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Abstract

Imposing a symmetry condition on returns, Carr and Lee [2009] show that (double) barrier deriva-
tives can be replicated by a portfolio of European options and can thus be priced using fast
Fourier techniques (FFT). We show that prices of barrier derivatives in stochastic volatility mod-
els can alternatively be represented by rapidly converging series, putting forward an idea by
Hieber and Scherer [2012]. This representation turns out to be faster and more accurate than
FFT. Numerical examples and a toolbox of a large variety of stochastic volatility models illustrate
the practical relevance of the results.

Keywords: first-passage time, barrier options, stochastic volatility, stochastic clock.

Barrier derivatives are among the most liquidly traded over-the-counter (OTC) products. Their pay-
out depends on whether the underlying crosses some prespecified level(s) until the maturity of the
contract. If the final payoff depends on an upper and a lower threshold (contracts termed “double
barrier derivatives”), barrier products constitute a simple possibility to obtain a long/short position in
volatility.

Closed-form prices for barrier derivatives were first obtained in the Black–Scholes model; the sin-
gle barrier pricing formulas can be referred to, e.g., Black and Cox [1976] or Reiner and Rubinstein

1Peter Hieber acknowledges funding by the German Academic Exchange Service (DAAD). This version may differ from
the final published version Efficiently pricing double barrier derivatives, Review of Derivatives Research, Vol. 17,
No. 2 (2014), pp. 191–216 in typographical detail.
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[1991]. Later, those results were extended to (stochastic and local) volatility models that fulfill cer-
tain symmetry conditions in the return distribution (see, e.g., Derman et al. [1994], Carr et al. [1998],
Dupont [2002], Carr and Lee [2009], Carr et al. [2011]). Related to this work, several authors price
barrier derivatives analytically (e.g. by fast Fourier techniques (FFT)) for special cases of the stochastic
volatility models of Heston (see, e.g., [Lipton, 2001, p. 235], Carr et al. [2003], Sepp [2006], Kammer
[2007], Escobar et al. [2011]) and Stein–Stein (see, e.g., Götz [2011]). Those extensions allow to include
important stylized facts that are criticized in the seminal Black–Scholes model: (1) volatility varies
over time (stochastic volatility) and (2) implied volatility depends on the strike price (smile feature).

The contribution of this paper is as follows:

• We review existing results on the pricing and risk management of double barrier derivatives
under stochastic volatility. We aim at providing a reader friendly recipe on pricing and hedg-
ing double barrier derivatives under stochastic volatility. We provide a toolbox of (single and
multi-factor) stochastic volatility models that allow to price barrier derivatives in closed-form,
an aspect that has not been the prime focus of earlier works. Examples include single and
multi-factor CIR-type stochastic volatility (which is the type of volatility used in the Heston
[1993], Schöbel and Zhu [1999], or Christoffersen et al. [2009] model), or the Stein and Stein
[1991] model. Jump processes for the volatility are also discussed, an idea that was, for example,
applied in the Barndorff-Nielsen and Shephard [2001] model.

• We show that the existing results based on FFT techniques can be significantly improved in terms
of computational efficiency. Double barrier derivatives can (in the same stochastic volatility
setting) be priced by rapidly converging infinite series, extending an idea by Hieber and Scherer
[2012]. In contrast to Fourier techniques, this result avoids the integration over contours of the
complex plane and is (in all examples we considered) faster than FFT. We provide error bounds
that allow for a straightforward implementation of the results.

Increasingly popular and numerically demanding tasks, like the pricing and risk management of large
portfolios of barrier derivatives or their calibration to over-the-counter prices (see, e.g., Carr and Crosby
[2010] and Kilin [2011]), have flagged the need for fast and reliable numerical techniques. Closed-form
prices for barrier derivatives in (special cases of) several well-known models can be used as a benchmark
to assess the performance of other numerical techniques or as a control variate for variance reduction
in Monte-Carlo simulations.

The paper is organized as follows: After introducing the basic notation in Section 1, Section 2 presents
the toolbox of specific stochastic volatility models. Sections 3.1 and 3.2 review the pricing results of
single and double barrier derivatives and show that they can fast and accurately be priced by Fourier in-
version, using results by Carr and Madan [1999], Bakshi and Madan [2000], and Raible [2000]. Section
4 shows that (double) barrier derivatives can alternatively be priced by rapidly converging infinite se-
ries. Numerical results are presented in Section 6, validating the improvement in terms of computation
time and accuracy of the proposed methodology compared to FFT methods.
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1 Model description

1 Model description

We consider on the filtered probability space (Ω,F ,F,Q) the process

dSt
St

= rt dt+ σt dWt, S0 > 0, (1)

where W = {Wt}t≥0 is a standard Brownian motion, {σt}t≥0 the (stochastic) volatility, independent
of W , and {rt}t≥0 the (deterministic) risk-less interest rate2. The processes {σt}t≥0 and {rt}t≥0 are
adapted to the filtration F and satisfy the regularity conditions

∫ t
0 |rs| ds < ∞ and EQ,S0

[ ∫ t
0 σ

2
s ds

]

<

∞ Q-a.s. for all t ≥ 0. We define a (lower) barrier Dt := D exp(
∫ t
0 rsds) and an (upper) barrier

Pt := P exp(
∫ t
0 rsds), where D < S0 < P . We define a bank account Bt = exp(

∫ t
0 rs ds) and denote

the first-exit time by

τ := inf
{

t ≥ 0 |St /∈ (Dt, Pt)
}

, (2)

where inf ∅ := ∞. Besides, τ+ := τ if Sτ = Pτ and τ− := τ if Sτ = Dτ , i.e. if the upper barrier is hit
first, we set τ+ := τ ; if the lower barrier is hit first, we set τ− := τ .

For a given maturity T , our objective is to price derivatives that depend on whether or not {St}t≥0

crosses the thresholds {Dt}t≥0 or {Pt}t≥0. We consider contracts X
g(ST )
D,P (S0) that consist of a positive

payoff g(ST ) (where E[g(ST )] < ∞) if none of the barriers {Dt}t≥0, {Pt}t≥0 is hit until maturity T
(and 0 otherwise). The price of those contracts is given by

X
g(ST )
D,P (S0) =

1

BT
EQ,S0

[

1{τ>T} g(ST )
]

, (3)

where we denote EQ,x[ · ] := EQ[ · |S0 = x]. A special case are single barrier contracts, i.e.

X
g(ST )
D,∞ (S0) =

1

BT
EQ,S0

[

1{τ
−
>T} g(ST )

]

. (4)

2 Stochastic volatility models

Various parameterizations of the stochastic volatility model (1) have been proposed in the literature.
This section discusses some of the most famous examples that are used by both practitioners and
academics. These include the CIR-type stochastic volatility model (Section 2.1), which is the type of
volatility used in the Heston [1993] or Christoffersen et al. [2009] model. In Section 2.2, the volatil-
ity follows an Ornstein–Uhlenbeck (OU) process, which results in the Stein and Stein [1991] model.
Finally, jump processes for the volatility are discussed (Section 2.3), an idea that was, for example,
applied in the Barndorff-Nielsen and Shephard [2001] model.

We explicitly discuss richer volatility structures including multiple risk factors. Multi-factor models
have become very popular for modeling short rates, where it is widely accepted that one factor is
not sufficient to capture the time and cross-sectional variation in the term structure; however, their
application has only recently (see, e.g., Christoffersen et al. [2009]) reached the area of option pricing.

2A comment on generalizations to stochastic interest rates is given in Remark 17.
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2.1 CIR-type stochastic volatility

2.1 CIR-type stochastic volatility

This section discusses two models that rely on a CIR-type stochastic volatility: The 2-factor stochastic
volatility model considered in Christoffersen et al. [2009] (allowing for a rich volatility structure, see
Example 2), and the (1-factor) Heston model (Example 1). Extensions to more than two factors are
straightforward, due to their high number of parameters, however, they are not frequently used in
practice.

