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DYNAMIC FINANCIAL ANALYSIS: CLASSIFICATION,
CONCEPTION, AND IMPLEMENTATION
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ABSTRACT

Dynamic financial analysis (DFA) models an insurance company’s cash flow in
order to forecast assets, liabilities, and ruin probabilities, as well as full balance
sheets for different scenarios. In the past years DFA has become an important tool
for the analysis of an insurance company’s financial situation. In particular, it is
a valuable instrument for solvency control, which is now becoming important as
regulators encourage insurance companies to determine risk-based capital using
internal risk management models. This article considers three aspects: First, we
discuss the reasons why DFA is of special importance today. Second, we classify
DFA in the context of asset liability management and analyze its fundamental
concepts. As a result, we identify several implementation problems that have not
yet been adequately considered in the literature, and therefore our third aspect
is a discussion of these areas. In particular we consider the generation of random
numbers and the modeling of nonlinear dependences in a DFA framework.

INTRODUCTION: WHY IS DFA OF SPECIAL IMPORTANCE TODAY?

Until the 1990s, the European insurance business was considered profitable but fairly
static. Embedded as it was in a dense regulatory network, uniform products, tariffs, and
limited competition, as well as stable market developments, had resulted in continuous
growth and profits for many decades (for the pre-1990s situation, see Farny, 1999, pp. 146-
152; Rees and Kessner, 1999, pp. 367-371). However, these basic conditions changed
fundamentally in the mid 1990s. Three factors of this change are of special importance.

First, deregulation of the financial services market created increasing competition, which
intensified managerial focus on profit. Increasing market transparency and the entrance
of foreign competitors led to intensive price competition, margin erosion, and cost pres-
sure (see Hussels et al., 2005). Some insurance companies responded by trying to position
themselves as either global or niche players; other companies that had no clear compet-
itive position ran the risk of being crowded out of the market (see Popielas, 2002).
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Second, substantial changes occurred in capital market conditions. Due to historical
low interest rates, the previously common strategy of buying safe bonds with long-term
maturity and high interest rates became problematic as long-term investments that came
to term had to be replaced by bond issues carrying much lower interest rates. Against
this background, the minimum interest rate warranties and further product options,
which are especially prevalent in life insurance contracts, became difficult to maintain
because an appropriate investment return could no longer be obtained by quasi-risk-
free investing in government bonds. This calls attention to the need for well-founded
investment strategies that optimize risk and return, as well as for more appropriate asset
liability management techniques.

Third, changing supervisory and legal frameworks in the past years have resulted in the
reregulation of the financial services market and made necessary the establishment of
an integrated risk management system within insurance companies. There has been a
recent, fundamental reorganization of the solvency rules in the European Union, which
is discussed in Solvency II (see, e.g., von Bomhard, 2005; Eling et al., 2007). Under the
new solvency rules, regulators encourage insurance companies to determine their risk-
based capital by internal risk management models. In addition, recent modifications
to the International Financial Reporting Standards (IFRS) and their consequences for
valuation and the information that must be shown on balance sheets have become one
of the central issues in the insurance industry (see Blommer, 2005; Meyer, 2005).

Against this background, the systematic, holistic analysis of an insurance company’s
assets and liabilities takes on a special relevance (see Liebenberg and Hoyt, 2003). This
is just the sort of analysis that dynamic financial analysis (DFA) is designed to do. DFA
is defined as a systematic approach to financial modeling in which financial results
are projected under a variety of possible scenarios, showing how outcomes might be
affected by changing internal and/or external conditions (see Casualty Actuarial Society,
1999). The entire insurance company is modeled from a macroperspective in order to
simulate future development of its financial situation. DFA is characterized by an explicit
multiperiod approach and a cash-flow orientation. It has become an important tool for
analysis and decision making in the past years, especially in the nonlife and reinsurance
business.

The literature contains several surveys and applications of DFA. Casualty Actuarial
Society (1999) provides an overview of DFA and its usage in a property–casualty context.
The DFA research committee of the Casualty Actuarial Society started developing DFA in
the late 1990s. Their main results are reported in a DFA handbook. In another overview,
Blum and Dacorogna (2004) present the value proposition, the elements, and examples of
DFA use. Wiesner and Emma (2000) incorporate DFA into the strategic decision process
of a workers’ compensation carrier. D’Arcy et al. (1998) describe an application of the
publicly available “Dynamo” DFA model to a property–liability insurer.

Lowe and Stanard (1997) and Kaufmann et al. (2001) both provide an introduction to this
field by presenting a model framework, as well as an application of their models. Lowe
and Stanard (1997) present a DFA model that is used by a property catastrophe reinsurer
to handle the underwriting, investment, and capital management process. Kaufmann
et al. (2001) give a model framework comprising the components most DFA models
have in common and integrate these components in an up-and-running model. Blum
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et al. (2001) use DFA for modeling the impact of foreign exchange risks on reinsurance
decisions, whereas D’Arcy and Gorvett (2004) use DFA to determine whether there is an
optimal growth rate in the property–liability insurance business. Using data from a Ger-
man nonlife insurance company, Schmeiser (2004) develops an internal risk management
approach for property–liability insurers based on DFA.

