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Abstract

Traditional life insurance typically uses some mechanism that is aimed at smoothing

the returns of the (collective) assets in the insurer’s so-called cover fund. We consider

a generic smoothing mechanism and numerically analyze how it impacts the risk-return

characteristics of a traditional life insurance contract distinguishing between pathwise

volatility (of the annual returns) and the volatility of terminal wealth. We find that path-

wise volatility is significantly reduced while the distribution of terminal wealth is hardly

affected. We conclude that using multiple segregated cover funds (that come with dif-

ferent asset allocations) as building blocks for more complex products enables insurers

to offer a variety of risk-return profiles of terminal wealth in combination with a rather

low pathwise volatility (compared to investments without smoothing mechanism). This

increases subjective attractiveness for a typical consumer. We consider a variety of such

products (static and dynamic investment products) and compare them to similar purely

market-based products that do not use an insurer’s cover fund. Analyzing risk-return char-

acteristics, (objective) utility, and (subjective) attractiveness under Cumulative Prospect

Theory and extensions of it, we conclude that products that become possible by imple-

menting multiple segregated cover funds can increase both, objective utility and subjective

attractiveness.
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1 Introduction

Due to the demographic change and the resulting challenges for pay-as-you-go pension systems,

private, capital-funded retirement savings become increasingly important. In this segment,

many consumers prefer products with relatively high guarantees and low interim fluctuations.

In the current low-interest environment, such products can either no longer be offered at all

or come with a very limited return potential, which results in a rather low objective utility for

consumers. Since the attractiveness of products is crucial for the actual choice of the consumer,

insurance companies and other providers of retirement savings products try to offer products

that are (subjectively) attractive for consumers without limiting the upside potential too much.

The problems described above particularly apply to participating life insurance products (also

referred to as with-profit life insurance products) which are often equipped with year-to-year

guarantees.1 The resulting protection against interim losses is important to many consumers

and appears to be one main reason why these products have been very popular in many coun-

tries, cf., Ruß & Schelling (2018). Another key characteristic of participating life insurance

products is the participation in the return of a “collective investment” of the insurer (which

we refer to as the insurer’s “cover fund”). The return of this fund is stabilized by various

return smoothing mechanisms. The results in Goecke (2013) and Ruß & Schelling (2021) show

that collective return smoothing mechanisms alone (that is, without additional guarantees)

could already heavily reduce short-term fluctuations while preserving the long-term risk-return

characteristics of the underlying fund. Hence, Ruß & Schelling (2021) conclude that products

with collective smoothing mechanisms (but without guarantee) might be (subjectively) simi-

larly attractive to long-term investors as products with formal guarantees. Since they can be

offered in any interest rate environment without the burdens imposed to the insurer by formal

guarantees (e.g., high capital requirement), they might play an important role in overcoming

the above mentioned problems. Further, there is a considerable variety of literature dealing

with smoothing mechanisms: Hansen & Miltersen (2002) discuss the effect of a smoothed sur-

1Participating life insurance contracts have been discussed extensively in the literature, cf., Bauer et al.
(2006), Gatzert & Kling (2007), and Bohnert et al. (2014).
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plus participation on the minimum guarantee rate in Danish pension plans. They analyze fair

contract settings between consumers and the insurer and consider the consequences of pooling

for a group of inhomogeneous consumers. Guillén et al. (2006) define a smoothing mechanism

where contingent claims pricing techniques can be used to compute fair market values of con-

tracts. Løchte Jørgensen (2007) considers a specific return smoothing mechanism and shows

that the resulting smoothed returns follow approximately a lognormal distribution. Moreover,

Maurer et al. (2016) analyze the actuarial techniques to smooth reporting of firm assets and

liabilities and find that smoothing adds value to both the policyholder and the insurer. Also,

Lichtenstern & Zagst (2021) consider smoothing in the post-retirement phase by means of a

specific pension adjustment mechanism as well as by a buffer portfolio. They determine the

optimal investment strategies during the decumulation phase to maximize the client’s expected

accumulated utility from the stochastic future pension cash flows and conclude that smoothing

can provide remarkable benefits to clients.

In reality, insurers’ cover funds come with rather low equity exposures (mainly due to high guar-

antees offered in the past in combination with solvency requirements). Moreover, insurers in

many countries typically do not offer different cover funds with different risk-return character-

istics. Hence, there is no possibility for the policyholder to choose a cover fund that best meets

individual preferences. In this paper, we add to the literature by analyzing a setting where

an insurer offers several segregated cover funds with different asset allocation which make use

of collective smoothing mechanisms but come without guarantees. These cover funds can be

offered standalone or as a “building block” within more complex products.

The main goal of this paper is an analysis from the client’s perspective of the resulting products.

We consider both, the risk of short-term fluctuations, as well as the distribution of the terminal

benefit. We show that the existence of multiple, segregated cover funds enables insurers to offer

different risk-return profiles of the terminal benefit. Each of these come with reduced (when

compared to investments without smoothing mechanisms) pathwise volatility, which appears

highly relevant for the subjective attractiveness.
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We also analyze various static and dynamic investment strategies (without formal guarantees

but with protection levels) using different collective cover funds as low-risk asset and compare

them with products which use market-based safe assets. We find that dynamic products based

on cover funds have a significantly higher return potential compared to market-based products

with similar short-term risk characteristics. This particularly holds for conservative products

(which are relevant for risk averse investors). In addition to risk-return characteristics, we in-

vestigate how collective cover funds affect both, the objective utility (measured in an Expected

Utility Theory framework) and the subjective attractiveness (measured in several frameworks

based on Cumulative Prospect Theory) of these products. We find that in most cases, static

products based on cover funds with rather high equity ratios outperform all other considered

products in terms of objective utility as well as subjective attractiveness. Sensitivity analyses

show that this also holds in an environment of higher interest rates and other choices of the

smoothing mechanism. Therefore, our results indicate that the simultaneous offering of multi-

ple, segregated cover funds with different asset allocations would enable insurers to develop a

range of retirement savings products including solutions that are at the same time subjectively

attractive and objectively preferable for different types of consumers.

The remainder of this paper is organized as follows. In Section 2, we introduce the capital

market model, the insurer’s cover fund, as well as the market-based investment strategies. In

Section 3, we analyze the impact of smoothing focusing on static investment products. Next,

in Section 4, we analyze static as well as dynamic investment products which make use of an

insurer’s cover fund and compare them with similar market-based products. In particular, we

analyze the expected utility and the subjective attractiveness. We also discuss a wide range of

sensitivity analyses. Finally, Section 5 concludes and provides an outlook.
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2 Model Framework

In this section, we describe our capital market model with stochastic interest rates and stocks.

Moreover, we define the insurer’s cover fund and the considered market-based investment strate-

gies.

2.1 The Capital Market Model

We assume that the short rate for t ∈ [0, T ] and T ∈ N follows a two-factor Hull-White model

as described in Brigo & Mercurio (2007). This model is frequently used to model the current

low-interest environment, cf., Korn et al. (2018). It contains two correlated mean reverting

processes and allows a perfect fit to observed bond prices. The dynamics of the stock market

is modeled by a generalized Black-Scholes model with a risk premium λS and volatility σS. A

more detailed description can be found in Appendix A.

2.2 Insurer’s Cover Fund

Smoothing mechanisms as described in Chapter 1 are often complex, can include elements of

management discretion and can differ from country to country. Therefore, inspired by Korn

et al. (2018), we generically model the impact of smoothing as follows: We denote the insurer’s

cover fund with a stock ratio φ ∈ [0, 1] by ICFφ and the smoothing period by sp ≥ 2 years.

The yearly smoothed return (r̃ICFφ(t)) based on the applied smoothing procedure between time

t− 1 and t (for t = 1, 2, . . . ) under the real world measure P is given by

r̃ICFφ(t) =

( sp∏
k=1

(φ(1 + rs(t− k)) + (1− φ)(1 + rRB(t− k))

)1/sp

− 1, (1)

where rs(t) is the yearly return of the stock market between time t− 1 and t, cf., Appendix A.