Example 1 (Heston-type stochastic volatility)
The Heston [1993] model was introduced as

dSt
St

= rt dt+
√
vt dWt, S0 > 0, (5)

dvt = θ(ν − vt)dt+ γ
√
vtdW̃t, v0 > 0,

where θ, ν, and γ are non-negative constants; {W̃t}t≥0 and {Wt}t≥0 one-dimensional Brownian motions
with correlation ρ. The Feller [1951] condition 2θν > γ2 guarantees that the process is almost surely
positive. The characteristic function of the log-asset process in the Heston model is given by, see Heston
[1993], Rollin et al. [2011]

ϕT (u, S0) = E
[

eiu ln(ST )
]

= exp

(

iu ln(S0) + iu

∫ T

0
rt dt

)

·
(

exp(θT/2)

cosh(̺T/2) + ξ
̺ sinh(̺T/2)

)
2θν
γ2

exp

{

−v0
̺

(iu+ u2) sinh(̺T/2)

cosh(̺T/2) + ξ
̺ sinh(̺T/2)

}

, (6)

where ̺ =
√

(θ − γρiu)2 + γ2(iu+ u2), ξ = θ − γρui. The special case ρ = 0 is considered in, e.g.,
Ball and Roma [1994], [Lipton, 2001, p. 235], Carr et al. [2003], Sepp [2006], Kammer [2007], and
Escobar et al. [2011].

Example 2 (2-factor stochastic volatility)
Following Christoffersen et al. [2009], a 2-factor stochastic volatility model can be introduced as

dSt
St

= rt dt+

√

v
(1)
t dW

(1)
t +

√

v
(2)
t dW

(2)
t , S0 > 0, (7)

dv
(1)
t = θ1(ν1 − v

(1)
t )dt+ γ1

√

v
(1)
t dW̃

(1)
t , v

(1)
0 > 0,

dv
(2)
t = θ2(ν2 − v

(2)
t )dt+ γ2

√

v
(2)
t dW̃

(2)
t , v

(2)
0 > 0,

where {W (1)
t }t≥0, {W (2)

t }t≥0, {W̃ (1)
t }t≥0, and {W̃ (2)

t }t≥0 are Brownian motions. {W (1)
t }t≥0 has cor-

relation ρ1 with {W̃ (1)
t }t≥0, {W (2)

t }t≥0 has correlation ρ2 with {W̃ (2)
t }t≥0. The remaining correlations

are assumed to be zero. The parameters θ1, θ2, ν1, ν2, γ1, and γ2 are positive constants.

Using independence between the volatility processes, the characteristic function of the log-asset process
is a straightforward deduction from Equation (6), i.e.
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2.2 OU-type stochastic volatility

ϕT (u, S0) = E
[

eiu ln(ST )
]

= exp

(

iu ln(S0) + iu

∫ T

0
rt dt

)

· exp
{

−v
(1)
0

̺1

(iu+ u2) sinh(̺1T/2)

cosh(̺1T/2) +
ξ1
̺1

sinh(̺1T/2)

}

exp

{

−v
(2)
0

̺2

(iu+ u2) sinh(̺2T/2)

cosh(̺2T/2) +
ξ2
̺2

sinh(̺2T/2)

}

·
(

exp(θ1T/2)

cosh(̺1T/2) +
ξ1
̺1

sinh(̺1T/2)

)

2θ1ν1
γ21

(

exp(θ2T/2)

cosh(̺2T/2) +
ξ2
̺2

sinh(̺2T/2)

)

2θ2ν2
γ22

, (8)

where ̺j =
√

(θj − γjρjiu)2 + γ2j (iu+ u2), ξj = θj − γjρjui, for j = 1, 2. To stay within our model

framework (1), volatility and asset process have to be independent. Thus, we have to restrict ourselves
to the case where ρ = ρ1 = ρ2 = 0. This case is used in, e.g., Götz [2011], Kiesel and Lutz [2011].

2.2 OU-type stochastic volatility

If the volatility is of OU-type, we obtain the stochastic volatility model of Stein and Stein [1991], an
approach that was later extended to include dependence between S and σ by Schöbel and Zhu [1999].

Example 3 (Stein–Stein model)
Stein and Stein [1991] introduce the stochastic volatility model

dSt
St

= rt dt+ σt dWt, S0 > 0, (9)

dσt = ξ(σt − κ)dt+ k dW̃t, σ0 > 0,

where ξ, κ, and k are positive constants; {W̃t}t≥0 and {Wt}t≥0 independent one-dimensional Brownian
motions. In this model, the volatility is governed by an arithmetic Ornstein–Uhlenbeck process, with a
tendency to revert back to a long-run average level of κ. The characteristic function of the log-asset
process is given by, see, e.g., Stein and Stein [1991]

ϕT (u) = E
[

eiu ln(ST )
]

= exp

(

iu ln(S0) + iu

∫ T

0
rt dt

)

· exp
(

L
(

(iu+ u2)/2
)

σ20/2 +M
(

(iu+ u2)/2
)

σ0 +N
(

(iu+ u2)/2
)

)

, (10)

where the functions L(u), M(u), and N(u) are defined in Appendix A.

Similar to the Heston-type extension (Example 2), this model can also be extended to several factors,
allowing for richer volatility structures.

2.3 Volatility with jumps

Jumps in the volatility process have also become recognized stylized facts, see – among many others –
Naik [1993], Barndorff-Nielsen and Shephard [2001], and Eraker et al. [2003]. While a jump in returns
has no impact on the distribution of future returns, jumps in volatility are highly persistent. Bates
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3 Fourier pricing

[1996] and Barndorff-Nielsen and Shephard [2001] assume that (external) shocks lead to a sudden
increase in volatility. Then, volatility gradually returns to its original level (see Example 4). Those
kind of processes are also popular in insurance applications, see, e.g., Dassios and Jang [2003].

Example 4 (Jumps in the volatility)
Barndorff-Nielsen and Shephard [2001] propose to include jumps in the volatility process. Different
applications in insurance or finance can be found in, e.g., Cox and Isham [1980], Dassios and Jang
[2003].

dSt
St

= rt dt+
√
vt dWt, S0 > 0, (11)

vt = v0 exp(−δt) +
∑

si≤t

Mi exp
(

− δ(t− si)
)

, v0 > 0,

where v0 > 0 is the initial variance, δ > 0 the exponential decay rate, {si}∞i=1 are the jump times of a
time-homogeneous Poisson process with intensity ψ > 0, and Mi are the jump sizes with distribution
G(y), y > 0. The characteristic function is given by, see, e.g., Dassios and Jang [2003]

ϕT (u, S0) = E
[

eiu ln(ST )
]

= exp

(

iu ln(S0) + iu

∫ T

0
rt dt

)

· exp
(

− (iu+ u2)v0
2δ

(

1− exp(−δT )
)

− ψ

∫ T

0

[

1− ĝ
( iu+ u2

2δ

(

1− exp(δ(T − t))
)

)]

dt

)

, (12)

where v0 > 0 and ĝ(u) :=
∫∞
0 exp(−uy) dG(y) is the Laplace transform of the jump size distribution

G(y), y > 0. Special cases include, for example, exponential jump diffusions ĝ(u) = 1/(1 + u/ζ), in
which case the integral in (12) can be computed explicitly.

There are many other parameterizations of a stochastic volatility not covered in this paper. Frequently
used is the Hull–White model (see, e.g., Hull and White [1987]). This type of model also occurs as
a continuous diffusion limit of GARCH models (see, e.g., Klüppelberg et al. [2004], Brockwell et al.
[2006]). However, the characteristic function of the log-asset price is not known explicitly in these
models and has to be evaluated numerically. Furthermore, it is also possible to consider 1-dimensional
marginals of multivariate stochastic volatility models (e.g. da Fonseca et al. [2007], Pigorsch and Stelzer
[2009]).