However, implementing a DFA system for an insurance company involves several prob-
lems that have not been adequately considered in the DFA literature to date. On one
hand, a very detailed model of the enterprise and its environment appears desirable. On
the other hand, such an in-depth model is costly and difficult to maintain (e.g., because
of the higher data requirements). Nevertheless, regardless of how complex it might be,
an accurate model is essential for good model results. But creating a DFA model gives
rise to numerous problems, such as the generation of random numbers, especially from
claim distributions, or the mapping of the correct dependence structure between random
variables. Further problems result from the time horizon employed or due to scarce data
in the case of operational risks or extreme events. Thus, after classification of DFA and
a presentation of its basic concept, these implementation problems are the central focus
of this article.

The remainder of this article is organized as follows. In the next section, various asset
liability management techniques are discussed, with the intention of demonstrating the
key characteristics of DFA. With this overarching perspective in mind, we then present
specifics of DFA, including the key elements required and the process of implementa-
tion. In the last section, we discuss various critical implementation issues associated with
DFA, such as development of the model, selection of assumptions, assuring appropriate
random number generation, and ultimately the modeling of linear and nonlinear depen-
dences. We conclude and summarize both what we know and what areas are in need of
future research in the final section.

CLASSIFICATION OF DYNAMIC FINANCIAL ANALYSIS IN THE CONTEXT

OF ASSET LIABILITY MANAGEMENT

In insurance companies, decision making traditionally proceeds independently in dif-
ferent organizational units. For example, actuarial risks are managed in isolation from
investments and associated market risks (see Philbrick and Painter, 2001, p. 103). How-
ever, this isolated management of assets and liabilities is suboptimal because it neglects
diversification effects at the total enterprise level. In contrast, asset liability management
considers assets and liabilities simultaneously in order to optimize the liquidity and
balance structure of the entire enterprise. DFA can be integrated into this context.

Asset liability management techniques can be organized into three different groups, as is
illustrated in Figure 1. Depending on the time horizon, the consideration of uncertainty,
and the planning goal, the three groups are (1) deterministic immunization techniques,
which aim at managing liquidity and interest rate risks; (2) optimization techniques for
the determination of an efficient risk return structure; and (3) DFA models, which allow
for a multiperiod investigation of the financial situation with consideration of stochastic
variables. The rest of this section is devoted to presenting the key characteristics and the
differences between these models in order to point out the special focus and benefit of
DFA.
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FIGURE 1
Three Groups of Asset Liability Management Models

Group 1 comprises immunization techniques. Liquidity risks are handled by cash-flow
matching and interest rate risks by duration matching. Cash-flow matching is a deter-
ministic analysis of the cash-flow stream over a specific period of time. In the first step,
the cash-flow profiles of assets and liabilities are examined. Matching takes place in the
second step, which involves a reconciliation of payments from the assets with payouts
for liabilities. Using this procedure, liquidity squeezes should be promptly recognized
and eliminated (for more on cash-flow matching, see, e.g., Feldblum, 1989). In dura-
tion matching, the duration of liabilities and corresponding investments are accurately
coordinated and the balance is immunized against interest rate changes at a specific
date. However, complete immunization also eliminates any chances that may accom-
pany changes in interest rates, a problem that can be avoided by a partial hedging in the
context of conditional immunization (see, e.g., Elton and Gruber, 1992).

Immunization techniques are most frequently used as planning methods for fixed-
income securities. They are less suitable for assets and liabilities with a more stochastic
character, such as shares or liabilities from the property insurance business. Assets and
liabilities are more commonly managed with classical techniques of risk return optimiza-
tion instead of immunization methods. Markowitz (1952) and Kahane and Nye (1975)
present examples of risk return optimization approaches. These techniques comprise
Group 2 of the asset liability management models. The Markowitz approach utilizes
classical portfolio optimization of the investments; however, liabilities are not consid-
ered in this approach. In contrast, the risk return models of Kahane and Nye (1975),
Kahane (1977), Chen (1977), and Leibowitz and Henriksson (1988) incorporate liabil-
ities as an individual investment group and thus the correlations between assets and
liabilities enter the model framework.

Group 3 of the asset liability management models contains DFA. In contrast to the other
two groups, this type of model is capable of multiperiod planning on the basis of stochas-
tic influence factors, enabling the user to survey possible future paths of assets and li-
abilities. This is done by modeling the interest rates and the stock markets as well as
by mapping the development of uncertain liabilities. DFA allows an integrated model-
ing of the insurance company and its environmental factors (e.g., competition, capital
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market, regulation). A special form of DFA considered in Schmeiser (2004) is scenario
testing. In scenario testing, the future prospects of the insurance company, especially its
tendency to shortfall (e.g., measured by the ruin probability), are tested under different
predetermined scenarios. Examples of such scenarios are unfavorable changes in interest
rates or heavy increases of the firm’s loss ratios. This so-called stress testing is of special
relevance when determining risk-based capital following Solvency II.

In the insurance industry, asset liability management depends on the particular line
of business because actuarial obligations and the structure of investments differ for
each class of insurance in respect to their maturity, risk exposure, and risk-affecting
factors. Thus life insurers and nonlife insurers practice different forms of asset liability
management.

DFA is more frequently used in the nonlife insurance business than in the life insurance
business due to the higher uncertainty of liabilities in the former. The nonlife insurance
business—in contrast to the life insurance business—has rather a short-term character
(see Farny, 1997, p. 71). The business is characterized by very volatile claim distributions,
for example, due to the existence of large losses, making it very difficult to forecast
liability cash flows (see Kaufmann et al., 2001, p. 214). Therefore, nonlife insurers rarely
use immunization techniques for asset liability management; stochastic models like DFA
are far more common.

