

Universität Ulm | 89069 Ulm | Germany

Prof. Dr. Werner Smolny Institut für Wirtschaftspolitik

Fakultät für Mathematik und Wirtschaftswissenschaften

Ludwig-Erhard-Stiftungsprofessur

Institutsdirektor

Sommersemester 2016

2 Anwendungen und Probleme

Probleme empirischer Schätzungen

- Fehlende Variablen und Multikollinearität
- Endogenität / Simultanität
- Strukturbruch
- Heteroskedastie
- Autokorrelation

Für die Interpretation der Schätzergebnisse werden in der Ökonometrie eine Reihe von Annahmen getroffen:

- Korrekte Spezifikation des theoretischen Modells
- Exogenität der erklärenden Variablen
- Strukturkonstanz
- unabhängige, identisch verteilte Residuen (i.i.d.)

Wenn diese Annahmen nicht erfüllt sind, kann es zu verzerrten Schätzungen der Koeffizienten und der Standardfehler (der Konfidenzintervalle) kommen.

Deshalb ist es wichtig, diese Annahmen immer wieder zu überprüfen.

Fehlende Variablen und Multikollinearität

Fehlende Variablen führen dann zu verzerrten Schätzergebnissen, wenn diese fehlenden Variablen mit den im Modell aufgenommenen Variablen korreliert sind.

Da nahezu alle ökonomischen Variablen miteinander korreliert sind, führen fehlende Variablen fast immer zu verzerrten Schätzergebnissen:

"Wahres" Modell:
$$y_t = \beta_0 + \beta_1 \cdot x_{1,t} + \beta_2 \cdot x_{2,t} + \varepsilon_t$$

Geschätztes Modell: $y_t = \beta_{0,q} + \beta_{1,q} \cdot x_{1,t} + \varepsilon_{q,t}$

Der KQ-Schätzer "entfernt" alle Korrelation der Residuen mit den x-Variablen, daher führt eine Korrelation von x_1 und x_2 zu einer verzerrten Schätzung von β_1 .

Test

Überprüfe, welche Variablen relevant sind

- ökonomische Plausibilität
- statistische Signifikanz

Beispiel

• Cobb/Douglas Produktionsfunktion

Weitere Beispiele

- $\bullet \ \textit{Wirtschaftswachstum} \leftarrow \textit{Zinsen, Weltkonjunktur}$
- Konsum ← Einkommen, Vermögen
- •

Endogenität / Simultanität

Wenn die erklärenden Variablen in einer Schätzung endogen sind, d.h. durch die zu erklärende Variable beeinflusst werden, führt der OLS-Schätzer zu verzerrten Ergebnissen für die Koeffizienten.

Beispiel

Der Konsum ist abhängig vom Einkommen, und die Einkommensidentität gilt.

$$C = c' \cdot Y + \varepsilon$$
$$Y = C + I$$

Dann gilt:

$$C = c' \cdot Y + (C - c' \cdot Y)$$

= $c' \cdot Y + (Y - I) - c' \cdot Y$
= $c' \cdot Y + (1 - c') \cdot Y - I$

- D.h. die "wahren" Residuen sind korreliert mit Y
- Für den OLS-Schätzer gilt jedoch, dass die geschätzten Residuen unkorreliert mit den erklärenden Variablen sind
- Daraus folgt, dass der OLS-Schätzer verzerrt ist

 $\overline{\mathsf{Hinweis}} \to Aufzeichnen!$

Für das Vorgehen in diesem Fall bieten sich 3 Alternativen an:

1. Schätzung der reduzierten Form

Das Modell kann nach den endogenen Variablen aufgelöst werden.

$$C = c' \cdot (C+I) + \varepsilon$$

$$(1-c') \cdot C = c' \cdot I + \varepsilon$$

$$C = \frac{c'}{1-c'} \cdot I + \varepsilon'$$

Wenn I exogen ist, kann diese Gleichung konsistent geschätzt werden. Die marginale Konsumneigung c' kann aus dem geschätzten Koeffizienten berechnet werden.

