably if n x;t is simply connected for all n) by means of the kinematic
formula of Blaschke-Santaló (Santaló, 1976, p. 262). For instance if 2 are
planar convex sets, then,

t 2 2 2
�1

1 1 (A.23)
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A.3 Test systems

A probe which opens the way to applications in stereology is the test system (of
bounded probes, or of flats). Details can be found in Santaló (1976, Ch. 8).

A test system of bounded probes may be constructed as follows.

(1). Choose afundamental tilefor a partition of n, namely a bounded subset0;0 n

satisfying the following properties,

k;0
n n

k2
�k;0;0 �k;0;0 �l;0;0 if (A.24)

where z;0 is the translate of 0;0 by n.

(2). Choose a basic probe0;0 of dimension which is contained in 0;0, whereby we
obtain the following periodic set

0;0

k2
�k;0;0 (A.25)

(3). Apply an isotropic and uniform random motion n to 0;0 to obtain the
required construction 0;0 x;t as follows. First rotate the fundamental tile0;0
by n[0] with the isotropic probability element (A.16), to obtain0;t; with this
fundamental tile obtain an isotropically rotated partition with tiles�k;t;t 0;t k;t,
where k;t is the translation vectork;0 rotated about the origin. The probes�k;0;0
are rotated with the tiles containing them to get�k;t;t. Finally choose a uniform
random point 0;t, so that the joint probability element of the pair is

[0]

n�1 n�2 1

n

n 0;0
n[0] 0;t (A.26)

Then

x;t

k2
x+�k;t;t (A.27)

is a IUR test system.

Consider an unknown dimensional compact setk n. The fundamental
advantage of test systems is that, unlike Eq. (A.6) and (A.18), the probability element
(A.26) does not depend onk. Using Santaló’s identity (Santaló, 1976, p. 131; see also
Cruz-Orive, 2002, 2003) we obtain,

k+q�n k x;t
n k+q�n

k q

q 0;0

n 0;0
k k (A.28)
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The generation of a test system of flats follows similar steps as above.

(1). Choose an isotropic subspace n�q with q;n�q according to the
probability element (A.3).

(2). Choose a fundamental tile0;t of n�q and construct the corresponding periodic
set

0;t

k2
q k;t (A.29)

where k;t is a translation vector which brings�k;t;t to coincide with 0;t leaving

0;t unchanged for all .

(3). Finally choose a uniform random point 0;t so that the joint probability element
of the pair is,

n�q

n�q 0;0
0;t q;n�q (A.30)

where is the isotropic density (A.3). We thereby obtain the required IUR test
system of flats

z;t

k2
q k;t (A.31)

For a IUR test system of flats we have the corresponding identity,

k+q�n k z;t
n k+q�n

k q n�q 0;0
k k (A.32)

A.4 The geometric covariogram

Let denote a compact dimensional set of n and n a point or
vector of modulus and orientation n�1. The geometric covariogram of
the set is defined as

Y
n

Y Y n
n (A.33)

(Matheron, 1971), and it has the following properties,

Y n �x where �x

Y Y

Y n Y Y
n

n
Y

2
n

(A.34)

43



If we average Y over isotropic rotations, namely with respect to the isotropic
orientation density

n�1
n�1 (A.35)

then we obtain the isotropic geometric covariogram

Y u Y
n�1

Y (A.36)

Examples of isotropic geometric covariograms

For a disk 2 of diameter we have, (Borel & Lagrange, 1925),

disk
2

disk

disk

1
2

�1 2 (A.37)

For a square 2 of side length we have, (Ghosh, 1943),

sq;k
2

sq;k

sq;1
2

sq;2
�1 2 2

sq;3

(A.38)

Finally, for a straight line segment 2 of length ,

seg (A.39)

Appendix B. ELEMENTS OF STOCHASTIC GEOMETRY
FOR MODEL BASED STEREOLOGY

B.1 Manifold processes

As described in Mecke (1981), a dimensional manifold process is a random
variable defined on a probability space with values in q q , where:

• q is the family of closed sets n with the property that the intersection with a
ball n is a piecewise smooth dimensional manifold of class 1 and

k n
n (B.1)

• q is the smallest algebra in q such that all functionsB of the form

B q B q (B.2)

are measurable n , where n is the Borel algebra in n.
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Thus the distribution � of is a probability measure on q q , and the choice of

q ensures that q is a real random variable n .

A manifold process is called stationary if it has the same distribution as its translate

z
n, that is if � is translation invariant. Further is isotropic if it has the

same distribution as its rotation n[0], that is if � is rotation invariant. If
is both stationary and isotropic, then� is said to be motion invariant. An important
characteristic of a manifold process is its intensity �, namely

�
q

n
for q n (B.3)

Examples of manifold processes are point processes and line or fibre processes
. Manifold processes are special cases of random closed sets (Matheron, 1975;

Mecke et al., 1990; Stoyanet al., 1995).