In contrast, the life insurance business is characterized by its long-term nature. The oc-
currence of a loss and the size of the claims are less stochastic than in the nonlife insurance
business. In particular, when modeling liabilities, the (stochastic) trend of mortality must
be taken into consideration. Also, asset modeling for life insurance is fundamentally dif-
ferent from that for nonlife insurers because the investments are marked by a very long
planning horizon. Therefore, in the life insurance business there are fewer liquidity risks,
but more market risks (in particular, risks of interest rate changes). This segment of the
insurance industry thus mostly uses immunization and optimization techniques for as-
set liability management, although there are a few older instances of DFA applications
to be found (see D’Arcy and Gorvett, 2004, pp. 584-585).

CONCEPTION OF DYNAMIC FINANCIAL ANALYSIS

DFA originated from the field of operations research and mainly uses simulation tech-
niques for problem analysis. For this approach, the insurance company is modeled and
a large number of possible scenarios are computer simulated. Different variables can be
assessed for their influence on company’s profit and on other important events, such as
insolvency. Compared to other asset liability management methods, DFA provides addi-
tional information. In addition to the mean and the standard deviation of the variables,
information about the probabilities of certain states, like illiquidity, are available, as are
full balance sheet estimates. Based on this information, long- and short-term planning,
benchmarking, and solvency testing, as required under Solvency II, are feasible.

Thus, DFA is a valuable tool that can help management test its strategies and learn from
the results in a theoretical environment. Possible paths for the different variables are
open, instead of being predetermined; there is no need to fit the insurance company into
predetermined scenarios and thus make it vulnerable to other, untested possibilities.
A further benefit of DFA is the capability of multiperiod analysis, which is difficult,
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FIGURE 2
Conception of DFA

if not impossible, using analytic modeling or dynamic programming (see Blum and
Dacorogna, 2004, p. 510). Marginal analysis is also feasible, which can show the effects
of adding or closing certain business lines or the influence of single contracts on the
company’s profits.

As mentioned, DFA is an attempt to model the insurance company and the surrounding
environment. Figure 2 presents a general conception of DFA, including the key elements
that need to be considered and the different phases of DFA development. In the following
we describe these elements and the DFA development process. We do not provide a
complete overview of all DFA modeling details; however, this short survey covers the
key elements and concepts and will be sufficient as background to our main purpose,
which is to focus on problems resulting from these concepts and the modeling of the
key elements, to be covered in the following section. For the details not considered here,
the reader is referred to Casualty Actuarial Society (1999), Blum and Dacorogna (2004),
Lowe and Stanard (1997), and Kaufmann et al. (2001).

In the DFA framework, it is convenient to reduce the complex insurance business to
a few important elements. Such key elements include assets, liabilities, management
behavior, and operational risks. In modeling the firm’s environment, factors such as
competitors, regulation (e.g., asset allocation rules, tax system, accounting rules), and
the capital market (e.g., interest rates, foreign exchange rates) should be considered.

As the core business of an insurance company is providing insurance coverage, one cru-
cial point in developing a DFA system is modeling liabilities in respect to loss distribu-
tions and expected payout streams. In this context, the company’s reinsurance program
and its impact on liabilities can be shown as well.

Following the idea of cash-flow matching, assets should be allocated such that the income
stream matches the payout for liabilities. Besides maintenance of liquidity, there are
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other aims for asset allocation, such as maximization of earnings and safety, targets that
naturally compete with each other.

An insurance company’s management is an important factor in the firm’s development.
Through its daily actions and strategy setting, management influences the structure of
assets and liabilities for long time periods. An example is the underwriting policy, which
has a heavy impact on the market position.

Another important factor is operational risks. This type of risk is defined by the Basel
Committee on Banking Supervision (BIS, 2004, p. 137) as “the risk of loss resulting from
inadequate or failed internal processes, people and systems or from external events. This
definition includes legal risk, but excludes strategic and reputational risk.” Although
this definition applies to the banking sector, operational risk is equally relevant in the
insurance industry and most likely will be covered in the Solvency II rules.

There are many exogenous variables that affect the insurance business. One major factor
is regulation, which, for example, puts heavy constraints on asset allocation in many
countries. This type of regulation, which is primarily aimed at protecting insureds, con-
stricts the efficiency of asset allocation. Further, market competition is a field with com-
plex interdependences. For example, superior asset allocation in comparison to competi-
tors can give an advantage in product pricing. The positioning of competitors has a direct
influence on management decisions and contracts written and, therefore, on liabilities.

The process of implementing and using a DFA system can be described as follows. In the
modeling stage, the key factors, as discussed above, must be identified by the developers
of the DFA system. These factors and their dependences then must be incorporated into
the DFA model and calibrated to meaningful historical data (see, e.g., Kaufmann et al.,
2001, p. 245). After that, in the simulation stage, the modeled company is run through
various possible paths, dependent on the modeled stochastic variables. Here, increasing
the number of simulation cycles can improve the quality of results, in the sense of reaching
full outcome distributions instead of point estimates, for the following analysis. In this
phase, the results are analyzed and possible prosperous or dangerous scenarios are
identified. Based on this information, in the interpretation stage, the strategies can be
adapted so as to avoid the dangerous scenarios and achieve the prosperous ones. In
other words, management can use the model to support its decisions.