2. Instrumentschätzer

Eine Alternative ist die Schätzung mit einem Instrumentvariablenschätzer (IV)

- Dafür wird die endogene erklärende Variable (also Y) in einer ersten Stufe auf exogene, mit Y korrelierte Variablen geschätzt
- Die geschätzten Werte dieser Schätzung (der FIT) werden dann in der zweiten Stufe anstelle der Variablen für die Schätzung der Modellgleichung verwendet (TSLS – Two Stage Least Squares)

3. Schätzung anhand verzögerter Werte der erklärenden Variablen

Zumindest bei Zeitreihendaten kann y_t keinen direkten Einfluss auf x_{t-1} ausüben (Ursache \rightarrow Wirkung)

Endogenität/Simultanität ist ein sehr weit verbreitetes Problem:

- Es gibt kaum ökonomische Variablen, die exogen sind, die also nicht von anderen ökonomischen Variablen beeinflusst werden
- Man sollte also immer auf Simultanität testen (anhand der Methoden oben → liefern sie andere Ergebnisse?)
- Andererseits führen die Methoden oben meist zu einem Verlust an Effizienz der Schätzung:

Der OLS-Schätzer weist definitionsgemäß die geringste Varianz auf \rightarrow alle anderen Schätzer sind weniger effizient

Man muss also den Verlust an Effizienz gegen den Simultanitäts-Fehler abwägen

- Manchmal ist der Simultanitätsfehler gering:
 - wenn die Varianz der Schätzgleichung gering ist
 - wenn die Varianz der erklärenden Variable groß ist
 - wenn die Endogenität nicht sehr ausgeprägt ist
 - Beispiel: Konsumfunktion
- Weitere Beispiele: Schätzung von Lohn-, Preis- und Produktivitätsgleichungen

$$\Delta \ln p = \alpha_0 + \alpha_1 \cdot \Delta \ln w + \alpha_2 \cdot \Delta \ln \pi_l + \varepsilon_p
\Delta \ln w = \beta_0 + \beta_1 \cdot \Delta \ln p + \beta_2 \cdot \Delta \ln \pi_l + \beta_3 \cdot UR + \varepsilon_w
\Delta \ln \pi_l = \gamma_0 + \gamma_1 \cdot \Delta \ln w + \gamma_2 \cdot \Delta \ln p + \gamma_3 \cdot \Delta \ln Q + \varepsilon_{\pi}$$

Hier ist die Endogenität wichtig o Identifikationsproblem

Strukturbruch

Strukturbruch bedeutet, dass sich die Struktur (die Koeffizienten, die Standardabweichung) des Modells über die Zeit (oder im Querschnitt z.B. mit der Unternehmensgröße) ändert

- Manchmal gibt es einen a priori bekannten Zeitpunkt, an dem sich das Modell möglicherweise geändert hat (deutsche Vereinigung, Ölpreisschocks, Euro).
- Manchmal ändern sich die Koeffizienten langsam über die Zeit (Änderung der Konsumgewohnheiten).

Die Schätzung über einen Strukturbruch hinweg impliziert eine Fehlspezifikation des Modells

Test auf Strukturbruch

- Chow-Test:

Schätzung des Modells

- für die Zeit vor dem Strukturbruch (Ostdeutschland)
- nach dem Strukturbruch (Westdeutschland)
- für die gesamte Zeitperiode (Gesamtdeutschland)
- F-Test für die Gleichheit der Koeffizienten
- Ein alternativer Test ist der Chow Vorhersage Test
 - schätze das Modell für die Periode bis zum Strukturbruch
 - berechne auf der Basis dieser Schätzgleichung eine Vorhersage für die Zeitperiode nach dem Strukturbruch
 - untersuche, ob die Abweichungen signifikant größer sind (F- oder χ^2 -Test) Dieser Test liefert auch sinnvolle Ergebnisse, wenn der Strukturbruch noch nicht lange zurückliegt.

- Alternativer Test auf Strukturbruch: Rekursive Schätzungen
 Rekursive Schätzungen sind eine hilfreiche Möglichkeit,
 strukturelle Veränderungen in der Modellgleichung zu untersuchen:
 - Das Vorgehen
 - schätze die Modellgleichung für ein kurzes Sample am Anfang des Beobachtungszeitraums (es geht grundsätzlich auch anders herum)
 - berechne aus der Gleichung eine Vorhersage für die nächste Periode
 - bestimme den Vorhersagefehler (das sogenannte rekursive Residuum)
 - verlängere das Sample um eine Periode . . . usw.
 - Ein formaler Test auf Strukturbruch ist der CuSum-Test (<u>Cu</u>mulated <u>Sum</u> of recursive Residuals)
 - Dafür wird die kumulierte Summe der rekursiven Residuen berechnet
 - Wenn beispielsweise die rekursiven Residuen immer (sehr häufig) positiv sind, ist das ein Zeichen für einen Strukturbruch in der Gleichung
 - Für die Summe der Residuen kann ein Konfidenzband berechnet werden
 - Über- oder unterschreitet die Summe der Residuen das Konfidenzband, liegt ein signifikanter Strukturbruch vor
 - Ein Test auf eine bestimmte Art der Heteroskedastie ist der CuSum²-Test Hierbei werden die Quadrate der rekursiven Residuen aufsummiert Über- oder unterschreitet diese Summe das Konfidenzband, dann liegt eine signifikante Änderung der Varianz der Residuen vor
 - Man kann sich auch die Koeffizienten der rekursiven Schätzungen ansehen Aus der Entwicklung dieser Koeffizienten können mögliche Ursachen für einen Strukturbruch näher eingegrenzt werden (z.B. die Saisonfigur hat sich geändert)