Further, rRB(t) denotes the yearly return of a rolling bond investment (RB) between time t− 1

and t (for t = 1, 2, . . . ), where the bond is bought and sold 1
∆t

times in a year for ∆t ∈ (0, 1],
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e.g., monthly ( 1
∆t

= 12) or daily ( 1
∆t

= 252). Thus, the return is given by

rRB(t) =

1/∆t∏
i=1

(1 + r̂RB(t+ i))− 1 with r̂RB(t) =
P (t, t−∆t+ d)

P (t−∆t, t−∆t+ d)
− 1, (2)

where d ≥ 0 denotes the term to maturity of the bond investment and P (t0, t1) denotes the

price of a zero coupon bond at time t0 with maturity t1.2 Note that throughout the paper the

annual return of an asset (Ξ) is denoted by rΞ and the return in a time interval of ∆t is denoted

by r̂Ξ. Finally, for the yearly return of the insurer’s cover fund (rICFφ(t, α)), the smoothed

return is adjusted by the surplus participation rate α ∈ [0,∞), i.e.,

rICFφ(t, α) = r̃ICFφ(t)− (1− α) max(r̃ICFφ(t), 0) for t = 1, 2, . . . . (3)

Hence, α determines the proportion of the positive return which will be credited to the insurer’s

cover fund. The corresponding return between time t−∆t and t can be computed by

r̂ICFφ(t, α) =
(
1 + rICFφ(t, α)

)∆t − 1. (4)

Note that r̂ICF (t, α) is constant during the year.

The participation rate (α) is chosen such that the insurer’s cover fund is initially fair if the

cover fund is held until maturity (T ),3 i.e.,

EQ

[
exp

(
−
∫ T

0

r∗(s)ds

) T∏
t=1

(1 + r∗ICF (t, α))

]
= 1, (5)

where Q denotes the risk-neutral measure, r∗(s) the short rate under Q and r∗ICF the yearly

return of the ICF under Q, cf., Appendix A for more details. The fair α usually differs from 1,

e.g., since the returns of the past influence rICF (t) (at least for t = 1, . . . , sp), and can also be

2We refer to Brigo & Mercurio (2007) for details on pricing zero coupon bonds in this model.
3For dynamic products, which may invest in and deinvest from the ICF several times during the investment

horizon, this can lead to small deviations compared to fairly priced products. In the following analyses, we
neglect this effect. Also note that in a sensitivity analysis below, we consider different values of (initially fair)
alphas and the results are qualitatively similar.
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greater than one.4

2.3 Assets and Products

We analyze different smoothed products based on insurer’s cover funds and compare them with

products using only market-based assets. For all products we assume a single upfront premium

A0 > 0, a term to maturity of T , and no charges. We use different low-risk assets and use

stocks as risky assets. In addition to the insurer’s cover funds, we consider as low-risk assets a

rolling bond investment with a return of rRB(t) as described in the previous subsection as well

as an investment in a T -year zero coupon bond (TB). The return from time 0 to time T of a

(pure) TB product is given by 1/P (0, T ) and the return between time t−∆t and t by

r̂TB(t) =
P (t, T )

P (t−∆t, T )
− 1. (6)

We consider two different product groups: Firstly, we examine static investment5 products

where the low-risk investments Ξ ∈ {ICF,RB, TB} is mixed with a fixed fraction of stocks

(θ ∈ [0, 1]). We denote them as static-ICF, static-RB, and static-TB, respectively and refer to

θ as direct stock ratio. The return of a static investment between two rebalancing points in

time t and t−∆t is given by

r̂θΞ(t) =
(
θ(1 + r̂s(t)) + (1− θ)(1 + r̂Ξ(t))

)
, (7)

where r̂s(t) denotes the stock return between time t − ∆t and t. Note that for static-ICF

products with φ > 0 the product’s total fraction of stocks is given by θtot = θ + (1− θ)φ ≥ θ.

Secondly, we analyze dynamic investment products in the form of CPPI-strategies with a pro-

tection level of PL ≤ 1 in terms of the initial investment A0 > 0. The part of the investment

which is not invested in the stock is invested in a low risk investment Ξ ∈ {ICF,RB, TB}.
4In reality, products based on the insurer’s cover fund usually come with an annual guarantee. For these

products a participation rate of less than 1 primarily compensates for the guarantee. Note that in this paper,
we explicitly consider products based on an insurer’s cover fund without guarantee as we are interested in the
effects of smoothing in collective investments.

5Note that we assume a rebalancing at all ∆t time points for the static investment products.
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The CPPI strategy is implemented as follows:

1. At time t, compute the floor Ft = PL ·A0 ·P (t, T ), the cushion Ct = At−Ft, the exposure

to the stock investment Et = min(mCt, At), where m ∈ {1, 2, 3, 4, 5} is the multiplier,

and the low risk investment Rt = At − Et.

2. Then, At+∆t = Et(1+r̂s(t+∆t))+Rt(1+r̂Ξ(t+∆t)). We repeat that for t = 0, . . . , T−∆t.

The average direct stock ratio of a CPPI strategy is given by θ̄ = ∆t
T
E
[∑ T

∆t
−1

k=0 Ek·∆t

]
and the

total fraction of stocks by θ̄tot = θ̄ + (1− θ̄)φ, where φ = 0 for market-based CPPI strategies.

Note that the probability of achieving a terminal value below the protection level is greater

than 0 and typically increasing in the multiplier and the protection level.6

3 Impact of Return Smoothing on Risk-Return Charac-

teristics

In this section, we compare static-ICF products using φ ∈ {10%, 30%, 50%}7 and a smoothing

period of 3 (=sp) years,8 with static-RB products as introduced in Section 2. Note that in

this section, we only consider these two product types, which are both based on a rolling bond

investment, in order to separate the impact of smoothing from other product features. For

the market-based products, we assume daily rebalancing and 252 trading days per year and

consequently set ∆t = 1/252. Further, we investigate 41 (direct) stock ratios θ between 0%

and 100% in steps of 2.5%. To compare the different products, we generate 50,000 Monte Carlo

simulations paths and analyze the expected return, the standard deviation of annual returns

within a path as well as the standard deviation of the annualized return from 0 to T . For a given

asset evolution (At){t=0,...,T} (which depends on the low-risk asset and stock ratio), we define the

6More details can be found in Table 12 in Appendix D.
7We refrain from analyzing higher stock ratios within the ICF since in practice, rather high stock ratios

would lead to several risks and issues from the provider’s perspective, cf., e.g., our comments on market value
adjustments in Section 5. Hence, in practice providers would either refrain from offering such products, or they
would use smoothing mechanisms that are specifically tailored to deal with such risks and issues which would
make the use of a generic smoothing algorithm as a proxy increasingly unrealistic.

8See, Korn et al. (2018). Also, in the sensitivity analysis, we show that the results also hold for longer
smoothing periods.
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λS σS d φ T Simulations (n)

4% 20% 10Y 10%, 30%, 50% 30 50,000

History

Stock

2017/18 2018/19 2019/20 History

Rolling Bond

2017/18 2018/19 2019/20

1.28% 5.12% -5.05% 2.33% 7.40% 1.81%

Table 1: The base case parameters of the stock market (λS , σS), the parameters of the ICF (d, φ, T ), the
number of simulations (n) and the historical stock and rolling bond returns.

standard deviation of annual returns (pathwise volatility σ[rt]) as SD

[(
At+1−At

At

)
{t=0,...,T−1}

]
,

where the standard deviation (SD) is taken over all t = {1, . . . , T}. The standard deviation

of the average return (σ[r̄]) is given by SD

[(
AT
A0

)1/T

− 1

]
. The following results are based

on the base case parameter setup presented in Table 1. The parametrization of the short rate

model and the stock market are taken from Graf et al. (2021) and can be found in Table 9 in

Appendix A. To be in line with Graf et al. (2021), we model the historical rolling bond returns

with the historical Nelson-Siegel-Svensson (NSS) parameters which are given by the Deutsche

Bundesbank9 and for the historical returns of the stock market, we take the returns of the

EURO STOXX 50 performance index of the same time intervals.10 The corresponding returns

can also be found in Table 1.

The fair participation rate α is 0.865 for a stock ratio of 10%, 0.924 for φ = 30%, and in-

creases to 0.972 for φ = 50%. It is below 1 because the historical return is above the average

return implied by the model under the risk-neutral measure Q. Due to the asymmetric partic-

ipation in the surpluses and losses, cf., Equation (3), an ICF with a higher stock ratio has a

higher participation rate due to the lower volatility of the rolling bond return. This effect is

strengthened by the lower historical stock return compared to the historical rolling bond return.

The resulting risk-return characteristics of the different products are shown in Figure 1. In both

panels the expected return is shown on the y-axis. Further, on the x-axis the standard deviation

of annual returns (“pathwise volatility”) is shown in panel (a) and the standard deviation of

the annualized return in panel (b).