3 Fourier pricing

The following sections are devoted to the pricing of down-and-out contracts on one barrier (Section
3.1). Up-and-out contracts can be treated similarly, as well as products on two barriers (Section 3.2).

3.1 One barrier

First, the pricing results for single barrier derivatives are reviewed. The price of a down-and-out
contract under the stochastic volatility model (1) is given in Theorem 5.
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3.1 One barrier

Theorem 5 (One barrier: Down-and-out contract)
In model (1), consider a lower barrier {Dt}t≥0 with D := D0 < S0, E[g(ST )] < ∞, and a derivative
with payoff 1{τ

−
>T} g(ST ). Then

X
g(ST )
D,∞ (S0) =

1

BT

(

EQ,S0

[

1{ST>DT } g(ST )
]

− S0
D

EQ,D2/S0

[

1{ST>DT } g (ST )
]

)

.

Note that the included expectations do not depend on the whole path {St}t≥0, but on the integrated

quantities ST = S0 exp
( ∫ T

0 (rt − σ2t /2) dt+
∫ T
0 σt dWt

)

and DT = D exp(
∫ T
0 rt dt).

Proof
See, e.g., Carr and Lee [2009]. �

In the following, several well-known examples for the payoff g(ST ), digital and barrier options as well
as bonus certificates, are presented. The results allow for an interpretation as a static replication
of the exotic barrier derivatives by path-independent standard vanilla calls, puts, and digitals. If
the characteristic function of the log-asset price ln(ST ) is known, Fourier inversion techniques by
Carr and Madan [1999], Bakshi and Madan [2000], and Raible [2000] allow for an efficient evaluation
of the given expectations.

3.1.1 Digital options

First, we consider digital options, i.e. options that pay $1 at maturity T if the barrier is not hit during
the lifetime of the contract and ST > KT , where KT := K exp(

∫ T
0 rt dt) > DT , i.e. their conditional

payoff function is g(ST ) = 1{ST>KT }. Lemma 6 presents risk-neutral prices of this payoff.

Lemma 6 (Digital options)
Consider the stochastic volatility model (1). The price of a digital option with maturity T (i.e. con-

ditional payoff function g(ST ) = 1{ST>KT }, KT := K exp(
∫ T
0 rt dt) > DT , in Theorem 5) is given

by

IK(S0;D,T ) =
1

BT

[

QS0

(

ST > KT

)

− S0
D

QD2/S0

(

ST > KT

)

]

, (13)

where Qx( · ) := Q( · |S0 = x),

QS0(ST > KT ) =
1

2
+

1

π

∫ ∞

0
Re

[

e−iu ln(KT /S0) ϕT

(

u− i, S0
)

iu ϕT (−i, S0)

]

du (14)

and ϕT (u, S0) = E
[

eiu ln(ST )
]

is the characteristic function of the log-asset price ln(ST ).

The integrals in Lemma 6 can be evaluated using FFT, see, e.g., Carr and Madan [1999]. This result
is a straightforward application of Theorem 5. For Equation (14), we refer to, e.g., Bakshi and Madan
[2000]. In the Black–Scholes model (i.e. σt = σ, rt = r), we obtain

IK
(

S0;D,T
)

=
1

BT

[

Φ

(

ln(S0/K)− σ2T/2

σ
√
T

)

− S0
D

Φ

(

ln(D2/(S0K))− σ2T/2

σ
√
T

)

]

. (15)

7



3.1 One barrier

3.1.2 Barrier options

Down-and-out call, respectively put, options are also a special case of Theorem 5 with payoff g(ST ) =
max(ST − KT , 0), respectively g(ST ) = max(KT − ST , 0), at time T for a given strike KT :=

K exp(
∫ T
0 rt dt) > DT . Before pricing those contracts, we want to consider the simpler case of call

options. If the characteristic function ϕT (u, S0) := E
[

exp
(

iu ln(ST )
)]

of the log-asset price ln(ST ) is
known, Carr and Madan [1999] and Raible [2000] propose to price a call option with strike KT by

CK(S0, T ) =
1

BT

e−α ln(KT )

π

∫ ∞

0
e−iu ln(KT ) ϕT

(

u− (1 + α)i, S0
)

α2 + α− u2 + i(2α+ 1)u
du. (16)

The latter integral can – for many strikes simultaneously – be evaluated using FFT. The damping
factor α > 0 is usually chosen from the interval [1, 2], for a more detailed discussion, we refer to
Carr and Madan [1999].

Lemma 7 (Barrier options)
Consider the stochastic volatility model (1). The price of a down-and-out call, respectively put, option

with strike KT := K exp(
∫ T
0 rt dt) > DT and maturity T is

DOCK(S0;D,T ) = CK

(

S0, T
)

− S0
D
CK

(

D2/S0, T
)

, (17)

DOPK(S0;D,T ) = PK

(

S0, T
)

− S0
D
PK

(

D2/S0, T
)

= DOCK(S0;D,T ) + (K − S0)−
S0
D

(K − S0), (18)

where PK(S0, T ) := CK(S0, T )−S0 +K. If the characteristic function ϕT (u, S0) of the log-asset price
ln(ST ) is known, the price of a call option CK(S0, T ) on {St}t≥0 with strike KT and maturity T is
given by Equation (16).

Lemma 7 is again a straightforward corollary to Theorem 5 using the conditional payoff function
g(ST ) = max(ST − KT , 0), respectively g(ST ) = max(KT − ST , 0). The case 0 ≤ K ≤ D can be
treated similarly.

3.1.3 Bonus certificates

Many exotic derivatives can be replicated by using the results in the previous sections. In this section,
we present one example called “bonus certificates” and show how the results in Theorem 5 can be
applied. For a given bonus level LT := L exp(

∫ T
0 rt dt) > DT and a barrier {Dt}t≥0, the payoff at

maturity T is given by

payoff(T ) =

{

max(ST , LT ), τ− > T,

ST , else.
(19)

Under the risk-neutral measure Q, its price is given by

BOL(S0;D,T ) =
1

BT
EQ

[

1{τ
−
>T}max(ST , LT ) + 1{τ

−
≤T}ST

]

8



3.2 Two barriers

=
1

BT
EQ

[

1{τ
−
>T}max(0, LT − ST ) + ST

]

=
1

BT
EQ

[

ST
]

+X
max(0,LT−ST )
D,∞ (S0) = S0 +DOPL(S0;D,T ). (20)

This leads to the result in Lemma 8.

Lemma 8 (Bonus certificates)
Consider the stochastic volatility model (1). The price of bonus certificates with bonus level LT :=

L exp(
∫ T
0 rt dt) > DT and payoff (19) at maturity T is given by

BOL(S0;D,T ) = S0 +DOPL(S0;D,T ). (21)

If the characteristic function ϕT (u, S0) of the log-asset price ln(ST ) is known, the price of a bonus
certificate BOL(S0;D,T ) can thus be found via Equation (16).

3.2 Two barriers

As a second step, we investigate exit-and-out contracts on two barriers, i.e. we derive X
g(ST )
D,P (S0) (as

defined in Section 1) for certain payoff functions. Examples include double barrier options, double
digital options, or corridor bonus certificates. The price of those contracts is represented as an infinite
series of path-independent derivatives, a result that has been obtained by, e.g., Carr and Lee [2009].

Theorem 9 (Two barriers: Down-and-out contract I)
In model (1), consider a derivative with payoff 1{τ>T} g(ST ), where E[g(ST )] < ∞. Its price is given
by

X
g(ST )
D,P (S0) =

1

BT

∞
∑

n=−∞

Dn

Pn

(

E
Q,S

(2n)
0

[

1{ST∈(DT ,PT )} g(ST )
]

− S0
D

E
Q,S

(2n−1)
0

[

1{ST∈(DT ,PT )} g(ST )
]

)

,

(22)

where S
(2n)
0 = S0P

2n/D2n and S
(2n−1)
0 = P 2n/(D2n−2S0), n ∈ Z.