Beispiel | Schätzung einer Einkommensfunktion

Beispiel II Schätzung einer Konsumfunktion

Heteroskedastie

Heteroskedastie bedeutet, dass die Varianz der Residuen in der Stichprobe nicht konstant ist.

Beispiele:

Bei Zeitreihendaten:

Ansteigen der Varianz über die Zeit, Anstieg der Varianz mit dem Einkommen.

Bei Querschnittsdaten:

Höhere absolute Varianz bei großen Einheiten (Große Unternehmen, hohes Einkommen), geringere relative Varianz (Veränderungsraten) bei großen Einheiten (Risikostreuung).

Heteroskedastie führt nicht zu verzerrter Schätzung der Koeffizienten, aber zu verzerrter Schätzung der Standardfehler (der Konfidenzintervalle).

Außerdem reduziert sie die Effizienz der Schätzung.

Test auf Heteroskedastie

Weit verbreitet und in EViews integriert ist der White-Test.

Testidee ist der Versuch der Erklärung der Streuungsbreite der Residuen durch andere Variablen, also z.B.:

Erkläre die Residuenquadrate ε_t^2 durch die Niveaus und die Quadrate der erklärenden Variablen.

Signifikanztest für Heteroskedastie:

F-Test (Test, ob R^2 signifikant größer als Null)

Teststatistik:

$$F_{k-1,T-k} = \frac{R^2}{1 - R^2} \cdot \frac{T - k}{k - 1}$$

T-k: Zahl der Freiheitsgrade

k-1: Zahl der Restriktionen, Zahl der geschätzten Koeffizienten – 1 (Konstante)

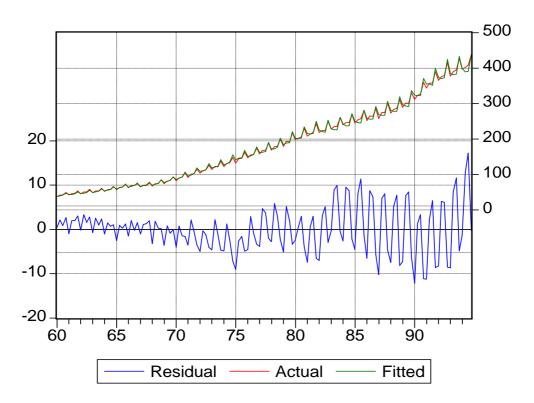
Bereinigung um Heteroskedastie

- 1. Teilen der gesamten Gleichung durch die Variable, die die Varianz beeinflusst (z.B. das Einkommen), Gewichtung
- 2. Bereinigung um Heteroskedastie mit Hilfe der geschätzten Werte der Test-Gleichung des White-Tests
- 3. Andere Spezifikation des theoretischen Modells, z.B. logarithmische Spezifikation

Beispiel

Schätzung einer Konsumfunktion in Abhängigkeit des verfügbaren Einkommens

LS // Dependent Variable is KONSUMW


Sample: 1960:1 1994:4

Included observations: 140 after adjusting endpoints

Variable	Coefficient	Std. ErrorT-	Statistic	Prob.
C YVW	0.407818 0.872722	0.866981 0.003517	0.470389 248.1528	0.6388
R-squared Adjusted R-squared S.E. of regression Log likelihood Durbin-Watson stat		S.D. depe	ic	

Tatsächliche, geschätzte Werte, Residuen

Test Equation:

LS // Dependent Variable is RESID^2

Sample: 1960:1 1994:4
Included observations: 140

=======================================			
Variable (Coefficient	Std. ErrorT-Statistic	Prob.
C YVW YVW^2	-7.743614 0.131753 0.000125	9.459041 -0.818647 0.092857 1.418875 0.000187 0.669733	0.4144 0.1582 0.5042
R-squared Adjusted R-squared S.E. of regression Log likelihood Durbin-Watson stat	0.347689 0.338166 33.97147 -690.7080 2.064741	Mean dependent var S.D. dependent var Sum squared resid F-statistic Prob(F-statistic)	