9The NSS-parameters can be found in Deutsche Bundesbank (2021).
10The historical performance of the EURO STOXX 50 is taken from Deutsche Börse AG (2021).
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Figure 1: The risk-return characteristics for different static-ICF products and a static-RB product based on
the standard deviation of annual returns (left panel) and on the standard deviation of the average return (right
panel).

In both panels, the outer right point of a line corresponds to products with a direct stock

ratio of 100% and consequently all lines meet at the same point. The other end of the line

corresponds to a direct stock ratio of 0%. We typically observe that static-ICF products with

a higher embedded stock ratio (φ) have a higher expected return but typically also a higher

volatility. As direct stock ratios approach zero, the decreasing expected return comes with an

increase in risk (at least pathwise volatility) since diversification effects are no longer used.

Most importantly, we find in panel (b) that for a given expected return the standard deviation

of the average return is very similar for all four investment types while in panel (a) for a

given expected return, the standard deviation of the annual return of static-ICF products are

significantly lower compared to static-RB products. In particular, panel (a) shows that the

static-RB products are clearly dominated by static-ICF products when considering the annual

fluctuations of the product. This already illustrates the potential of ICF based products to

reduce pathwise volatility with little effect on the distribution of terminal wealth.

4 Analysis of Static and Dynamic Products

In this section, we analyze static and dynamic investment products introduced in Section 2.

For both, we consider five different options for the low-risk asset: ICF10, ICF30, ICF50, a T -year
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zero coupon bond (TB), and a rolling-bond investment (RB).

4.1 Base Case

Again, we assume daily rebalancing and use 50,000 simulation paths. For the static products we

investigate 41 (direct) stock ratios θ between 0% and 100% in steps of 2.5%. For the dynamic

products we consider different protection levels PL ∈ {50%, 70%, 80%, 90%} as well as different

multipliers m = {1, 2, 3, 4, 5}.11

4.1.1 Characteristics of the Dynamic Investment Products

Firstly, we analyze the characteristics of the dynamic investment products which have not been

discussed in the previous analysis. In Table 2 we display the expected return (r̄), the standard

deviation of the average return (σ[r̄]), the standard deviation of annual returns (σ[rt]), the

corresponding average (direct as well as total) stock ratio over the entire duration (θ̄ and θ̄tot)

and the shortfall probability with respect to the protection level (PPL := P (AT < PL)) for the

different dynamic products.

As expected, for fixed m, a decreasing protection level results in a higher average stock ra-

tio and consequently in a higher average return (as well as higher standard deviations). The

same holds true for a fixed protection level and an increasing multiplier. Further, the shortfall

probability is lower for lower protection levels or lower multipliers, except for the dynamic-TB

(which always has a shortfall probability very close to 0).

It is noteworthy that for given m and PL, all considered dynamic-ICF products have a higher

average direct stock ratio than other dynamic products (and the difference is even larger when

considering the ICF product’s total stock ratio θ̄tot) which is mainly due to the smoothing effect

which reduces fluctuations of the direct stock ratio. This results in higher expected returns for

the dynamic-ICF products compared to other dynamic products. The return difference is par-

11Note that in this setting, the maximum possible protection level is given by 1/P (0, T ) ≈ 0.95. We examine
only protection levels which are significantly below 95% so that significant stock ratios are possible.
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m = 1 and PL = 90% m = 3 and PL = 90% m = 5 and PL = 90%

ICF with φ = RB TB ICF with φ = RB TB ICF with φ = RB TB

10% 30% 50% 10% 30% 50% 10% 30% 50%

r̄ 3.35 3.99 4.47 2.15 0.67 5.42 5.37 5.29 4.23 3 5.52 5.47 5.39 4.43 3.04

σ[r̄] 2.5 2.81 3.13 2.07 0.95 3.8 3.81 3.89 3.45 2.76 3.96 3.94 4.01 3.64 2.86

σ[rt] 8.37 9.14 10.02 8.92 9.36 14.9 14.89 15.04 13.4 12.33 15.44 15.5 15.65 13.74 11.92

θ̄ 33.27 35.28 36.27 23.90 12.75 60.39 59.17 57.58 45.27 31.95 61.91 61.04 59.66 45.33 25.22

θ̄tot 39.94 54.70 68.14 23.90 12.75 64.35 71.42 78.79 45.27 31.95 65.72 72.73 79.83 45.33 25.22

PPL 11.0 12.1 14.5 18.7 0 26.0 25.5 26.5 34.7 0 33.4 30.7 30.6 43.3 0

m = 1 and PL = 80% m = 3 and PL = 80% m = 5 and PL = 80%

r̄ 3.78 4.29 4.68 2.84 1.88 5.65 5.58 5.49 4.99 4.54 5.71 5.65 5.58 5.13 4.56

σ[r̄] 2.70 2.97 3.26 2.38 1.76 3.95 3.98 4.06 3.84 3.6 4.09 4.09 4.16 4.03 3.76

σ[rt] 9.71 10.2 10.83 9.96 10.24 16.23 16.09 16.1 15.26 14.74 16.66 16.6 16.67 15.54 14.29

θ̄ 41.3 42.2 42.3 34.5 29.0 68.6 66.8 64.8 58.8 52.7 69.5 68.2 66.6 58.1 45.0

θ̄tot 47.17 59.54 71.15 34.5 29.0 71.74 76.76 82.40 58.8 52.7 72.55 77.74 83.3 58.1 45.0

PPL 6.1 8.7 11.5 9.1 0 21.6 22.1 23.6 26.9 0 28.8 27.1 27.3 35.4 0

m = 1 and PL = 50% m = 3 and PL = 50% m = 5 and PL = 50%

r̄ 4.85 5.08 5.27 4.43 4.08 6.02 5.99 5.95 5.95 5.91 6.04 6.01 5.99 5.96 5.91

σ[r̄] 3.25 3.42 3.63 3.12 2.93 4.22 4.29 4.38 4.3 4.27 4.29 4.34 4.42 4.39 4.40

σ[rt] 13.8 13.84 13.94 13.85 13.96 19.4 19.25 19.17 19.21 19.09 19.59 19.49 19.46 19.31 18.98

θ̄ 63.6 63.2 62.3 61.6 60.5 87.9 86.5 85.1 85.6 84.5 88.4 87.3 86.2 85.3 82.3

θ̄tot 67.24 74.24 81.15 61.6 60.5 89.11 90.55 92.55 85.6 84.5 89.56 91.11 93.1 85.3 82.3

PPL 0.9 2.4 4.5 0.8 0 10.7 11.9 13.3 11.3 0 14.4 14.4 15.0 15.7 0

Table 2: Different risk measures for dynamic products with different multipliers (m) and different protection
levels (PL) based on different low-risk investments (ICF, RB,TB). All results are given in percent.

ticularly pronounced for higher protection levels and lower multipliers (i.e., products probably

chosen by conservative, risk averse consumers). But this comes with a higher volatility of the

terminal benefit, however, still significantly lower than for comparable (same expected return)

market-based products, cf. Figure 2 (b). Beyond that, the standard deviations of the annual

returns are similar for all considered dynamic products.12 Although the average total stock

ratios of the dynamic-ICF products are significantly higher than for the dynamic-RB products,

the shortfall probabilities are mostly very similar for both (and in many cases the shortfall

probabilities of the dynamic-ICF products are even lower than for the dynamic-RB products).13

12Note that the dynamic-TB is the only considered product with no shortfall risk. However, the results show
that this comes with a significantly lower average stock ratio and consequently average return compared to
other dynamic products (for m and PL).

13Note that this may also be partly driven by the ICF pricing approach and the choice of α, cf., page 5.
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Figure 2: The risk-return characteristics for different dynamic-ICF, dynamic-RB and dynamic-TB products
based on the standard deviation of annual returns (left panels) and based on the standard deviation of the
average return (right panel). Note that one line corresponds to a group of dynamic products of a fixed type
(specified by the color), fixed multiplier (specified by the symbol) and different protection levels.