Note that the included expectations do not depend on the whole path {St}t≥0, but on the integrated quan-

tities ST = S0 exp
( ∫ T

0 (rt − σ2t /2) dt+
∫ T
0 σt dWt

)

, DT = D exp(
∫ T
0 rt dt), and PT = P exp(

∫ T
0 rt dt).

Proof
See, e.g., Carr and Lee [2009]. �

3.2.1 Double digital options

As a first application of Theorem 9, we consider double digital options, i.e. options that pay $1 at
maturity T if the barriers {Dt}t≥0 and {Pt}t≥0 are not hit during the lifetime of the contract and

ST > KT , where KT := K exp(
∫ T
0 rt dt) ∈ [DT , PT ], i.e. their conditional payoff function is g(ST ) =

1{ST>KT }. In the Black–Scholes model, risk-neutral prices for double digital options are presented
in many different representations (see, e.g., Darling and Siegert [1953], Geman and Yor [1996], Lin
[1999]). Lemma 10 provides the price in the more general model framework (1).
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3.2 Two barriers

Lemma 10 (Double digital options I)
Consider the stochastic volatility model (1). The price of double digital options with strike KT =

K exp(
∫ T
0 rt dt) ∈ [DT , PT ] and maturity T (i.e. payoff function g(ST ) = 1{ST>KT } in Theorem 9) is

IK(S0;D,P, T ) =
1

BT

∞
∑

n=−∞

Dn

Pn

(

Q
S
(2n)
0

(

ST ∈ (KT , PT )
)

− S0
D

Q
S
(2n−1)
0

(

ST ∈ (KT , PT )
)

)

, (23)

where S
(2n)
0 = S0P

2n/D2n and S
(2n−1)
0 = P 2n/(D2n−2S0), n ∈ Z.

This lemma is a straightforward application of Theorem 9.

3.2.2 Double barrier options

The second derivative we consider are double barrier options. Conditional on survival, i.e. stay-
ing within the boundaries, they have the same payoff g(ST ) = max(ST − KT , 0) (where KT =

K exp(
∫ T
0 rt dt) ∈ [DT , PT ]) as in the single barrier case. Applying Theorem 9, Lemma 11 presents

the corresponding prices. In the Black–Scholes model, prices for double barrier options have – for
different parameterizations – been presented in the literature (see, e.g., Geman and Yor [1996], Lin
[1999], Pelsser [2000]). The presented equations, however, often tend to be rather complicated and
usually lack the intuitive (and for replication very convenient) interpretation as a portfolio of infinitely
many standard vanilla options.

Lemma 11 (Double barrier options I)
Consider the stochastic volatility model (1). The price of double barrier options with strike KT =

K exp(
∫ T
0 rt dt) ∈ [DT , PT ] and maturity T (i.e. conditional payoff function g(ST ) = max(ST −KT , 0)

in Theorem 9) is

EOCK(S0;D,P, T ) =
∞
∑

n=−∞

Dn

Pn

(

CK

(

S
(2n)
0 , T

)

− CP

(

S
(2n)
0 , T

)

+ (P −K) IP
(

S
(2n)
0 ;P, T

)

)

− Dn

Pn

S0
D

(

CK

(

S
(2n−1)
0 , T

)

− CP

(

S
(2n−1)
0 , T

)

+ (P −K) IP
(

S
(2n−1)
0 ;P, T

)

)

, (24)

where S
(2n)
0 = S0P

2n/D2n and S
(2n−1)
0 = P 2n/(D2n−2S0), n ∈ Z.

Proof
Apply Theorem 9 with g(ST ) = max(ST −KT , 0). We find that

EOCK(S0;D,P, T ) =
1

BT

∞
∑

n=−∞

Dn

Pn

(

E
Q,S

(2n)
0

[

1{ST∈(DT ,PT )} g(ST )
]

− S0
D

E
Q,S

(2n−1)
0

[

1{ST∈(DT ,PT )} g(ST )
])

=
1

BT

∞
∑

n=−∞

Dn

Pn

(

CK

(

S
(2n)
0 , T

)

− CP

(

S
(2n)
0 , T

)

+ (P −K) IP
(

S
(2n)
0 ;P, T

)

)

− Dn

Pn

S0
D

(

CK

(

S
(2n−1)
0 , T

)

− CP

(

S
(2n−1)
0 , T

)

+ (P −K) IP
(

S
(2n−1)
0 ;P, T

)

)

.�
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4 Time-change representations

Concluding this section, we have established how single and double barrier derivatives can be priced
using the FFT results by Carr and Madan [1999], Bakshi and Madan [2000], and Raible [2000].

Alternatively, double barrier derivatives be priced exploiting that model (1) can be represented as a
time-changed geometric Brownian motion, see Section 4. In financial applications, this time change
can be interpreted as a measure of activity or “business clock”.

4 Time-change representations

For the discounted process S̃ = {S̃t}t≥0 = {St/Bt}t≥0, representations as a time-changed Brownian
motion are available. The time-change representations are interesting from a numerical point of view:
They allow for fast converging infinite series instead of Laplace or Fourier inversions. Digital options
in this setting can be priced using first-passage time results by Hieber and Scherer [2012]. We describe
S̃ as a time-changed geometric Brownian motion GΛt , i.e.

dGt

Gt
= dWt, G0 := S0 > 0, (25)

and Λ = {Λt}t≥0 is a (pathwise) continuous and increasing stochastic process with Λ0 = 0 and
limt→∞ Λt = ∞ Q-a.s.. If the Laplace transform of ΛT is known, it is denoted by ϑcT (u) := E

[

exp
(

−
uΛT

)]

. Then, the characteristic function of ln(S̃t)=ln(GΛt) is given by ϕ̃T (u, S0) = exp(iu ln(S0)) ·
ϑcT
(

(iu + u2)/2
)

(see, e.g., Equation (2.3) in Hurd [2009]). Theorem 12 presents the time-change
representations for all models from Section 2.

Theorem 12 (Time-change representations)
S̃ = {St/Bt}t≥0 can be represented as a time-changed geometric Brownian motion GΛT

in the following
cases of interest3:

• In Examples 1 and 2, this is achieved by ΛT :=
∫ T
0 λsds and λt = vt for all t ≥ 0. The Laplace

transform of the integrated process ΛT is given by

ϑcT (u) := E

[

exp
(

− u

∫ T

0
λsds

)]

=

(

exp(θ1T/2)

cosh(̺1T/2) +
θ1
̺1

sinh(̺1T/2)

)

2θ1ν1
γ21

(

exp(θ2T/2)

cosh(̺2T/2) +
θ2
̺2

sinh(̺2T/2)

)

2θ2ν2
γ22

· exp
{

−λ
(1)
0

̺1

u sinh(̺1T/2)

cosh(̺1T/2) +
θ1
̺1

sinh(̺1T/2)
− λ

(2)
0

̺2

u sinh(̺2T/2)

cosh(̺2T/2) +
θ2
̺2

sinh(̺2T/2)

}

, (26)

where ̺j =
√

θ2j + γ2j u, for j = 1, 2. Model (5) is obtained if one sets ν = ν1, θ = θ1, γ = γ1,

λ0 = λ
(1)
0 , and θ2 = λ

(2)
0 = 0.

• In Example 3, one sets ΛT :=
∫ T
0 λsds and λt = σ2t for all t ≥ 0. The Laplace transform of the

integrated process ΛT is given by

ϑcT (u) := E

[

exp
(

− u

∫ T

0
λsds

)]

= exp
(

L(u)λ0/2 +M(u)
√

λ0 +N(u)
)

, (27)

3For Examples 1 and 2, we refer to, e.g., Cox et al. [1985], Dufresne [2001]; for Example 3 to Stein and Stein [1991];
for Example 4 to, e.g., Dassios and Jang [2003].
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4 Time-change representations

where the functions L(u), M(u), and N(u) are defined in Appendix A.