After decisions are made and a certain time period has elapsed, the real-world outcomes
of the decisions can be used as a benchmark for the DFA results. Thus, by verification, the
real-world outcomes are compared to the simulated results of the DFA model. Subse-
quently, using this feedback, the DFA model is adjusted so as to provide more accurate
simulations in the future, which closes the DFA development loop by bringing us back
to the modeling stage.

IMPLEMENTATION OF DYNAMIC FINANCIAL ANALYSIS

As stated in Lowe and Stanard (1997), it makes a substantial difference whether a DFA
model is implemented for one single line of insurance business or for an entire multiline
insurance company. It is difficult enough to identify all relevant variables, measure their
dependences, and proceed to implementation for a single line of business; doing the
same for an entire insurance company with many lines of business is, obviously, far
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more difficult. Thus, because the modeling and implementation stages are so crucial to
success, they are the main focus of this work.

The remainder of this section consists of two subsections. The first is an overview of
strategic decisions that need to be made in setting up the DFA model, such as the make
or buy decision, the scope of the system, and the time horizon to be employed, topics
of most concern to management. The second subsection deals with operational deci-
sions important to realization of the DFA model. Of these, we first discuss modeling the
key elements, and then proceed to the technical details related to the design of these
elements—the generation of random numbers and the implementation of dependence
structures.

Strategic Decisions

One of the first strategic considerations after deciding to implement DFA is whether to
make or to buy a DFA model,1 a decision that must be made on a case-by-case basis by
each individual insurance company. The decision will depend on in-house know-how
and capacities, the availability of suitable products on the market, and, if it is determined
to buy the DFA model, the extent to which the model can be customized. Finally, and
possibly most important, is a cost–benefit analysis. This list of considerations is not
exhaustive but it serves to illustrate the complexity of decisions necessary even at the
very early stage of DFA implementation. Once the initial decision about whether to
make or buy has been made, things grow even more complex. Management will need to
decide, for example, how complex or comprehensive the system should be, what time
horizon will be employed, and which variables will be implemented.

One of the most critical of these decisions will be the scope of the DFA system. Which
elements should be included and how detailed should these be? On one hand, in-depth
representation of reality is desirable. On the other hand, more detail means more expense
and greater difficulty to maintain. It is questionable whether all interdependences are
ascertainable and really necessary for good model results. A model incorporating only
the most significant variables makes it easier to identify the interrelations between inputs
and outputs; higher transparency eases interpretation of results and decision making (see
Kaufmann et al., 2001, p. 246; D’Arcy et al., 1998, p. 79).

Regardless of which elements and interdependences are finally incorporated, accurate
modeling is essential. Related to accuracy is the question of the most suitable structure of
the model—should it be a one-piece structure or should it consist of a modular environ-
ment? In most cases, the modular environment is the best and obvious choice due to eas-
ier administration and the ability to add or remove elements (see Blum and Dacorogna,
2004, p. 516). Another thing that must be considered is computing power. This is, perhaps,
not the bottleneck it used to be. But enhanced computing power has been accompanied
by a demand for more accurate DFA models and a larger number of simulation runs.
Thus, computing power is once again an issue that cannot be overlooked.

1 Examples are Igloo by Paratus Consulting, TAS P/C by Tillinghast, and Dynamo by MHL
Consulting, which is a freeware Excel-based DFA model (see Blum and Dacorogna, 2004,
p. 516).
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Also of great importance in interpreting DFA results is the time horizon to be employed.
The results may not be relevant to strategic decision making if the regarded time pe-
riod is short. However, there are also problems concerning longer time periods, for
example, data uncertainty and the variability of outputs. The longer the time period
considered, the more uncertain is the input data, leading to greater variability of results.
Less exact results are a questionable basis for decision making (see Kaufmann et al., 2001,
p. 214).

Operational Decisions

Modeling the Key Elements of DFA. The key elements of a DFA system were identified in
“Conception of Dynamic Financial Analysis.” In this subsection, we discuss the modeling
of those key elements.

For the liabilities, different dimensions need consideration. On one hand, the shape of dis-
tributions differs because in some insurance branches distributions are influenced by rel-
atively homogeneous claims (e.g., collision claims) and in others by extreme losses (e.g.,
natural disaster). On the other hand, there is the change of distribution functions over
time. Due to inflation and the concentration of wealth in highly industrialized countries,
distributions—the shape, mean values, standard deviations, and extreme values—can
change considerably. Integrating reinsurance adds even more complexity; both propor-
tional and nonproportional reinsurance must be considered. This brings to light another
advantage of DFA—it can be used to evaluate the adequacy and cost efficiency of a rein-
surance program. In this context, it is possible to simulate cumulative claim distribution
values or to generate individual claim data, which means simulating the claim number
(e.g., poisson random numbers) and associated claim size for every claim separately.
Simulating individual claims is favored because it allows implementation of certain
nonproportional reinsurance contracts.