Figure 2 displays the risk-return characteristics of the dynamic investment strategies from

Table 2, where risk is measured by pathwise fluctuations in the left panel and of the terminal

wealth in the right panel (as in Figure 1 in Section 3). We observe in the left panel that for a

given and rather low pathwise volatility the dynamic-ICFs have a significantly higher expected

return. Further, we observe that for a high protection level (lower volatility), the dynamic-

ICF50 products dominate while for lower protection levels (higher volatility) dynamic-ICF10

products dominate.14 However, with increasing volatility, the ICF and market-based dynamic

investment products (and hence also their Risk-Return characteristics) become more similar

due to the increasing direct stock ratios. Another interesting effect can be seen in the results

for the dynamic-TB products. There, products with a multiplier of m = 3 are dominated by

products with a multiplier of 1 and 5. This can be explained by the impact of the market value

changes of the terminal bond on the stock exposure for different multipliers which results in

average total stock ratios which first increase in m and then decrease again, cf., Table 2. When

risk is measured by variability of terminal wealth (right panel of Figure 2), all products are

much closer to the “efficient frontier”. However, in particular, for higher standard deviations,

market-based products are clearly dominated by ICF-based products. Overall, these results

show that dynamic-ICF products have a significant potential to earn a higher return than a

14This can also be seen in Table 2, where for dynamic-ICF products with fixed multiplier m ∈ {3, 5} and
protection level, the returns decrease (slightly) for a higher ICF stock ratio (φ), while the pathwise volatility
increases (slightly) for a high protection level PL = 90% and decreases for a low protection level PL = 50%.
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comparable dynamic product with market-based low risk assets and similar risk characteristics.

4.1.2 Preferences under EUT, CPT, MCPT and PMCPT

In this section, we analyze the objective expected utility and the subjective attractiveness

of the different products. For the former, we apply Expected Utility Theory (EUT) with

power utility u(x) = x1−γ/(1 − γ), where γ ≥ 0 (6= 1) is the risk aversion parameter. To

measure the subjective attractiveness, we use Cumulative Prospect Theory (CPT) as described

in Kahneman & Tversky (1979) and Multi Cumulative Prospect Theory (MCPT) proposed by

Ruß & Schelling (2018) which can better explain observed long term investment decisions than

CPT by taking annual fluctuations into account.15 Also, we include Partial Multi Cumulative

Prospect Theory (PMCPT) in our analysis, which is a weighted average of CPT and MCPT,

i.e., PMCPT (X) = ωCPT (X)+(1−ω)MCPT (X), where X refers to the investment product

and ω ∈ [0, 1] to the weight. Note that for these subjective theories the policyholder is typically

assumed to be risk averse for gains and risk seeking for losses with risk attitude a ∈ R+. Further,

policyholders are assumed to be loss averse, described by a loss aversion parameter λ ≥ 1. Also,

we assume that probabilities are distorted based on the distortion function proposed by Prelec

(1998), which distorts the probabilities for losses (α−, β−) and gains (α+, β+) differently. To

compare the results of the different products, we compute the corresponding certainty equivalent

(CE) returns, cf., Ruß & Schelling (2018) cf., Appendix C. The preference parameters used in

our analysis can be found in Table 3. The choice of the subjective parameters (except for ω) is

based on l’Haridon & Vieider (2019) and is the same for CPT, MCPT and PMCPT. The risk

aversion parameter for EUT is in line with Chiappori & Paiella (2011).

γ a λ β+ α+ β− α− ω

2.5 0.88 1.616 1.052 0.767 0.934 0.863 0.5

Table 3: Preference parameters used in the base case.

We now analyze all previously mentioned static and dynamic (CPPI) investment products.

15See also Graf et al. (2019) and Ruß & Schelling (2021). A more detailed description and definitions can be
found in Appendix B.
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In Figure 3, we display certainty equivalent values of different product types under different

preference theories depending on the risk aversion (panel (a)) and loss aversion (panel (b) and

(c)). Due to the very large number of products considered, we only display the version of each

product that comes with the highest CE-value. E.g., the value for the static-ICF product dis-

played at γ = 2.5 in panel (a) of Figure 3 is from the product with φ = 30% and θ = 35%, since

all other combinations of φ and θ would result in a lower CE value.16 Note that for different

parameter values of γ, respectively λ, the product with the highest CE of a product type can

vary. The size of the circles represents the (average) direct stock ratio of the product with the

highest CE. Further, Table 4 shows the product characteristics of the products with the highest

CE (of all considered products) under different preference theories and for selected levels of risk

and loss aversion, respectively.

γ = 0.5 γ = 1.5 γ = 2.5 γ = 3 γ = 3.5 γ = 6

EUT θ = 100%
static-ICF50

θ = 57.5%

static-ICF30

θ = 35%

static-ICF30

θ = 25%

static-ICF30

θ = 17.5%

static-TB

θ = 20%

λ = 1.25 λ = 1.616 λ = 2 λ = 2.5 λ = 3

CPT θ = 100% θ = 100% θ = 100% θ = 100% θ = 100%

MCPT θ = 100%
static-ICF50

θ = 87.5%

static-ICF50

θ = 35%

static-ICF50

θ = 25%

static-ICF50

θ = 20%

PMCPT θ = 100% θ = 100% θ = 100%
static-ICF50

θ = 45%

static-ICF50

θ = 32.5%

Table 4: The product with the highest CE value for different preference theories and for selected levels of risk
and loss aversion, respectively.

For a very low risk aversion under EUT (γ < 1), the CE-maximizing product variants within

each product type are very similar and they have a stock ratio of 100% or a high multiplier

and a low protection level. If risk aversion increases, the CE for all products decreases and the

optimal product has a lower direct and total stock ratio, since a risk averse consumer prefers a

more stable terminal value. This holds for all product types. E.g., for a medium risk aversion

(γ = 2.5), the static-ICF30 and a direct stock ratio of 35% (θtot = 54.5%) has a higher CE

16Analogously for the dynamic products only the optimal products with respect to φ, PL and m are displayed.
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Figure 3: The maximum CE of different product types under different preference functions and for different
levels of risk or loss aversion. The size of the circle corresponds to the (average) direct stock ratio of the product
with the highest CE.

than other product types, while the optimal product for γ = 3.5 has a direct stock ratio of

17.5% (θtot = 42.25%), cf., Table 4. Further, for medium levels of risk aversion the respective

CE-maximizing static-ICF has a higher CE than any product of any type. For a very high risk

aversion (γ > 4) the static-TB with a low stock ratio has the highest CE, since a TB comes

with a deterministic maturity value.

Under CPT (not displayed in Figure 3), a pure stock investment always yields the highest CE

(cf., Table 4) as the probability for large gains is overweighted while the probability of a loss

after 30 years is rather low. Note that all considered dynamic products have an average direct

and total stock ratio of below 100% and therefore have a lower CPT CE value.17

17A lower protection level would lead to a higher stock ratio and thus to a higher CPT CE. In particular, a
dynamic with protection level of 0% would lead to a stock ratio of 100% and thus the highest CPT CE.
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Although annual value changes are punished under MCPT (Figure 3 (b)), for a low loss aversion

λ < 1.6, the product with the highest CE is still a pure stock investment. For higher loss aver-

sion a static-ICF product provides the highest CE (due to smoothed annual returns and hence

reduced fluctuations). For λ > 2.3, static-ICF products with very low direct stock ratios are

even the only products with a positive CE. Also, the stock ratio of the product with the highest

CE decreases for an increasing loss aversion. Further, for λ > 1.6, dynamic-ICF products have

a higher CE than purely market-based dynamic products. Note also that the most conservative

dynamic-ICF still has a total average stock ratio of roughly 40% (for m = 1 and PL = 90%,

cf., Table 2), which is close to the total stock ratio of the most attractive static-ICF product

for rather high loss aversions, cf., Table 4. Nevertheless, dynamic-ICF products typically have

a higher fluctuation of the annual value changes than comparable static-ICF products which

results in a lower MCPT-CE.18

Lastly, we consider PMCPT (cf., Figure 3 (c)), where we take into account annual values

changes (MCPT) as well as the total value change (CPT). Overall, the effects are similar as for

MCPT. But a pure stock investment now yields the highest CE for λ below 2.1, cf., Table 4.

For higher loss aversion a static-ICF product yields (significantly) higher CE values than the

other product types. Note that under pure CPT the difference between ICF based products

with smoothed returns and comparable other products is only small as return smoothing only

slightly impacts the characteristics of the terminal benefit. Therefore, the results under PM-

CPT are mainly driven by the results under MCPT.