• In Example 4, this is achieved by ΛT :=
∫ T
0 λsds and λt = vt for all t ≥ 0. Then,

ϑcT (u) := E

[

exp
(

− u

∫ T

0
λsds

)]

= exp

(

− uλ0
δ

(

1− exp(−δT )
)

− ψ

∫ T

0

[

1− ĝ
(u

δ

(

1− exp(δ(T − t))
)

)]

dt

)

, (28)

where the parameters are defined as in Example 4.

Then, exit-and-out contracts can be priced by rapidly converging infinite series. In contrast to Section
3.2, where one had to compute two Fourier integrals per term, Theorem 13 presents infinite series
that need a single evaluation of the Laplace transform of the time change per term. This allows for a
faster computation and an easier control of the truncation error (we present error bounds in Section 5).
Theorem 13 presents the general pricing result for exit-and-out contracts that pay g(ST ) at maturity
T if the path survives until T .

Theorem 13 (Two barriers: Exit-and-out contract II)
Consider a time-changed geometric Brownian motion GΛt with a (pathwise) continuous time-change
Λ, independent of G. Denote the Laplace transform of ΛT by ϑcT (u) := E[exp(−uΛT )], u ≥ 0. Then,
the price of a derivative with payoff 1{τ>T} g(ST ) (where E[g(ST )] <∞) at maturity T is given by

X
g(ST )
D,P

(

S0
)

=
1

BT

2e
x
2

a− b

∞
∑

n=1

ϑcT

(

1

8
+

n2π2

2(a− b)2

)

sin

(

nπ(x− b)

a− b

)

Zg(ST )
n , (29)

where Z
g(ST )
n :=

∫ a
b e

− y
2 sin

(

nπ(y−b)
a−b

)

g(ey)dy, x := ln(S0), a := ln(P ), and b := ln(D).

Proof
The transition density function describes the probability density that the process {ln(St)}t≥0 starts at
x := ln(S0), survives until time T , and ends up in y := ln(ST ). In the Black–Scholes model, this
density is given by (see, e.g., Cox and Miller [1965], Pelsser [2000])

fab(T, y) =
2e

x
2

a− b

∞
∑

n=1

e
−
(

1
8
+ n2π2

2(a−b)2

)

T
e−

y
2 sin

(

nπ(x− b)

a− b

)

sin

(

nπ(y − b)

a− b

)

.

In the Black–Scholes model, we then find that the price of an exit-and-out contract with payoff 1{τ>T} g(ST )
at maturity T is given by

BS
g(ST )
D,P (S0) :=

1

BT

∫ a

b
fab(T, y) g(e

y) dy

=
1

BT

2e
x
2

a− b

∞
∑

n=1

e
−
(

1
8
+ n2π2

2(a−b)2

)

T
sin

(

nπ(x− b)

a− b

)(
∫ a

b
e−

y
2 sin

(

nπ(y − b)

a− b

)

g(ey)dy

)

.

12



4 Time-change representations

If the interval [0, T ] is continuously transformed to [0,ΛT ], the latter expression is the price of an exit-
and-out contract conditional on the time change T = ΛT . If this time-change has Laplace transform
ϑcT (u) := E[exp(−uΛT )], u ≥ 0, we conclude that

E

[

E

[

e
−
(

1
8
+ n2π2

2(a−b)2

)

T
∣

∣

∣
T = ΛT

]

]

= ϑcT

(

1

8
+

n2π2

2(a− b)2

)

and thus obtain the price of exit-and-out contracts on time-changed geometric Brownian motion

X
g(ST )
D,P (S0) =

1

BT

2e
x
2

a− b

∞
∑

n=1

ϑcT

(

1

8
+

n2π2

2(a− b)2

)

sin

(

nπ(x− b)

a− b

)(
∫ a

b
e−

y
2 sin

(

nπ(y − b)

a− b

)

g(ey)dy

)

.

�

The result in Theorem 13 can also be used to price options on one barrier. Therefore, e.g., the upper
barrier is set to a very high value (i.e. a = 10σ

√
T ) that guarantees that the probability of hitting the

upper barrier is negligible (i.e. smaller than 1e-16). In our numerical examples (see Section 6), this
approach is still significantly faster than FFT techniques.

Theorem 14 is a first application of Theorem 13 to price (double) digital options.

Theorem 14 (Double digital options II)
Consider a time-changed geometric Brownian motion GΛt with a (pathwise) continuous time-change
Λ, independent of G. Denote the Laplace transform of ΛT by ϑcT (u) := E[exp(−uΛT )], u ≥ 0. If the

strike price is denoted KT := K exp(
∫ T
0 rt dt) > DT , the price of a double digital option with payoff

1{τ>T, ST>KT } at maturity T is given by

IK
(

S0;D,P, T
)

=
1

BT

2e
x
2

a− b

∞
∑

n=1

ϑcT

(

1

8
+

n2π2

2(a− b)2

)

sin

(

nπ(x− b)

a− b

)

Zg(ST )
n ,

where

Zg(ST )
n =

e−
a
2

nπ(−1)n+1

a−b + e−
k
2

(

1
2 sin

(nπ(k−b)
a−b

)

+ nπ
a−b cos

(nπ(k−b)
a−b

)

)

1
4 + n2π2

(a−b)2

,

x := ln(S0), k := ln(K), a := ln(P ), and b := ln(D).

Proof
From Theorem 13, we can conclude that

Zg(ST )
n =

∫ a

b
e−

y
2 sin

(

nπ(y − b)

a− b

)

g(ey)dy =

∫ a

k
e−

y
2 sin

(

nπ(y − b)

a− b

)

dy

=
e−

y
2

1
4 + n2π2

(a−b)2

(

−1

2
sin

(

nπ(y − b)

a− b

)

− nπ

a− b
cos

(

nπ(y − b)

a− b

))

∣

∣

∣

∣

∣

a

k

13



4 Time-change representations

=
e−

a
2

nπ(−1)n+1

a−b + e−
k
2

(

1
2 sin

(

nπ(k−b)
a−b

)

+ nπ
a−b cos

(

nπ(k−b)
a−b

))

1
4 + n2π2

(a−b)2

.

In the special case k = b, this is a result derived in Hieber and Scherer [2012]4, i.e.

Zg(ST )
n =

e−
a
2

nπ(−1)n+1

a−b + e−
k
2

nπ
a−b

1
4 + n2π2

(a−b)2

. �

The same idea can now be used to price (double) barrier options. The result in Theorem 15 builds
on a representation of the Black–Scholes price of a double barrier option that is rarely used in the
literature, see, e.g., Pelsser [2000].

Theorem 15 (Double barrier options II)
Consider a time-changed Brownian motion GΛt with a (pathwise) continuous time-change Λ, inde-
pendent of G. Denote the Laplace transform of ΛT by ϑcT (u) := E[exp(−uΛT )], u ≥ 0. If the strike

price is denoted KT := K exp(
∫ T
0 rt dt) > DT , t ≥ 0, the price of a double barrier option with payoff

1{τ>T}(ST −KT )
+ is given by

EOCK(S0;D,P, T ) =
2e

x
2

a− b

∞
∑

n=1

ϑcT

(

1

8
+

n2π2

2(a− b)2

)

sin

(

nπ(x− b)

a− b

)

Zg(ST )
n , (30)

where

Zg(ST )
n =

2nπ
a−b(−1)n+1 sinh

(

a−k
2

)

− sin
(

nπ(k−b)
a−b

)

e−
k
2

(

1
4 + n2π2

(a−b)2

) , x := ln(S0), k := ln(K), a := ln(P ), and b := ln(D).