B.2 Stationary Poisson processes of points, flats, and subsets

A stationary Poisson point process of intensity in n is characterized by the
following two properties:

• the random variable 0 has Poisson distribution with mean n
n ,

• the random variables 0 1 0 k are independent for all disjoint

1 k
n and arbitrary .

A relevant consequence is that, if0 for a compact set n, then the
points are uniform and independent in.

A stationary Poisson flat process (Miles, 1974) is a manifold process

k2
q k k (B.4)

of intensity � in n such that:

• the translations k2 k form a stationary Poisson point process of intensity� in n�q,

• the orientations 1 2 k q;n�q are independent and identically
distributed.

For a compact dimensional window k
n with we have the following

first order formula, (analogous to Eq. (A.32)),

k+q�n k �
n k+q�n

k q
k k (B.5)

(Mecke, 1981).
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Finally, a stationary Poisson process of congruentdimensional subsets (or
subsets, for short) (q)

zk;tk is a manifold process

k2

(q)
zk;tk (B.6)

of intensity � in n such that:

• the translations k2 k form a stationary Poisson point process inn of intensity

(0)
� � q

(q)
z1;k1

(B.7)

• the rotations 1 2 k n[0] are independent and identically distributed.

Here is also called a germ-grain process with Poisson germs, (Stoyanet al., 1995).
For a compact dimensional window k

n the same identity (B.5) holds also in
this case (by analogy with Eq. (A.28)).

Appendix C. DETAILS FOR THE COMPUTATION OF SECOND MOMENTS

C.1 Square hit by the boundary of another square.

We specify the limits of the double integrals in the right hand side of Eq. (3.18) to
facilitate their numerical computation for the corresponding plot in Fig. 9. The different
ranges of variation of the side lengths of object and probe, respectively, and the
actual domains of variation ofsq;1 sq;2, (Eq. (A.38)), lead to the following expressions,

t 2 0;t
2
1 z;t

11 21 31

11 22 32

13 23 33

14 24

(C.1)

where
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C.2 Square hit by the vertices of another square

Here we display the necessary expressions to compute22
(0) , see the first

Eq, (5.16), for the corresponding plot of Fig. 9. The probe(0) is the union of the four
vertices of a square of diagonal lengthhitting a square of side lengthuniformly and
isotropically at random. The procedure is analogous to that for the disk, see Eq. (3.20).
Thus,

t 2 0;t
2
0 z;t

2
sq;1 sq;1

2
sq;1 sq;2

2
sq;2

2

(C.2)

Appendix D. LIST OF NOTATION

• : hitting event.

• Y : Indicator function of a subset , that is Y if and Y

otherwise. Useful properties are: (i) For a bounded setx
n with associated point,

Tx Tx�z . (ii) For a translation invariant integrable function n ,

Tx T0 .

• : Minkowski addition or subset addition, namely
for n. The subset consisting of all pointssuch that x;t hits is precisely

0;t, that is, 0;t x;t .

• k: Unit ball in k.

• k : Ball in k with centre k and radius .
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• k: Volume of k, i.e. k k k k�1
k=2 .

• 2 2, square coefficient of variation of the random variable.

• : Boundary of the set .

• dim : dimension of the manifold .

• q[0]: invariant density on q;n�q.

• q: invariant density on n;q.

• : mean value, or mathematical expectation, of the random variable.

• n;q: space of dimensional affine linear subspaces orflats.

• FUR: uniform random of fixed orientation.

• q;n�q : Grassmann manifold, space of non oriented linearsubspaces in n.

• n: special group of motions in n.

• n[x]: special group of rotations in n about a fixed point n, (isomorphic with
the group ).

• IUR: isotropic and uniform random.

• 0;t: fundamental tile of a partition of n, with an associated point at the origin and
orientation n[x].

• x;t: test system of bounded probes, or of flats.

• q q : dimensional linear affine subspace inn with orientation q;n�q

and translation n�q.

• q[0] q : dimensional linear subspace inn with orientation q;n�q .

• : kinematic measure, namely the invariant measure onn.

• [x] : invariant measure on n[x].

• q : invariant measure on n;q .

• q : dimensional volume measure inn (Hausdorff measure).

• k: surface area of k, i.e., k
k (k+1)=2 .

• : probability measure.

• : probability element, namely the probability that a random variable takes a value
in an infinitesimal neighbourhood of. If is the density, then .

• k: dimensional Euclidean space.

• k: dimensional unit sphere.

• k;t: translation vector.

• x;t: bounded dimensional probe with associated pointand orientation .
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• 0;t: symmetric of 0;t with respect to the origin, namely 0;t 0;t

0;t .

• 2 2
, variance of a random variable.

• 0
t : orthogonal projection of a set n onto n�q .
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