Overall, our results show that under all considered preference theories the static-ICF is in

most cases preferred over the market-based products. Also, dynamic-ICF products dominate

market-based dynamic investment strategies in most cases (expect for EUT in case of a very

high level of risk aversion γ > 5.5). Further, we observe that in none of the considered settings

18Note that in the ICF we do not consider stock ratios above 50%, cf., Footnote 7 in Section 3. However,
additional analyses show that for certain combinations of risk attitude (a) and loss aversion (λ) a higher
stock ratio in the ICF would result in a subjectively even more attractive product. In practice that means
that consumers would demand a product based on an ICF with the highest stock ratio that can feasibly be
implemented.
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a dynamic product outperforms all other products (although, under specific settings, e.g., for

very high risk aversion or very low risk or loss aversion, we can find dynamic products with a

CE that is close to highest CE). Moreover, we note that while for less conservative consumers

(low γ respectively λ) a pure stock investment is the objective utility maximizing as well the

subjectively preferred product, for more conservative consumers the products with the highest

objective utility and the highest subjective attractiveness differ.

4.2 Sensitivity Analysis

Now, we perform various sensitivity analyses with respect to the interest rates, the probability

weighting, the risk attitude, as well as the length of the smoothing period.

4.2.1 Interest Rate Environment and Historical Returns

Firstly, we consider a different initial interest rate environment. In particular, we assume a

higher initial market forward rate curve which is given by the historical NSS-parameters of the

end of 2014 and the three previous years. The parameters as well as the historical stock return

and the return of a rolling bond investment are given in Table 10 in Appendix A. The other

parameters of the capital market model remain unchanged. Note that with this change, we

increase the 20 year spot rate from -0.165% p.a. to 1.318% p.a. Also, the fair participation rate

(α) is 0.8161 for an ICF with 10% stock, 0.8312 for an ICF with 30% stock and 0.8595 for an

ICF with 50% stock. The fair participation rates are lower than in the base case because the

historical stock and bond returns are significantly higher.

Effects of Smoothing

As in the base case we observe that the cover fund can significantly reduce the volatility of

the annual returns while hardly affecting the volatility of the overall return, cf., Figure 4. This

indicates that the effects of the return smoothing are qualitatively independent of the initial

interest rate environment and the historical returns.



4 ANALYSIS OF STATIC AND DYNAMIC PRODUCTS 18

0 0.05 0.1 0.15 0.2 0.25

SD of the annual return

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

E
x
p
. 
re

tu
rn

(a) Average SD of annual returns

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

SD of the average return

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

E
x
p
. 
re

tu
rn

(b) The SD of the average return

Figure 4: The efficient frontier for different static-ICF and a static-RB investment based on the standard
deviation of annual returns and based on the standard deviation of the average return in the interest rate
sensitivity scenario.

The Dynamic Investment Products

Again, Table 5 shows results for dynamic products based on the different low-risk assets and for

different protection levels and multipliers. Due to the higher interest rates and stock returns

the average direct and total stock ratio is higher for all considered products and the shortfall

probability is significantly lower than in the base case. As a consequence of the higher average

direct stock ratios, we observe higher expected returns and higher standard deviations. How-

ever, as in the base case, the dynamic products based on an ICF with a stock ratio of 10% yield

similar or higher returns compared to the dynamic products based on a RB. Also, the shortfall

probabilities are very similar in this case.

Due to the higher interest rate level, we can also analyze protection levels of 100% and 120%.19

The results are shown in Table 6. As in the base case the differences between the dynamic-ICF

and dynamic-RB are larger for conservative combinations of protection level and multiplier,

e.g., PL = 120% and m = 1. In this case the expected return of the dynamic products based

on the ICF10 is higher than for the dynamic-RB while the shortfall probability is higher for the

dynamic-RB. Again, the standard deviations of the annual return are very similar. Only the

standard deviation of the overall return is slightly higher for the dynamic-ICF10.

19Note that the maximum possible protection level in this case is PL ≈ 148%.
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m = 1 and PL = 80% m = 3 and PL = 80% m = 5 and PL = 80%

ICF with φ = RB TB ICF with φ = RB TB ICF with φ = RB TB

10% 30% 50% 10% 30% 50% 10% 30% 50%

r̄ 6.47 6.73 6.95 5.94 5.57 7.59 7.56 7.52 7.51 7.47 7.6 7.58 7.55 7.53 7.47

σ[r̄] 3.33 3.51 3.72 3.14 2.94 4.32 4.39 4.49 4.36 4.33 4.4 4.45 4.53 4.45 4.46

σ[rt] 13.98 14.06 14.21 13.93 14.04 19.52 19.36 19.28 19.4 19.26 19.71 19.6 19.57 19.5 19.14

θ̄ 63.39 63.28 62.85 60.61 59.36 86.82 85.37 83.98 84.77 83.56 87.26 86.15 85.09 84.38 81.14

θtot 67.05 74.30 81.43 60.61 59.36 88.14 89.76 91.99 84.77 83.56 88.53 90.31 92.55 84.38 81.14

PPL 1.2 2.7 4.8 0.9 0 12.7 13.9 15.1 11.8 0 16.5 16.6 16.9 16.4 0

m = 1 and PL = 50% m = 3 and PL = 50% m = 5 and PL = 50%

r̄ 6.98 7.13 7.25 6.7 6.52 7.69 7.68 7.67 7.68 7.67 7.69 7.68 7.68 7.68 7.67

σ[r̄] 3.65 3.77 3.91 3.54 3.45 4.32 4.38 4.45 4.34 4.33 4.34 4.39 4.44 4.38 4.38

σ[rt] 16.61 16.6 16.6 16.62 16.67 20.91 20.84 20.8 20.89 20.86 21 20.95 20.93 20.95 20.85

θ̄ 76.47 76.23 75.78 75.5 75.11 95.53 94.93 94.35 95.09 94.86 95.81 95.34 94.92 95.04 94.33

θtot 78.82 83.36 87.89 75.5 75.11 95.98 96.45 97.18 95.09 94.86 96.23 96.74 97.46 95.04 94.33

PPL 0.2 0.8 1.8 0.1 0 5.2 6.0 6.8 4.6 0 6.8 7.1 7.5 6.5 0

Table 5: Different risk measures for dynamic products with different multipliers (m) and different protection
levels (PL) based on different low-risk investments (ICF, RB,TB) in the interest rate sensitivity scenario. All
results are given in percent.

m = 1 and PL = 100% m = 3 and PL = 100% m = 5 and PL = 100%

ICF with φ = RB TB ICF with φ = RB TB ICF with φ = RB TB

10% 30% 50% 10% 30% 50% 10% 30% 50%

r̄ 6.08 6.44 6.74 5.32 4.76 7.49 7.44 7.39 7.24 7.11 7.5 7.46 7.41 7.29 7.12

σ[r̄] 3.11 3.34 3.58 2.84 2.52 4.25 4.31 4.4 4.25 4.18 4.36 4.39 4.48 4.38 4.36

σ[rt] 12.27 12.5 12.82 12.19 12.36 18.3 18.11 18.05 17.93 17.67 18.56 18.43 18.42 18.09 17.39

θ̄ 54.58 54.86 54.75 49.75 47.39 79.42 77.72 76.08 74.91 72.23 79.87 78.48 77.16 74.19 67.49

θtot 59.12 68.4 77.38 49.75 47.39 81.48 84.40 88.04 74.91 72.23 81.88 84.94 88.58 74.19 67.49

PPL 2.6 5.0 7.6 2.6 0 17.9 18.9 20.1 17.9 0 23.2 22.8 23.0 24.4 0

m = 1 and PL = 120% m = 3 and PL = 120% m = 5 and PL = 120%

r̄ 5.64 6.13 6.52 4.58 3.71 7.36 7.32 7.27 6.73 6.38 7.37 7.33 7.28 6.86 6.4

σ[r̄] 2.89 3.16 3.44 2.51 1.96 4.13 4.17 4.27 3.99 3.8 4.26 4.27 4.35 4.17 3.97

σ[rt] 10.6 11.05 11.6 10.53 10.78 16.91 16.79 16.82 16.05 15.59 17.25 17.17 17.24 16.3 15.15

θ̄ 45.5 46.56 47.08 37.6 33.03 71.36 69.88 68.43 62.34 57.2 71.8 70.59 69.38 61.52 49.85

θtot 50.95 62.59 73.54 37.6 33.03 74.22 78.92 84.22 62.34 57.2 74.62 79.41 84.69 61.52 49.85

PPL 5.5 8.1 10.8 7.1 0 22.9 23.3 24.2 25.0 0 29.7 28.2 28.1 33.1 0

Table 6: Different risk measures for dynamic products with different multipliers (m) and different protection
levels (PL) based on different low-risk investments (ICF, RB,TB) in the interest rate sensitivity scenario. All
results are given in percent.
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Preferences under EUT, CPT, MCPT and PMCPT

The results under the different preference theories are displayed in Figure 5 and Table 7.