Proof
Applying the results from Theorem 13, we get

Zg(ST )
n =

∫ a

b
e−

y
2 sin

(

nπ(y − b)

a− b

)

g(ey)dy =

∫ a

k
e−

y
2 sin

(

nπ(y − b)

a− b

)

(

ey − ek
)

dy

=

e
y
2 +ek−

y
2

2 sin
(

nπ(y−b)
a−b

)

−
nπ

(

e
y
2 −ek−

y
2

)

a−b cos
(

nπ(y−b)
a−b

)

1
4 + n2π2

(a−b)2

∣

∣

∣

∣

∣

a

k

=

nπ(−1)n+1

a−b

(

e
a
2 + ek−

a
2

)

− e
k
2 sin

(

nπ(k−b)
a−b

)

1
4 + n2π2

(a−b)2

=

2nπ(−1)n+1

a−b sinh
(

a−k
2

)

− sin
(

nπ(k−b)
a−b

)

e−
k
2

(

1
4 + n2π2

(a−b)2

) .

In the case of Brownian motion (ΛT = T ) this pricing result is given in, e.g., Pelsser [2000]. �

4Using that sin
(

nπ(x−b)
a−b

)

= (−1)n sin
(

nπ(x−a)
a−b

)

, one obtains the results in Hieber and Scherer [2012], Theorem 2
(µ = −1/2, σ = 1, a generalization to µ ∈ R and σ > 0 is straightforward).
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5 Error bounds

Remark 16 (Single barrier limit as special case)
One can show that in the limit P → ∞, the prices of the exit-and-out contracts in Theorems 13, 14,
and 15 converge to the already presented single barrier expression

X
g(ST )
D,∞ (S0) =

1

BT

(

EQ,S0

[

1{ST>DT } g(ST )
]

− S0
D

EQ,D2/S0

[

1{ST>DT } g (ST )
]

)

in Theorem 5 (see Appendix B for the computations).

However, it turns out that if one wants to evaluate the latter expectations numerically, it is very
convenient to still use the series representation for the double barrier contract (Theorem 13). Therefore,
the upper barrier a = ln(P ) is, for example, set to 10σ

√
T , a value that guarantees that the probability

of hitting the upper barrier is negligible, i.e. it is smaller than 1 e-16.

Remark 17 (Stochastic interest rates)
If necessary, it is possible to include stochastic interest rates in the model framework (1) while still
keeping the analytical tractability. If {rt}t≥0 is independent of W = {Wt}t≥0 and {σt}t≥0, this is
straightforward: 1/BT must simply be replaced by EQ[1/BT ]. Dependence between {rt}t≥0 and {σt}t≥0

can be introduced as follows: One defines rt := γt−ρ∗ σ2t , where {γt}t≥0 is independent of W = {Wt}t≥0

and {σt}t≥0. ρ∗ ∈ R can be used to include either a positive or a negative dependence between volatility

and interest rates. The results in Theorems 14 and 15 can rather easily be modified; ϑcT

(

1
8 + n2π2

2(a−b)2

)

then changes into ϑcT

(

1
8 + n2π2

2(a−b)2
+ ρ∗

)

. The Fourier pricing results can also be adapted easily.

5 Error bounds

To implement the pricing formulas in Theorems 13, 14, and 15, the infinite series have to be approx-
imated by finite series. Lemma 18 presents error bounds if the Laplace transform of the time change
is exponentially bounded, i.e. if ϑT (u) ≤ J exp(−Mu), where J,M are positive constants, and if the
Laplace transform is bounded by J∗ exp(−M∗√u), where J∗,M∗ are again positive constants. This
applies to all examples presented in Section 2.

Lemma 18 (Error bounds)
Consider a time-changed geometric Brownian motion {GΛt}t≥0 with a (pathwise) continuous time-
change Λ, independent of G. Set again a := ln(P ), b := ln(D), and x := ln(S0) and denote the Laplace
transform of ΛT by ϑcT (u) := E[exp(−uΛT )], u ≥ 0. Assume that the conditional payoff function g(ey)
is bounded for y ∈ [a, b]. Set

K∗ :=

∫ a

b
e−

y
2 |g(ey)| dy .

If the infinite series in Theorem 13 is truncated after N summands, the (absolute) computation error
of the option price is defined as

ǫ :=

∣

∣

∣

∣

∣

2e
x
2

a− b

∞
∑

n=N+1

ϑcT

(

1

8
+

n2π2

2(a− b)2

)

sin

(

nπ(x− b)

a− b

)

Zg(ST )
n

∣

∣

∣

∣

∣

. (31)

For a given precision ǫ > 0, a lower bound for the summation index N ∈ N is required.
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5 Error bounds

(a) If the Laplace transform of the time change is exponentially bounded, i.e. if ϑT (u) ≤ J exp(−Mu),
where J,M are positive constants, we find that

N >

√

√

√

√

∣

∣

∣

∣

∣

2(a− b)2

π2M
ln

(

BTMπ2ǫ

2K∗e
x
2 (a− b)J

)∣

∣

∣

∣

∣

. (32)

(b) If ϑT (u) ≤ J∗ exp(−M∗√u), where J∗,M∗ > 0 are positive constants, then

N > −
√
2(a− b)

πM∗
ln

(

BTM
∗πǫ

2
√
2K∗e

x
2 J∗

)

. (33)

Proof
Note that

∣

∣

∣

∣

∫ a

b
e−

y
2 sin

(

nπ(y − b)

a− b

)

g(ey) dy

∣

∣

∣

∣

≤
∫ a

b
e−

y
2 |g(ey)| dy = K∗ <∞ .

Similarly to Hieber and Scherer [2012], if ϑT (u) ≤ J exp(−Mu), where J,M are positive constants,
we get from Equation (31)

ǫ =

∣

∣

∣

∣

∣

1

BT

2e
x
2

a− b

∞
∑

n=N+1

ϑcT

(

1

8
+

n2π2

2(a− b)2

)

sin

(

nπ(x− b)

a− b

)

Zg(ST )
n

∣

∣

∣

∣

∣

≤ 1

BT

2e
x
2

a− b
K∗

∞
∑

n=N+1

nϑcT

(

n2π2

2(a− b)2

)

≤ 1

BT

2K∗e
x
2

a− b

∫ ∞

N
nJ exp

(

−M n2π2

2(a− b)2

)

dn

=
2K∗e

x
2 (a− b)

BTMπ2
J exp

(

−M N2π2

2(a− b)2

)

.

From this, a lower bound for the summation index N is obtained as

N >

√

√

√

√

∣

∣

∣

∣

∣

2(a− b)2

π2M
ln

(

BTMπ2ǫ

2K∗e
x
2 (a− b)J

)
∣

∣

∣

∣

∣

. (34)

If ϑT (u) ≤ J∗ exp(−M∗√u), where J∗,M∗ are positive constants, we get analoguously

ǫ ≤ 1

BT

2e
x
2

a− b
K∗

∫ ∞

N
J∗ exp

(

−M∗ nπ√
2(a− b)

)

dn

=
1

BT

2K∗e
x
2

a− b

√
2(a− b)

M∗π
J∗ exp

(

−M∗ Nπ√
2(a− b)

)

.
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6 Numerical case study

Then,

N > −
√
2(a− b)

πM∗
ln

(

BTM
∗πǫ

2
√
2K∗e

x
2 J∗

)

. (35)

�

The bound K∗ can easily be derived for specific conditional payoff functions g(ST ). For double digital
options, one obtains K∗ = 2/

√
K − 2/

√
P , for double barrier options K∗ = 2

√
P − 2K/

√
P .

6 Numerical case study

In this section, we give a numerical example comparing the FFT technique (Section 3) to the analytic
formulas using the time-change representation of the given models (Section 4). We compare the results
of the one-factor stochastic volatility models, i.e. the Heston and Stein–Stein model, with regard to
accuracy and computation time. Additional improvements could be obtained if multi-factors models
were used.

6.1 One barrier

First, we compare the two approaches to price digital options. In all models, the parameters were chosen
such that the average volatility of the annualized stock returns equals 21%. The corresponding pricing
formulas are to be found in Lemma 6 (FFT technique) and Theorem 14 (time-change representation).
As discussed in Remark 16, we set the upper barrier to a = ln(P ) = 10σ

√
T , a value that guarantees

that the probability of hitting the upper barrier is negligible, i.e. it is smaller than 1e-16.