The asset side also presents modeling complications. Manifold constraints make it dif-
ficult to model this element properly. For one thing, in many countries regulation con-
strains the ability of insurance companies to invest freely or as would be recommended
by an optimization model. Another complication is that an insurance company needs
sufficient liquidity to pay claims at any time, without affecting the earnings. A supe-
rior return–risk portfolio can be created with the help of the Markowitz approach or
another optimization model. Additionally, changes in asset prices, interest rates, and
currency rates at different points of time can be regarded within an intertemporal asset
management.

As mentioned, DFA can help managers test their strategies and be used as support for
their decisions. In addition to this valuable function, management behavior can be mod-
eled so that multiperiod analysis is feasible. Management behavior and management-
induced strategies can be implemented in the model by setting decision rules, constraints,
or objectives. Consider liquidity development, for example. If, in the simulation, liquid-
ity drops below a certain level, predetermined rules can affect a sale of long-term assets,
reflecting actual management behavior in this situation.

Operational risk is hard to identify and measure, mainly because such events are very
scarce and thus it is difficult to determine suitable loss distributions. One example of this
rare and hard to predict type of risk is the case of large business fraud. However, even
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this type of risk must be incorporated into a comprehensive DFA system to be useful in
risk management decision making.

Asset allocation regulations and other rules (such as the restriction on issuing bond cap-
ital by direct insurers) must be incorporated in the model if they have an impact on
the insurer’s business. Multinational insurers have to keep track of different national
regulations and, possibly, special prescriptions for foreign insurers. Underwriting cy-
cles can be used to model the competition, another important variable. By modeling a
stochastic process, hard and soft market phases are educible and so the firm can thus
make appropriate decisions about whether to charge higher prices for insurance or pre-
pare for worsened economic conditions (see D’Arcy et al., 1997). The model does this by
way of response functions. These response functions contain certain rules, for example,
for management behavior, as discussed above, which reflect the insurance company’s
reaction to market changes (see Daykin et al., 1994).

The main variables of the capital market, such as interest rates, asset prices, and cur-
rency exchange rates, are important for building a realistic DFA model. These variables
are mostly generated in the framework of an economic scenario generator. An approach
for dealing with the complex interdependences of market variables is the stepwise simu-
lation of economic variables in a cascade style, which leads to a hierarchical dependence
between the variables. In a first step, a primary economic driver, e.g., the short rate, is
simulated. This variable influences other economic parameters generated in a next step,
which themselves then can affect variables simulated in the following steps (see, e.g.,
Kaufmann et al., 2001). As mentioned, one of the most important variables is the short-
term interest rate because it is, for example, the basis for deriving the term structure
and, thus, for valuing the bond portfolio (for more on interest rate and term structure
modeling, see, e.g., Cairns, 2004; James and Weber, 2000). The interest rate, as well as
other economic parameters, can be modeled with the help of stochastic processes, which
can show different features suitable for mapping real-world behavior. For instance, there
is the mean-reverting property, which can be applied to model the short rate. Another
example is the movement of stocks, which can be modeled using diffusion (random
walk) or jump-diffusion processes. The latter are random walk processes that addition-
ally make jumps in market prices and thus allow the replication of market shocks (for
more on stochastic processes, see, e.g., Hull, 2003; Rolski et al., 1999).

Generation of Random Numbers. The generation of random numbers is essential to a suc-
cessfully operating DFA system because the generation process can be a considerable
source of error or bias for the DFA results. As most advanced commercial software pro-
grams available for DFA have already solved this problem quite well, this point is mostly
of interest for those users who want to implement their own DFA solutions. In this case,
the random numbers and their statistical properties must be checked by the develop-
ers of the DFA model or verified by a third party (see Seila, 1995). In this section, we
will first discuss some of the problems that can arise with the generation of uniform
random numbers. Then we will demonstrate the creation of random numbers from loss
distributions, after which we will address specific problems associated with modeling
of extreme events.

The basis for the generation of any specific random number is the creation of uniform ran-
dom numbers U, which are uniformly distributed in the interval [0,1]. When generating
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these uniform distributed values of U, it is important that the generators create random
numbers with good statistical properties. Random generators produce pseudo-random
numbers, which means that they generate random numbers by way of an arithmetic
function. The problem with these generators is that after a certain quantity, the numbers
are iterated and thus the required independence in a vector of random numbers cannot be
ensured when many random numbers are produced. Also, in some arithmetic functions
there can be a considerable dependence between a random value and its predecessor.
These are two analytical tractable criteria, called cycle length and one-step serial corre-
lation, which are suitable tests of the quality of a random number generator. The user of
DFA should be aware of these criteria and apply a generator with a suitable cycle length
and without serial correlation problems (see Bratley et al., 1987; Seila, 1995).

Also of importance is the required independence between different random vectors,
which means that the generator should not start with the same sequence for every ran-
dom vector. Furthermore, the random generator should be portable to other computer
systems so that it creates identical results on different systems. A useful feature for DFA
is the ability to fix the “seed” of the random numbers. This enables the user to modify
parameters in the simulation study and to compare the results of the change for the
same random numbers (see Fishman, 1996). To avoid the pitfalls connected with the
creation of uniform random numbers, the generator should be tested for the presence of
these problems and discarded for another generator in the event of unfavorable results.
Commonly used generators are the linear “mixed congruential approach” or quadratic
and inverse generators from the group of nonlinear generators, which overcome some
limitations of the linear methods (see Fishman, 1996, p. 670; Daykin et al., 1994, p. 468).