Firstly, we observe in Figure 5 that the structure of the results is very similar to the base

case. In general, the CE values are higher than in the base case for all products. The products

with the highest EUT values are very similar to the base case as the higher interest rates level

shifts expected returns upwards but has only little influence on the volatility of the return. For

MCPT and PMCT we find that the CE maximizing products have higher stock ratios than in

the base case due to the lower probabilities for annual losses.
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Figure 5: The maximum CE of different product types under different preference functions and for different
levels of risk respectively loss aversion in the interest rate sensitivity scenario. The size of the circle corresponds
to the (average) direct stock ratio of the product with the highest CE.



4 ANALYSIS OF STATIC AND DYNAMIC PRODUCTS 21

γ = 1.5 γ = 2.5 γ = 3 γ = 3.5 γ = 6

EUT
static-ICF50

θ = 60%

static-ICF50

θ = 27.5%

static-ICF30

θ = 25%

static-ICF30

θ = 17.5%

static-TB

θ = 20%

λ = 1.25 λ = 1.616 λ = 2 λ = 2.5 λ = 3

CPT θ = 100% θ = 100% θ = 100% θ = 100% θ = 100%

MCPT θ = 100% θ = 100%
static-ICF50

θ = 47.5%

static-ICF50

θ = 30%

static-ICF50

θ = 22.5%

PMCPT θ = 100% θ = 100% θ = 100%
static-ICF50

72.5% Stock

static-ICF50

40% Stock

Table 7: The product with the highest CE value for different preference theories and for selected levels of risk
and loss aversion in the interest rate sensitivity scenario, respectively.

4.2.2 Probability Weighting Parameters

Next, we perform a sensitivity analysis with respect to the probability weighting. We fix the

loss aversion at λ = 2 and only vary the probability weighting parameters α− = α+ ∈ [0.5, 1]

and β− = β+ ∈ [0.7, 1.2]. While α governs the curvature of the function and hence the ten-

dency to overweight low likelihood events and to underweight high likelihood events (likelihood-

insensitivity), the choice of β primarily influences the point where the function (typically inverse

S-shaped) crosses the 45-degree line (elevation).20

(a) MCPT (b) PMCPT

Figure 6: The difference between the maximum CE of an ICF-based investment strategy and the maximum of
a market-based investment strategy for different levels of probability weighting.

Note that under CPT with λ = 2 and for all considered specifications of the probability weight-

20Reducing α increases likelihood-insensitivity and reducing β shifts the crossing point right and upwards.
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ing function the ICF-based investment strategy and market-based investment strategy with the

highest CE are equal (always a pure stock investment). For MCPT and PMCPT, we display in

Figure 6 the difference between the maximum CE of an ICF based investment product (static

and dynamic) and the maximum CE of a market-based investment product (static and dy-

namic with RB and TB). The results are shown in Figure 6 (MCPT in panel (a) and PMCPT

in panel (b)). In panel (a) of Figure 6, we observe that under MCPT the preferred ICF-based

product always yields a higher CE than the preferred market-based product. The difference is

particularly high for very low values of α and β (i.e., in case of strong overweighting of low-

likelihood events). The optimal ICF-product is always a static-ICF50 with a direct stock ratio

between 27.5% (θtot = 63.75%) and 37.5% (θtot = 68.75%), where the stock ratio is increasing

for increasing α and β. Note that the CE of the preferred ICF-product is decreasing (from

4.9% to 2.3%) for increasing α and β.

Under PMCPT, we observe that for most combinations of α and β, the preferred ICF-product

yields a higher CE than the preferred market-based product. For medium and high α and β

a static-ICF50 with a direct stock ratio between 65% and 95% yields the highest CE (where

the stock ratio is decreasing for increasing α and β). Only for very low values of α and β, the

market-based product has a higher CE by roughly 0.05%.21 The shape of the surface is striking

and caused by a number of superimposing effects. For example, the type and stock ratio of the

optimal ICF-based vs. market-based product changes several times on the surface.

4.2.3 Risk Attitude

We also varied the risk attitude a between 0.6 and 1. We fix λ = 2 and the probability weighting

parameters as stated for the base case. We again compute the difference between the maxi-

mum CE of an ICF-based investment product and the maximum of a market-based investment

product. The results can be found in Figure 7.22

21Note that for low values of α and β, the preferred ICF product is a dynamic-ICF based on ICF10 with
PL = 80% and m = 5, while the preferred market-based product is a dynamic-RB with PL = 80% and m = 5.

22Note that under CPT the optimal strategy is again a pure stock investment for all values of a.
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Figure 7: The difference between the maximum CE of an ICF-based investment strategy and the maximum CE
of a market-based investment strategy for different level of risk attitude (a) .

In Figure 7, we observe that for all levels of the risk attitude the maximum CE of the ICF-based

investment products is higher or equal than the maximum CE of the market-based investment

products. Under MCPT, we observe that an ICF-based investment product yields the highest

CE for all values of the risk attitude as ICF products come with significantly smaller annual

changes and thus lower probabilities for annual losses. Further, the direct stock ratio of the

preferred ICF-products is between 20% and 60% (hence, θtot is between 60% and 80%) and is

increasing for a decreasing risk attitude.

Under PMCPT and for a low risk attitude (a ≥ 0.9) the market- and the ICF-based products

yield the same maximum CE which in both cases is attained by a pure stock investment.

Further, we observe that in these cases the CPT CE has a higher influence on the PMCPT

CE than for higher risk attitudes (lower values of a). For a higher risk attitude a more stable

annual return is more important and CPT has a lower impact on the PMCPT CE than in

the case of low risk attitudes. Therefore, in these cases an ICF-based investment product is

preferred. Also, the direct stock ratio of the strategy with the highest CE is increasing for a

decreasing risk attitude (from 25% (θtot = 62.5%) to 100%).
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4.2.4 The smoothing period

We have increased the smoothing period from 3 years to 10 years and we repeated the numerical

analysis.23 The fair participation rate is 0.3766 for a stock ratio of 10%, 0.4912 for a stock ratio

of 30% and 0.6261 for φ = 50%. The values of α are significantly lower than for a smoothing

period of 3 years because the historical returns are significantly higher.

Effects of Smoothing

As for the base case, we observe that smoothing in the insurer’s cover fund reduces the volatility

of the annual returns while not affecting the overall return, cf., Figure 8. In particular, for a

low direct stock ratio the volatility of the annual return is reduced more strongly by the longer

smoothing period. Note that the history has only a small influence on the volatility of the

annual returns. We also studied other histories and smoothing periods and the results were

qualitatively very similar. This indicates that the observed effects do qualitatively not depend

on the smoothing period (for reasonable choices).
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Figure 8: The efficient frontier for different static-ICF based on a smoothing period of 10 years and a static-
RB investment based on the standard deviation of annual returns and based on the standard deviation of the
average return.

23For this, Equation (1) has been adjusted accordingly. In particular, we use sp = 10 years (instead of 3) and
the necessary historical stock and bond return are given in Table 11 in Appendix A.
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The Dynamic Investment Products

Again, we have analyzed different figures for dynamic products based on the different low-risk

assets and for different protection level and multiplier (similar to Table 2).24 We observe similar

results as in the base case, i.e., ICF products yield higher expected returns and higher average

direct stock ratios, in particular for conservative dynamic products (high PL and low m).

Also, the standard deviations of annual returns, the average annual returns, and the shortfall

probabilities are very similar for the dynamic-ICFs compared to the base case. Consequently,

this indicates that, independent of the smoothing period, dynamic-ICFs have a significant

potential to earn a higher return than a comparable dynamic-RB.

Preferences under EUT, CPT, MCPT and PMCPT

The results under the different preference theories are displayed in Figure 9 and Table 8. For

EUT, we observe similar results as in the base case: static products have a higher CE than

dynamic products. Further, up to a high risk aversion γ = 4 a static-ICF product and for γ > 4

a static-TB yield the highest CE, cf., Figure 9.

Under MCPT and PMCPT the products based on the insurer’s cover fund yield the same or

higher CE than the market-based products (as in the base case). However, for a medium level

of loss aversion (MCPT λ ≈ 2 and PMCPT λ ≈ 2.5) a dynamic-ICF yields a higher CE than

the static-ICFs, cf., Table 8. Note that we also analyzed other smoothing periods (longer than

3 years) and the results are qualitatively very similar. To sum up, also under longer smoothing

periods, we observe that the ICF based products outperform the market-based products in

many cases (or are at least comparable in terms of CE values).