Apart from that, the infinite series has to be truncated. Error bounds for this truncation are easy to
obtain, see Section 5. In our parameter sets, N = 90 terms turned out to be enough to obtain an
acceptable relative error.

Table 1 gives the results for different parameter sets in the Black–Scholes, the Heston, and the Stein–
Stein model. We aim at obtaining relative pricing errors below 1e-04. If the time-change representation
is used, a higher accuracy of 1e-12 comes at almost no additional computational cost. In the stochastic
volatility models, the true value is computed using the time-change representation with a = 20σ and
N = 200. The Black–Scholes model is also displayed, since the more convenient closed-form expression
presented as Equation (15) allows to compare the results to existing pricing formulas. If we aim
at an accuracy of at least 1e-04, in all models and over all the considered parameter sets, we find
that the time-change representation is about 30-40 times faster than FFT. This is mainly due to the
fact that the Laplace transform of the time change has to be evaluated only N = 90 times for the
time-change representation, whereas a reasonably small error in the FFT technique requires several
thousand evaluations of the characteristic function. This explains why the benefit of the time change
representation is even higher if more complex or multi-factor stochastic volatility models are used.
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6.2 Two barriers

Black–Scholes analytic expression FFT true value

ÎK(S0;D,T ) rel. err. time ÎK(S0;D,T ) rel. err. time IK(S0;D,T )
D=0.80 0.6143907366 1e–16 0.21ms 0.6143882493 4e–06 16.1ms 0.6143907366
D=0.85 0.4750496283 1e–16 0.23ms 0.4750486755 2e–06 28.8ms 0.4750496283
D=0.90 0.3184738022 1e–16 0.17ms 0.3184759717 7e–06 16.7ms 0.3184738022
D=0.95 0.1563530857 1e–16 0.16ms 0.1563541729 7e–06 18.6ms 0.1563530857

Heston analytic expression FFT true value

Black–Scholes ÎK(S0;D,T ) rel. err. time ÎK(S0;D,T ) rel. err. time IK(S0;D,T )
D=0.80 0.6226859185 3e–12 0.32ms 0.6226834064 4e–06 19.2ms 0.6226859185
D=0.85 0.4852440603 2e–12 0.23ms 0.4852429997 2e–06 15.3ms 0.4852440602
D=0.90 0.3274529660 2e–12 0.19ms 0.3274553781 7e–06 15.5ms 0.3274529660
D=0.95 0.1614407693 2e–12 0.19ms 0.1614419955 8e–06 15.3ms 0.1614407693

Stein–Stein analytic expression FFT true value

Black–Scholes ÎK(S0;D,T ) rel. err. time ÎK(S0;D,T ) rel. err. time IK(S0;D,T )
D=0.80 0.6362552464 1e–08 1.06ms 0.6362530653 4e–06 36.5ms 0.6362552383
D=0.85 0.5063024193 1e–08 1.58ms 0.5063011967 2e–06 33.8ms 0.5063024113
D=0.90 0.3488272033 2e–08 2.15ms 0.3488301222 8e–06 33.2ms 0.3488271958
D=0.95 0.1745901944 3e–08 3.30ms 0.1745917779 8e–06 33.2ms 0.1745901886

Table 1 Prices ÎK(S0;D,T ) of digital options in the Black–Scholes model (top, σ = 21%), in the Heston
model (middle, λ0 = 0.0441, θ = 0.005, ν = 0.0441, γ = 0.10, ρ = 0), in the Stein–Stein model
(below, λ0 = 0.21, ξ = 0.002, κ = 0.70, k = 0.10) calculated by the analytic expression (left column,
N = 90, P = exp(10σ

√
T ), see Theorem 14) and by FFT (middle column, see Lemma 6). The true

value IK(S0;D,T ) (right column) was calculated using N = 200 and P = exp(20σ
√
T ) in the analytic

expression. The remaining parameters are chosen as S0 = 1, K = D, rt = 0.10, and T = 1. Absolute
errors of both approaches are given. The computation time was calculated using Matlab on a 2.0
GHz PC.

6.2 Two barriers

For double digital options, the pricing formulas are presented in Lemma 10 (FFT technique) and in
Theorem 14 (time-change representation). The advantage of the FFT technique is the fact that call
and digital options with different strikes can be evaluated simultaneously (see, e.g., Carr and Madan
[1999]). Table 2 presents the pricing results together with both computation time and relative error in
the Black–Scholes model (top), the Heston model (middle), and the Stein–Stein model (below). Again,
we aim at an accuracy (in terms of the relative error) of 1e-04. In the two barrier case, the advantage
of the time-change representation is more significant than in the single barrier case. Since the upper
barrier now does not have to be set to infinity, N = 20 terms in the series representation (Theorem
14) are sufficient to obtain a very high accuracy. The results in Table 2 show that the computation
time for the time-change representation is now 50-100 times faster than the FFT technique. Although
the FFT technique is now also an infinite series of call options (truncated at N = 20), its computation
time is about the same as in the single barrier case since digital options with different strikes can be
computed simultaneously.
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7 Conclusion

Black–Scholes analytic expression FFT true value

ÎK(S0;D,P, T ) rel. err. time ÎK(S0;D,P, T ) rel. err. time IK(S0;D,P, T )
D=S2

0
/P=0.80 0.5902066317 1e–16 0.05ms 0.5902061072 9e–07 9.4ms 0.5902066317

D=S2

0
/P=0.85 0.3834252443 1e–16 0.05ms 0.3834234415 5e–06 9.4ms 0.3834252443

D=S2

0
/P=0.90 0.1095096997 1e–16 0.05ms 0.1095104165 6e–06 9.3ms 0.1095096997

D=S2

0
/P=0.95 0.0000999252 1e–16 0.05ms 0.0000979657 2e–02 7.5ms 0.0000999252

Heston analytic expression FFT true value

ÎK(S0;D,P, T ) rel. err. time ÎK(S0;D,P, T ) rel. err. time IK(S0;D,P, T )
D=S2

0
/P=0.80 0.5968486249 1e–16 0.22ms 0.5968439794 6e–06 14.5ms 0.5968486249

D=S2

0
/P=0.85 0.3961295282 1e–16 0.18ms 0.3961276952 5e–06 19.8ms 0.3961295282

D=S2

0
/P=0.90 0.1289954367 1e–16 0.22ms 0.1289962389 6e–06 21.1ms 0.1289954367

D=S2

0
/P=0.95 0.0009498677 1e–16 0.25ms 0.0009484332 9e–04 20.0ms 0.0009498677

Stein–Stein analytic expression FFT true value

ÎK(S0;D,P, T ) rel. err. time ÎK(S0;D,P, T ) rel. err. time IK(S0;D,P, T )
D=S2

0
/P=0.80 0.6057024792 1e–16 0.88ms 0.6056960521 6e–06 34.6ms 0.6057024792

D=S2

0
/P=0.85 0.4197102727 1e–16 0.97ms 0.4197085100 5e–06 37.1ms 0.4197102727

D=S2

0
/P=0.90 0.1721021525 1e–16 0.94ms 0.1721035072 6e–06 35.4ms 0.1721021525

D=S2

0
/P=0.95 0.0094331898 1e–16 0.84ms 0.0094333509 1e–03 37.3ms 0.0094331898

Table 2 Prices ÎK(S0;D,P, T ) of double digital options in the Black–Scholes model (top, σ = 21%), in the
Heston model (middle, λ0 = 0.0441, θ = 0.005, ν = 0.0441, γ = 0.10, ρ = 0), in the Stein–Stein
model (below, λ0 = 0.21, ξ = 0.002, κ = 0.70, k = 0.10) calculated by the analytic expression (left
column, N = 20, see Theorem 14) and by FFT (middle column, N = 20, see Lemma 10). The true
value IK(S0;D,P, T ) (right column) was calculated using N = 200 in the analytic expression. The
remaining parameters are chosen as S0 = 1, K = D, rt = 0.10, and T = 1. Absolute errors of both
approaches are given. The computation time was calculated using Matlab on a 2.0 GHz PC.