In the context of DFA, random values from claim distributions are more desirable than
pure uniform random numbers. However, the just-described random numbers U are the
basis for generation of the claim distribution values. Together with the inverse of the
distribution function, and based on the inverse transformation method,

x = F −1
X (U), (1)

one can determine these desired random number values x (see, e.g., Rubinstein, 1981).
For the inverse distribution function, it is necessary to estimate the distribution function
first. One way to do this is to fit the available empirical loss data to theoretical parametric
distributions, for example, with the help of maximum likelihood estimation. This proce-
dure would determine the best parameter set of the given data set for different types of
distributions. Then, using goodness of fit (e.g., with the chi-square or the Kolmogorov–
Smirnov goodness-of-fit test), the most suitable distribution can be chosen. Another way
to determine the distribution function, is to use nonparametric or semiparametric meth-
ods. An analytic solution is only rarely available for the inverted distribution function
in the case of a parametric distribution. If this analytic solution is not available, which
is usually the case, the developer must choose an approximation of the inverse function
or use recursive assignment, that is, quantile transformation, to calculate these values.
For this approach, the random values U, lying in the interval [0,1], are assumed to be
random distribution values of the desired distribution. The required values x can be later
inferred from these distribution values using the available assignments of the distribu-
tion function from x to F (x) in reverse (see Frey and Nießen, 2001, p. 102). For non- or
semiparametric fitting without an analytical solution, the same approach can be applied
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but there must be a high density of assignments between the distribution values and the
x-values in order to achieve suitable results.

A problematic issue in generating random numbers from loss distributions is the case
of extreme events. If the empirical data were fitted to a parametric distribution, it is
possible that even despite a general goodness of fit, the parametrical distributions will
result in a bad match in the tails of the data. This can happen because of the up to
a certain degree predetermined shape of the parametrical distribution. As it can be
crucial to an insurance company’s survival to correctly estimate the tail behavior of its
claims, this problem cannot be ignored. One way to integrate tail behavior is to use
special tail estimators like the Hill estimator. The Hill estimator neglects the body of the
distribution and considers only the tails. It fits the parameters of a distribution (e.g., the
pareto distribution) by applying maximum likelihood technique to the data of the tails
(see Hill, 1975). Another possible solution is the application of non- or semiparametric
fitting methods, which are more flexible in the detection and display of the real nature
of data. However, a disadvantage of these approaches is that with the “widening” lack
of data in the tail region, the fit can also worsen, which casts doubt on the accuracy (for
the issue of modeling extreme events, see Embrechts et al., 2003).

Implementation of Dependence Structures. Of concern in the context of random number
generation is the correct mapping of dependence structures, for example, between macro-
economic factors and the dependent variables in the insurance company. In this section,
implementation of the multivariate normal dependence structure and the copula concept
are presented.

Linear dependence is the best-known dependence concept and can be measured using
the Bravais–Pearson correlation coefficient R. Along with the linear relationship, nonlin-
ear dependence structures also should be incorporated in the model because linear de-
pendence is only sufficient for spherical or elliptical (e.g., multinormal) distributions. We
will not get good results for other distribution forms by applying the Bravais–Pearson
correlation coefficient to map dependence structures. Another disadvantage of linear
correlation for the generation of random numbers is that these methods disregard joint
major claims or tail dependence. If tail dependence is modeled incorrectly in the DFA
system, “unexpected” joint major claims could cause severe “real-world” distress for
the insurance company. Such flawed modeling arises because the dependence structure
induced by a linear correlation structure leads to asymptotic tail independence for R < 1
(see Embrechts et al., 2002; Nelsen, 1999).

Despite these disadvantages, we can use, for the sake of convenience, a method of map-
ping linear dependence in the form of the linear correlation of ranks, described by Iman
and Conover (1982). The idea is to transfer the desired Spearman’s rank correlation
coefficient RS from a multivariate normal distribution to the required marginal dis-
tributions, without influencing these predetermined distribution shapes. Starting from
independent multivariate standard normal distributed data Z = N(0,I ), only indirect im-
plementation of the rank correlation coefficient RS is possible using the Bravais–Pearson
correlation coefficient R. To obtain the correct rank correlation coefficients for the tar-
get data, the desired values RS of the rank correlation matrix must be transformed to
R by R = 2sin (πRS/6), which are elements of the correlation matrix �. Then—using
the results from the Cholesky decomposition (� = PP′), that is, the lower triangular
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FIGURE 3
Fréchet–Hoeffding Lower Bound, Product Copula, and Fréchet–Hoeffding Upper Bound

matrix P—the desired dependence structure can be implemented by matrix multipli-
cation of P with the standard normal distributed data Z (Y = P × Z).2 Subsequently,
as suggested by Embrechts et al. (2002), the distribution values of these accordingly
correlated multivariate normal values � (Y) can be applied to derive the random num-
bers from the desired marginal distribution functions using the inverse transformation
(X1, . . . , Xn) = (F −1

X1
(�(Y1)), . . . , F −1

Xn
(�(Yn))). Thus the required multinormal rank order-

ing and the desired rank correlation RS is implemented for the target data (see Iman and
Conover, 1982; Embrechts et al., 2002).