24Note that the values for the dynamic-RB and dynamic-TB are identical to the base case setup as they are
not influenced by a longer smoothing period.
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γ = 1.5 γ = 2.5 γ = 3 γ = 3.5 γ = 6

EUT
Static-ICF50

θ = 67.5%

Static-ICF50

θ = 35%

Static-ICF30

θ = 30%

Static-ICF30

θ = 22.5%

Static-TB

θ = 20%

λ = 1.25 λ = 1.616 λ = 2 λ = 2.5 λ = 3

CPT θ = 100% θ = 100% θ = 100% θ = 100% θ = 100%

MCPT θ = 100%
dynamic-ICF10

PL = 70%, m = 4

dynamic-ICF50

PL = 90%, m = 1

Static-ICF50

θ = 10%

Static-ICF50

θ = 7.5%

PMCPT θ = 100% θ = 100% θ = 100%
dynamic-ICF50

PL 90%, m = 1

Static-ICF50

θ = 15%

Table 8: The product with the highest CE value for different preference theories and for selected levels of risk
and loss aversion in the smoothing period sensitivity scenario, respectively.
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Figure 9: The maximum CE of different product types under different preference functions and for different
levels of risk and loss aversion in the smoothing period sensitivity scenario, respectively. The size of the circle
corresponds to the (average) direct stock ratio of the product with the highest CE.
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5 Conclusion

In this paper, we investigated the effect of multiple, segregated cover funds equipped with differ-

ent equity ratios on the short-term fluctuation risk as well as on the distribution of the terminal

benefit of different retirement savings products. We found that smoothing mechanisms embed-

ded in such cover funds can significantly reduce interim fluctuations while hardly impacting

the long term risk-return profile. Hence, the existence of multiple, segregated cover funds that

can be used as building blocks for more complex products enables insurers to offer different

risk-return profiles of the terminal benefit in combination with a rather low pathwise volatility

(when compared to investments without smoothing mechanisms). This appears highly relevant

for the subjective attractiveness.

We analyzed various static and dynamic investment products based on cover funds with differ-

ent stock ratios and compared them to purely market-based investment products. The results

show that dynamic products based on the insurer’s cover fund have a significantly higher return

potential compared to dynamic market-based products with the same risk characteristics (in

particular for conservative product settings, which is of particular interest for rather risk averse

investors).

Moreover, we examined the effect of collective cover funds on the objective utility and sub-

jective attractiveness. To this end, we compared the products under Expected Utility Theory

as well as Cumulative Prospect Theory and extensions of it (MCPT and PMCPT). Overall,

we found that in most cases static products based on collective cover funds (mostly equipped

with high stock ratios) outperform all other products with respect to objective utility and sub-

jective attractiveness. Although, unfortunately, not the same product design is at the same

time objectively optimal and subjectively preferable. Also, the main results are qualitatively

independent of the smoothing period and also hold for other (reasonable) interest rate environ-

ments. Consequently, our results clearly demonstrate the advantages of segregated cover funds

with different equity ratios.
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The current challenges caused mainly by consumers’ demand for low-risk products and the dif-

ficulty to offer high guarantees in the low-interest environment, could potentially be overcome

with products without guarantee that still come with a rather high degree of safety. Therefore,

our findings should be of high topical interest for insurance companies and legislators/regulators.

Suitably designed products based on insurer’s cover funds with return smoothing elements can

serve the consumers’ desire for safety (in particular, avoiding high short-term losses) without

limiting the long-term return potential. Nevertheless, there are several practical obstacles that

need to be overcome. For instance, in some countries, e.g., Germany, regulation for surplus

distribution in participating life insurance products was designed to distribute returns that

exceed a guaranteed rate of return. It is not always clear, if and how this can be applied to

products without a guarantee. Even if it might be formally straightforward to set the annual

guaranteed rate to -100% (and hence let any and all return play the role of “surplus”), some

laws and regulation needs to be rewritten to make sense also in such settings. Also, in particular

when cover funds with a rather high stock ratio are being offered, there need to be rules that

prevent individual consumers to speculate against the pool of policyholders, e.g. by surrender-

ing their contract after a market crash, when the smoothed policy value significantly exceeds

the market value of the corresponding assets. Hence, appropriate regulation for fair market

value adjustments in case of surrender is needed. Moreover, there is a range of practical issues

(operationally as well as economically) that need to be considered when a new, segregated fund

is being set up, in particular in the current low interest rate environment.

There are numerous suggestions for further research: Mainly the impact of different kinds

of smoothing mechanisms on the risk-return characteristics of the resulting products should

be further analyzed. We have seen that the considered – purely formula based – smoothing

algorithm is very effective to reduce interim fluctuation but does hardly impact the distribution

of terminal wealth. While this may be desirable in some circumstances, one might also be

interested in smoothing mechanisms that reduce the volatility of the probability distribution

of terminal wealth (ideally without impacting expected return). It can be expected that path-

dependent return smoothing (e.g., by building up certain “collective buffers” in good years
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which are used to increase returns in bad years or benefits at maturity that are particularly

low) increases the advantages of smoothed products even more. Hence, a systematic analysis

which type of smoothing mechanism is suitable to achieve which goal could stimulate the design

of products that more effectively reduce those risks that are relevant to an individual consumer

without harming the return potential too much. Since some smoothing mechanisms applied in

practice have characteristics of ”collective buffers” described above, such analyses might reveal

that purely formula based smoothing rules systematically underestimate the effect of actually

used smoothing mechanisms on the probability distribution of terminal wealth. This might

impact the question how smoothing should be approximated, e.g., in models that calculate

risk-return profiles and risk-return classes of retirement savings products.
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A The Hull-White Model and the Stock Market Model

The two-factor Hull-White model (cf., Brigo & Mercurio (2007)) is given by the following

dynamics for t ∈ [0, T ] with T ∈ N:

dx(t) = −ax(t)dt+ σdW1(t), x(0) = 0, (8)

dy(t) = −by(t)dt+ η
(
ρdW1(t) +

√
1− ρ2dW2(t)

)
, y(0) = 0, (9)

r∗(t) = x(t) + y(t) + ζ(t), (10)

where r∗(t) denotes the short rate at time t under the risk-neutral measure Q, {Wi(t)}t≥0 are

independent one-dimensional Brownian motions for i = 1, 2, and ζ(t) is a deterministic function

given by

ζ(t) =fM(0, t) +
σ2

2a2
(1− e−at)2 +

η2

2b2
(1− e−bt)2 + ρ

ση

ab
(1− e−at)(1− e−bt), (11)

where fM(0, t) is the initial market forward rate curve and can be obtained by the Nelson-

Siegel-Svensson curve (NSS). The interest rate model is exponentially affine. Hence, based on

r(t) we can determine the value of a zero coupon bond P (t, T ) at time t with maturity T .

Under the real-world measure P , the short rate r is given by,

r(t) = x(t) + dx(1− e−at) + y(t) + dy(1− e−bt) + ζ(t), (12)

where {x(t)}t≥0 and {y(t)}t≥0 are the processes under Q and dx and dy are constants where

dx + dy can be interpreted as the long-run risk premium of the short-rate, cf., Berninger &

Pfeiffer (2020).

The dynamics of the stock market is modeled by a generalized Black-Scholes model, particularly
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the price of a stock at time t is given by

S∗(t) = s0 exp

(∫ t

0

r∗(s)ds− 0.5σ2
St+ σSW (t)

)
under Q, (13)

S(t) = s0 exp

(∫ t

0

r(s)ds+ (λS − 0.5σ2
S)t+ σSW (t)

)
under P , (14)

where s0 is the initial price of the stock (at time 0), λS is the risk premium, σS is the volatility

of the stock market, and {W (t)}t≥0 is a one-dimensional Brownian motion independent of the

short rate processes. The parameters used in our numerical analyses are given in Tables 9-11.

HW-Model a b σ η ρ dx dy

0.3912 0.0785 0.0201 0.0135 -0.6450 -0.0033 0.0255

NSS Curve β1 β2 β3 β4 τ1 τ2

0.27173 -0.37865 -2.5003 -1.43785 2.95077 0.21103

Table 9: The base case parameters of the short rate model (in line with Graf et al. (2021)).

NSS Curve β1 β2 β3 β4 τ1 τ2

2.14449 -2.37645 26.11241 -29.99782 1.8297 1.99969

History

Stock

2012 2013 2014 History

Rolling Bond

2012 2013 2014

17.65% 21.61% 3.93% 9.44% -3.34% 18.19%

Table 10: The NSS-parameters and the historical returns (stock and rolling bond) as at the end of 2014 (used
for the sensitivity analysis, cf., Section 4.2.1).