The same holds for double barrier options. The corresponding pricing formulas are given in Lemma 11
(FFT technique) and in Theorem 15 (time-change representation). Table 3 presents the pricing results
together with both computation time and absolute error in the Black–Scholes model (top), the Heston
model (middle), respectively the Stein–Stein model (below). Aiming at a relative error of less than
1e-04, the analytic expression resulting from the time-change representation turns out to be superior
to the FFT technique, this time being about 100 times faster. A higher precision in the time-change
representation – which is, for example, important for at the money barriers – comes at almost no
additional computational cost.

7 Conclusion

We showed how barrier derivatives can efficiently be priced in stochastic volatility models. Instead of
relying on FFT (see, e.g., Carr and Madan [1999], Carr and Lee [2009]), we derive rapidly converging
infinite series that can easily be implemented and allow for a straightforward error control. Those
series turn out to be faster and more accurate than FFT.
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Black–Scholes analytic expression FFT true value
ˆEOCK(S0; ·) rel. err. time ˆEOCK(S0; ·) rel. err. time EOCK(S0; ·)

D=S2

0
/P=0.80 0.1625270208 1e–16 0.06ms 0.1625265175 3e–06 5.83ms 0.1625270208

D=S2

0
/P=0.85 0.0867337308 1e–16 0.05ms 0.0867329170 9e–06 5.16ms 0.0867337308

D=S2

0
/P=0.90 0.0168613875 1e–16 0.04ms 0.0168608922 3e–05 4.79ms 0.0168613875

D=S2

0
/P=0.95 0.0000075922 1e–16 0.03ms 0.0000072895 2e–07 4.81ms 0.0000075922

Heston analytic expression FFT true value
ˆEOCK(S0; ·) rel. err. time ˆEOCK(S0; ·) rel. err. time EOCK(S0; ·)

D=S2

0
/P=0.80 0.1612642249 1e–16 0.20ms 0.1612637548 6e–08 12.9ms 0.1612642249

D=S2

0
/P=0.85 0.0879562985 1e–16 0.11ms 0.0879555363 9e–07 13.4ms 0.0879562985

D=S2

0
/P=0.90 0.0197738415 1e–16 0.10ms 0.0197733214 2e–05 13.1ms 0.0197738415

D=S2

0
/P=0.95 0.0000721684 1e–16 0.10ms 0.0000719713 3e–03 13.1ms 0.0000721684

Stein–Stein analytic expression FFT true value
ˆEOCK(S0; ·) rel. err. time ˆEOCK(S0; ·) rel. err. time EOCK(S0; ·)

D=S2

0
/P=0.80 0.1576325944 1e–16 0.79ms 0.1576321967 5e–06 32.7ms 0.1576325944

D=S2

0
/P=0.85 0.0888429183 1e–16 0.66ms 0.0888423088 9e–06 32.7ms 0.0888429183

D=S2

0
/P=0.90 0.0256262200 1e–16 0.73ms 0.0256257853 6e–06 32.8ms 0.0256262200

D=S2

0
/P=0.95 0.0007147280 1e–16 0.70ms 0.0007148038 2e–02 35.8ms 0.0007147280

Table 3 Prices ˆEOCK(S0;D,P, T ) of double barrier options in the Black–Scholes model (top, σ = 21%), in
the Heston model (middle, λ0 = 0.0441, θ = 0.005, ν = 0.0441, γ = 0.10, ρ = 0), in the Stein–Stein
model (below, λ0 = 0.21, ξ = 0.002, κ = 0.70, k = 0.10) calculated by the analytic expression
(left column, N = 20, see Theorem 15) and by FFT (middle column, see Lemma 11). The true
value IK(S0;D,P, T ) (right column) was calculated using N = 200 in the analytic expression. The
remaining parameters are chosen as S0 = 1, K = D, rt = 0.10, and T = 1. Absolute errors of both
approaches are given. The computation time was calculated using Matlab on a 2.0 GHz PC.
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A Parameters of the Stein–Stein model

The functions L(u), M(u), and N(u) in the characteristic function are defined as

A := − ξ

k2
, B :=

κξ

k2
, Cu := − u

k2T
, au :=

√

A2 − 2Cu, bu = − A

au
,

L(u) := −A− au

(

sinh(auk
2T ) + bu cosh(auk

2T )

cosh(auk2T ) + bu sinh(auk2T )

)

,

M(u) := B

(

bu sinh(auk
2T ) + b2u cosh(auk

2T ) + 1− b2u
cosh(auk2T ) + bu sinh(auk2T )

− 1

)

,

N(u) :=
au −A

2a2u

(

a2u −AB2 −B2au
)

k2T

+
B2(A2 − a2u)

2a3u

(

(2A+ au) + (2A− au)e
2auk2T

A+ au + (au −A)e2auk2T

)

+
2AB2(a2u −A2)eauk

2T

a3u
(

A+ au + (au −A)e2auk2T
) − 1

2
ln

(

1

2

(

A

au
+ 1

)

+
1

2

(

1− A

au

)

e2auk
2T

)

.
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B Single barrier limit

B Single barrier limit

In our series representation the limit a := ln(P ) → ∞ cannot be exchanged with the infinite summation

over n as the series representation for X
g(ST )
D,∞ (S0) is not absolutely convergent. To derive the limiting

expression, one has to change the series representation. Then, the limiting option price X
g(ST )
D,∞ (S0) is

given by Theorem 5. For a := ln(P ), b := ln(D), and x := ln(S0), we obtain

X
g(ST )
D,∞ (S0) = lim

a→∞

1

BT

2e
x
2

a− b

∞
∑

n=1

ϑcT

(

1

8
+

n2π2

2(a− b)2

)

sin

(

nπ(x− b)

a− b

)

Zg(ST )
n

= lim
a→∞

E

[

1

BT

2e
x
2

a− b

∞
∑

n=1

exp

(

−ΛT

8
− n2π2ΛT

2(a− b)2

)

sin

(

nπ(x− b)

a− b

)

Zg(ST )
n

]

= lim
a→∞

E

[

1

BT

2

a− b

∫ a

b
exp

(

−x− y

2
− ΛT

8

)

g(ey)

·
∞
∑

n=1

exp

(

− n2π2ΛT

2(a− b)2

)

sin

(

nπ(x− b)

a− b

)

sin

(

nπ(y − b)

a− b

)

dy

]

.

If we change the parameterization (see He et al. [1998], Equations (2.3) and (2.4)), we get

= lim
a→∞

E

[

1

BT

2

a− b

∫ a

b

a− b

2
exp

(

−x− y

2
− ΛT

8

)

g(ey)

·
∞
∑

n=−∞

(

ϕ

(

y − x− 2n(a− b)√
ΛT

)

− ϕ

(

y + x− 2na+ (2n− 2)b√
ΛT

)

)

dy

]

.

This series is absolutely convergent, thus we can change limit and summation. In the limit a → ∞
only the “n = 0” term remains, i.e.

= E

[

1

BT

∫ ∞

b
exp

(

−x− y

2
− ΛT

8

)

g(ey)

(

ϕ

(

y − x√
ΛT

)

− ϕ

(

y + x− 2b√
ΛT

)

)

dy

]

= E

[

1

BT

∫ ∞

b
g(ey)

(

ϕ

(

y − x+ ΛT /2√
ΛT

)

− exp
(

− (b− x)
)

ϕ

(

y + x− 2b+ ΛT /2√
ΛT

)

)

dy

]

=
1

BT

(

EQ,S0

[

1{ST>DT } g(ST )
]

− S0
D

EQ,D2/S0
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1{ST>DT } g (ST )
]

)

.
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