The approach, which covers also nonlinear dependence, is the copula concept. Copu-
las are functions that join the marginal distribution functions to the joint multivariate
distribution. Thereby, the copula C contains the whole dependence structure and the
marginal distributions can be regarded independently from the dependence structure.
This result from Sklars Theorem (see Sklar, 1959) can be formalized for two variables
with continuous distributions by

F1,2(x1, x2) = C(F1(x1), F2(x2)). (2)

Copulas are defined on the unit space, which means that all values of F 1,2, F 1, and F 2,
respectively, lie in the interval [0,1].3 An important example of the bivariate copula class
is the product copula: C(u, v) = uv implying independence; i.e., the two marginals F 1(x1)
and F 2(x2) are joined by the copula uv = F 1(x1)F 2(x2). The result of this product is the
value of the bivariate cumulative distribution function F 1,2(x1, x2). Other examples are
the Fréchet–Hoeffding lower bound: C(u, v) = max (u + v − 1, 0) standing for the
strongest negative form of dependence (countermonotonicity) and the Fréchet–
Hoeffding upper bound: C(u, v) = min(u, v) representing the strongest positive form
of dependence (comonotonicity) (see, e.g., Nelsen, 1999). Figure 3 is a graphical rep-
resentation of these copulas and shows their different three-dimensional shapes. The

2 Alternatively, and leading to the same results, one can use the result from the spectral decom-
position and multiply by P = �1/2 = e × diag (λ1/2) × e ′ (with λ the eigenvalue, e the eigenvector
of the correlation matrix, and diag the diagonal matrix).

3 The bivariate copula theory that is presented here can also be extended to the multivariate case
by using a generalization of Equation (2): F 1,...,n(x1, . . . , xn ) = C(F 1(x1), . . . , Fn (xn )). See, e.g., Joe
(1997).
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values of the marginal distribution u and v are displayed in the horizontal plane.
The joint dependence structure (C(u,v), or the copula) is displayed in the third
dimension.

The Bravais–Pearson correlation coefficient is also not the best for measuring depen-
dence. It is possible that by using this coefficient, a correlation of zero can be measured
for a specific data set even though there exists a form of dependence. Furthermore, the
Bravais–Pearson correlation coefficient can exhibit values above −1 for countermono-
tonicity (i.e., −1 ≤ R < 0) and below 1 for comonotonicity (i.e., 0 < R ≤ 1). Because
the correlation values for the strongest form of dependence (positive or negative) can be
near zero, the explanatory power of the Bravais–Pearson correlation coefficient is heavily
constrained (see Embrechts et al., 2002, pp. 205-207). More suitable measures for depen-
dence are Spearman’s RS and Kendall’s τ because, in contrast to the Bravais–Pearson
coefficient, they cover the full range of dependence between countermonotonicity (RS ,
τ = −1—Fréchet–Hoeffding lower bound) and comonotonicity (RS , τ = 1—Fréchet–
Hoeffding upper bound) (see, Joe, 1997, p. 32).

Once the copula is determined by fitting the empirical copula to analytic tractable forms
with the help of maximum likelihood technique (see, e.g., Klugman and Parsa, 1999),
one can generate random numbers with the desired dependence structure. A possibility
for the data generation is the conditional distribution function for v given u by cu(v) =
∂
∂u C(u, v), which is the partial derivative of C(u, v) with respect to u. In the bivariate case,
one first must simulate two uniform distributed variables u and t. Then, the inverse of
cu (v) with the values of t can be used to generate the variable v = c(−1)

u (t). Hence one has
generated pairs of the random variables (u, v) with the desired dependence structure.
In the past step, to obtain the values (x1, x2) from the joint multivariate distribution, the
values of u and v must be inserted in the inverse functions of the marginal distributions
F (−1)

1 (·) and F (−1)
2 (·). For more details and a full example, see Nelsen (1999), pp. 35-

37. This approach makes feasible dependence structures beyond the possibilities of the
method suggested by Iman and Conover (1982). However, the method is not without its
problems. The convenience of an analytical tractable solution may lead to using a copula
that fits to the empirical copula only to a small degree. In addition, the multivariate
case is not very manageable and, in this case, implementation of a multivariate normal
dependence structure is more convenient.

As mentioned previously, tail dependence is of special importance for DFA analysis.
The problem of determining tail dependence or tail copulas arises from the lack of data
comparable to the estimation of the marginal tail distributions (for an overview of pos-
sible tail dependence estimators, see Coles, 2001). However, frequently, pure parametric
or nonparametric methods are inefficient estimators. Newer approaches to overcoming
this weakness use semiparametric techniques. Heffernan and Tawn (2004), for example,
describe a conditional approach that uses parametric regression to determine the param-
eters of the margins and a nonparametric method for the multivariate structure. Another
example is Klüppelberg et al. (2005), which, in contrast, estimate the margins of the tails
nonparametrically and the copulas using a parametric approach.

SUMMARY

There are three main reasons why, within the past few years, DFA has evolved as an
important tool for analyzing an insurance company’s financial situation. First, deregu-
lation of the financial services market created increasing competition and an intensified
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managerial focus on profit. Second, historical low interest rates have called attention
to the need for well-founded investment strategies and for appropriate asset liability
management techniques. Third, changing supervisory and legal frameworks resulted in
the establishment of an integrated risk management system.

DFA can be used for this risk management purpose. The model’s high flexibility and
various analysis options (e.g., solvency analysis or the estimation of full balance sheets)
represent DFA’s most important characteristics. Within asset liability management, DFA
can be classified as a group of multiperiod stochastic models. Other groups are deter-
ministic immunization techniques and optimization approaches for the determination
of an efficient risk return structure.