Year 2010/1 2011/2 2012/3 2013/4 2014/5 2015/6 2016/7 2017/8 2018/9 2019/20

Stock 14.36% -17.29% 19.2% 26.68% 8.83% -13.89% 23.27% 1.28% 5.12% -5.05%

R-Bond 1.10% 19.39% 2.61% 8.15% 6.83% 11.11% -4.49% 2.33% 7.40% 1.81%

Table 11: The historical stock and rolling bond returns for a smoothing period of 10 years, cf., Section 4.2.4.

B Cumulative Prospect Theory

In Cumulative Prospect Theory (CPT), cf., Kahneman & Tversky (1979) and Tversky & Kah-

neman (1992), an investment A with (random) final outcomes E is valued with an S-shaped
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value function v and relative to a given reference point χ. The gains and losses are described

by the random variable X := E − χ. Then the CPT utility is defined as

CPT (X) =

∫ 0

−∞
v(x)d (w (F (x))) +

∫ ∞
0

v(x)d (−w (1− F (x))), (15)

where F (x) = P(X ≤ x) and v is the investor’s value-function which is defined as v(x) :=

xa1 {x ≥ 0} − λ|x|a1 {x < 0} where λ > 0 is the loss aversion parameter and a ∈ R+ controls

the risk appetite. The probability distortion function is given by ws(p) = exp(−βs(− ln(p))α
s
),

where α > 0 governs the curvature, β > 0 the elevation, and s ∈ {+,−} indicates gains or

losses since probabilities for losses (α−, β−) and gains (α+, β+) are distorted differently.

In Multi Cumulative Prospect Theory (MCPT), cf., Ruß & Schelling (2018), the annual gains

and losses (Xt) of an investment A are taken into account, i.e., Xt := At − χt, where t ∈

{1, . . . , T}, T is the maturity of the investment, At is the account value at time t, and χt is the

reference point at time t. The MCPT value of investment A is then defined by

MCPT (A) :=
T∑
t=1

CPT (Xt) (16)

with CPT (X) as defined in (15) and we assume no subjective discounting.

In Partial Multi Cumulative Prospect Theory (PMCPT) the terminal value (X) of an invest-

ment A as well as potential interim changes (Xt) are considered and thus it combines features

of CPT and MCPT. The combination is defined as

PMCPT (A) := ωCPT (X) + (1− ω)MCPT (A), (17)

where ω ∈ [0, 1] denotes the weight, CPT (X) as defined in (15) and MCPT (A) as defined in

(16).
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C Computation of the Certainty Equivalents

For all preference formulations it is possible to compute certainty equivalent returns which de-

scribe the fixed annual return that an investor would regard equally desirable as the considered

contract. We denote the value of choice c under a preference formulation G by G(c), where

G ∈ {EUT, CPT, MCPT, PMCPT}. Further, we compute the corresponding fixed annual

returns rG by the following formulas:

• Under EUT:

EUT (c)
1
γ = eT ·rEUT .

• Under CPT:

CPT (c) =
(
eT ·r

CPT − 1
)a

if CPT (c) ≥ 0

CPT (c) = −λ
∣∣eT ·rCPT − 1

∣∣a if CPT (c) < 0.

• Under MCPT:

MCPT (c) =
T∑
t=1

(
et·r

MCPT − e(t−1)·rMCPT )a
if MCPT (c) ≥ 0

MCPT (c) = −λ
T∑
t=1

∣∣et·rMCPT − e(t−1)·rMCPT ∣∣a if MCPT (c) < 0.

• Under PMCPT:

PMCPT (c) = ω
(
eT ·r

PMCPT − 1
)a

+ (1− ω)
T∑
t=1

(
et·r

PMCPT − e(t−1)·rPMCPT )a
if PMCPT (c) ≥ 0

PMCPT (c) = −λ
[
ω
∣∣eT ·rPMCPT − 1

∣∣a + (1− ω)
T∑
t=1

∣∣et·rPMCPT − e(t−1)·rPMCPT ∣∣a]
if PMCPT (c) < 0.
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Note that for EUT and CPT we can also derive certainty equivalent values which describe

the fixed terminal payoff that an investor would regard as equally desirable as the considered

contract. For these preference formulations, the certainty equivalent returns are equal to the

annualized returns which correspond to the certainty equivalent values. However, under MCPT

and PMCPT the preferences are based on interim value changes (in our case annual), i.e., from

the paths which result in the terminal payoff. Therefore, the consideration of a single certainty

equivalent value is not possible and we rather rely on fixed annual returns.
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D Additional Numerical Results

Table 12 shows the shortfall probability, the expected shortfall and the mean for different

dynamic strategies and protection levels.

Shortfall probability in % Exp. shortfall Mean

PL 50% 70% 80% 90% 50% 70% 80% 90% 50% 70% 80% 90%

m = 1

ICF10 0.94 3.37 6.12 11.04 0.4606 0.6324 0.7158 0.7958 4.1351 3.4098 3.0474 2.6875

ICF30 2.43 5.94 8.68 12.06 0.4353 0.599 0.6796 0.7557 4.4258 3.821 3.5228 3.2306

ICF50 4.46 8.87 11.53 14.51 0.4028 0.5533 0.6263 0.6971 4.6716 4.1767 3.9389 3.7125

RB 0.75 4.12 9.06 18.71 0.4587 0.6276 0.7074 0.7805 3.6734 2.765 2.3171 1.8944

TB 0 0 0 0 - - - - 3.3235 2.2734 1.7484 1.2234

m = 2

ICF10 6.16 11.05 14.31 18.69 0.4477 0.6216 0.7062 0.7878 5.7042 5.2553 4.9143 4.4812

ICF30 8.39 13.57 16.5 19.8 0.4279 0.5939 0.6763 0.7566 5.6321 5.1585 4.8511 4.5011

ICF50 10.62 16.33 19.11 21.81 0.3978 0.5513 0.627 0.6998 5.5546 5.0494 4.7653 4.4784

RB 6.15 12.53 17.76 26.29 0.4479 0.6203 0.7035 0.7817 5.5208 4.5851 3.8995 3.0821

TB 0 0 0 0 - - - - 5.441 4.257 3.3268 2.0273

m = 3

ICF10 10.7 17.92 21.6 26.04 0.4391 0.6092 0.6935 0.7767 5.7765 5.4521 5.2025 4.8669

ICF30 11.92 18.82 22.09 25.46 0.4231 0.5872 0.6693 0.7507 5.7221 5.3459 5.0937 4.7962

ICF50 13.26 20.42 23.57 26.48 0.3943 0.5466 0.6229 0.698 5.6669 5.235 4.9727 4.6981

RB 11.25 20.85 26.93 34.74 0.4423 0.6137 0.6984 0.779 5.6551 4.9366 4.3042 3.4653

TB 0 0 0 0 - - - - 5.5984 4.6636 3.7922 2.4251

m = 4

ICF10 13.08 21.76 26.16 30.69 0.4336 0.6009 0.6847 0.7675 5.7937 5.4948 5.2708 4.9761

ICF30 13.59 21.58 25.22 28.67 0.4201 0.5829 0.6647 0.746 5.7484 5.3991 5.1667 4.8935

ICF50 14.38 22.38 25.88 29.03 0.3923 0.5438 0.6204 0.6968 5.7032 5.3003 5.0519 4.7863

RB 14.03 25.57 32.11 39.97 0.4388 0.6089 0.6927 0.7747 5.6785 5.0271 4.4356 3.6075

TB 0 0 0 0 - - - - 5.6124 4.7149 3.854 2.4983

m = 5

ICF10 14.37 24.05 28.75 33.42 0.4295 0.5951 0.6779 0.7601 5.8014 5.5099 5.2976 5.0187

ICF30 14.43 23.12 27.07 30.65 0.4176 0.5798 0.6613 0.7425 5.7612 5.4214 5.2007 4.9382

ICF50 14.97 23.54 27.27 30.58 0.3911 0.5426 0.6193 0.6957 5.7212 5.3304 5.0942 4.8328

RB 15.7 28.35 35.37 43.31 0.4365 0.6059 0.6898 0.7721 5.6868 5.0545 4.4907 3.6674

TB 0 0 0 0 - - - - 5.6058 4.684 3.8117 2.4562

Table 12: Risk measures for different dynamic strategies and protection levels (PL).
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