DFA maps the enterprise from a macroperspective on the basis of a simulation model. It
follows an explicit multiperiod approach and a cash-flow orientation. In DFA, the com-
plex insurance business is reduced to its most important elements—assets, liabilities,
management behavior, and operational risks. The model also takes into consideration
environmental factors, such as competitors, regulation, capital markets, and the depen-
dence structures between these macroeconomic factors and the dependent variables in
the insurance company. Implementation and use of DFA is a five-step process: modeling,
simulation, analysis, interpretation, and verification. The final step, verification, creates
a feedback loop for parameters that change over time and newly discovered modeling
errors so that the first step, modeling, is reengaged, making DFA ever more sensitive,
accurate, and valuable to its users.

Summarizing our results, what is the precise contribution of our article? After giving the
overview on classification and conception of DFA, we have focused on several imple-
mentation aspects of DFA. Two of them are of special importance, since they were not
analyzed in the DFA literature so far.

The first issue concerns the generation of random numbers. Problems arise from the cre-
ation of uniform random numbers, the generation of random claim distribution values,
and, especially, from modeling extreme events and operational risks. It is essential to
evaluate the quality of the random number generator. It is possible to fit the empirical
claim distribution to parametric distributions using maximum likelihood estimations.
However, if the goodness of fit is unacceptable, several non- or semiparametric meth-
ods or the use of tail estimators might be more appropriate. These methods have the
added attractiveness of also being capable of improved modeling of extreme events and
operational risks.

The second issue we have addressed is the correct mapping of dependence structures,
which can be implemented using the multivariate normal dependence structure or the
copula concept. The multivariate normal dependence structure fails to correctly model
dependence, especially in tails, but it is convenient to implement in the multivariate case.
The copula concept is the best-known method for modeling dependence structures and
it also allows exact modeling of tail dependences. However, multivariate cases are very
difficult to handle using the copula concept.

It is important to note that DFA models cannot predict the future. Rather, DFA is a very
useful tool for risk analysis and decision support in that it can recommend possible course
of action. For these recommendations to be of any use, however, the input parameters and
the modeling must be of very high quality as a poor estimation of the input parameters
and bad mapping will lead to an inferior prognosis.
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The future will bring further refinement of DFA. At present, fundamental changes in
supervisory and legal frameworks have created a need for holistic enterprise risk man-
agement tools. These changes have created the present climate of discussion surrounding
DFA, both in science and in practice. Many technical improvements in DFA have already
occurred, but a model specifically designed for the life insurance industry should be a
high priority for future research. Moreover, using DFA to calculate risk-based capital
standards following Solvency II raises many questions for future research, such as the
appropriate risk and performance measurement in DFA. For example, a risk measure is
needed that works on a multiperiod analysis. However, because the benefits of its use
are so great, we expect that DFA will evolve into a common tool of risk management for
all insurance companies.

REFERENCES

Basel Committee on Banking Supervision (BIS), 2004, International Convergence of Capital
Measurement and Capital Standards (A Revised Framework), http://www.bis.org.

Blommer, J., 2005, Developments in International Financial Reporting Standards and
Other Financial Reporting Issues, Geneva Papers on Risk and Insurance—Issues and Prac-
tice, 30(1): 101-107.

Blum, P., and M. Dacorogna, 2004, DFA—Dynamic Financial Analysis, in: J. Teugels and
B. Sundt, eds., Encyclopedia of Actuarial Science (New York: John Wiley & Sons), pp.
505-519.

Blum, P., M. Dacorogna, P. Embrechts, T. Neghaiwi, and H. Niggli, 2001, Using DFA for
Modelling the Impact of Foreign Exchange Risks on Reinsurance Decisions, Casualty
Actuarial Society Forum, Summer: 49-93.

Bratley, P., B. L. Fox, and L. E. Schrage, 1987, A Guide to Simulation, 2nd edition (New
York: Springer).

Cairns, A. J. G., 2004, Interest Rate Models: An Introduction ( Princeton: Princeton University
Press).

Casualty Actuarial Society, 1999, DFA Research Handbook, prepared by the Dynamic Fi-
nancial Analysis Committee of the Casualty Actuarial Society.

Chen, A. H., 1977, Portfolio Selection with Stochastic Cash Demand, Journal of Financial
and Quantitative Analysis, 12(2): 197-213.

Coles, S., 2001, An Introduction to Statistical Modeling of Extreme Values (London: Springer).
D’Arcy, S. P., and R. Gorvett, 2004, The Use of Dynamic Financial Analysis to Determine

Whether an Optimal Growth Rate Exists for a Property-Liability Insurer, Journal of Risk
and Insurance, 71(4): 583-615.

D’Arcy, S. P., R. W. Gorvett, J. A. Herbers, T. E. Hettinger, S. G. Lehmann, and M. J. Miller,
1997, Building a Public Access PC-Based DFA Model, Casualty Actuarial Society Forum,
Summer(2): 1-40.

D’Arcy, S. P., R. W. Gorvett, T. E. Hettinger, and R. J. Walling III, 1998, Using the Pub-
lic Access Dynamic Financial Analysis Model: A Case Study, CAS Dynamic Financial
Analysis Call Paper Program, Summer: 53-118.
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