Schätzung in Logarithmen

LS // Dependent Variable is LOG(KONSUMW)

Sample: 1960:1 1994:4

Included observations: 140 after adjusting endpoints

Variable	Coefficient	Std. ErrorT-Statistic	Prob.
C LOG(YVW)	-0.078648 0.989736	0.017249 -4.559593 0.003328 297.3719	
R-squared Adjusted R-squared S.E. of regression Log likelihood Durbin-Watson stat	0.027431 305.8063	Mean dependent var S.D. dependent var Sum squared resid F-statistic Prob(F-statistic)	

Teilen durch das verfügbare Einkommen

LS // Dependent Variable is KONSUMW/YVW

Sample: 1960:1 1994:4

Included observations: 140 after adjusting endpoints

Variable	Coefficient	Std. ErrorT-Statistic	Prob.
C 1/YVW	0.865629 1.542208	0.003364 257.3279 0.360907 4.273141	
R-squared Adjusted R-squared S.E. of regression Log likelihood Durbin-Watson stat	0.023426 327.9001	Mean dependent var S.D. dependent var Sum squared resid F-statistic Prob(F-statistic)	
=======================================			=======

Autokorrelation

Autokorrelation bedeutet, dass die Residuen zum Zeitpunkt t korreliert sind mit den Residuen der Vorperioden.

Autokorrelation der Residuen führt nicht unbedingt (aber meistens) zu verzerrten Schätzungen der Koeffizienten, aber zu verzerrten Schätzungen der Standardabweichung.

Beispiele

Positive Autokorrelation 1. Ordnung

- Persistenz der Residuen, ein großes positives Residuum heute führt zu einem großen positiven Residuum in der nächsten Periode
- Autokorrelation der Residuen ist ein Hinweis auf fehlende Variablen (fast alle ökonomischen Variablen weisen positive Autokorrelation 1. Ordnung auf)
- Fehlende Variablen implizieren eine Fehlspezifikation des Modells und führen fast immer zu verzerrten Schätzungen der Parameter (siehe oben)
- Irgendwo muss die Autokorrelation ja herkommen
 - → Hinweis auf Fehlspezifikation

Positive Autokorrelation 4. Ordnung

Fehler bei der Berücksichtigung der Saisonstruktur in der Gleichung

Exkurs: Saisonbereinigung

der Daten	konstante Saisonfaktoren, additiv oder multiplikativ,	gleitende Durchschnitte
	in Eviews: seas x xb	
in der	Saisondummies, konstant,	AR(4) oder MA(4)
Schätzung	für sub-samples oder	Prozesse, die
	interagiert mit trend	mitgeschätzt werden

Häufig stehen neben Originaldaten alternativ saisonbereinigte Daten zur Verfügung (X11, Berliner Verfahren oder ein ähnliches Saisonbereinigungsverfahren)

Zeitreihenstruktur vieler Quartalsdaten

$$x_t - \rho_4 \cdot x_{t-4} = \rho_1 \cdot (x_{t-1} - \rho_4 \cdot x_{t-5}) + \varepsilon_t$$

Vorsicht: Instabilität, wenn die autoregressive Wurzel ≥ 1 ,

→ Schätzung in Differenzen, aber das ist ein anderes Modell

Test auf Autokorrelation

- 1. Erkläre die Residuen anhand der Residuen der Vorperioden, t-Test für die Koeffizienten, F-Test der Gleichung
- 2. Breusch/Godfrey-Test Erkläre die Residuen anhand der Residuen der Vorperioden und der erklärenden Variablen des theoretischen Modells, F-Test der Gleichung

Bereinigung um Autokorrelation

- a) 1. Differenzen der Variablen
 - 4. Differenzen der Variablen
 - Quasi-Differenzen der Variablen: $x_t \rho_i \cdot x_{t-i}$
 - \rightarrow in EViews Aufnahme von AR(1), AR(4) in die Schätzung Achtung: Eine Schätzung in Differenzen ist ein anderes Modell
- b) Schätzung eines erweiterten Modells:
 - Aufnahme fehlender Variablen,
 - Berücksichtigung einer verzögerten Anpassung im theoretischen Modell

Beispiel

Produktionsfunktion und technischer Fortschritt

(totale Faktorproduktivität oder Einsatz von Rohstoffen, Energieeinsatz als stark autokorrelierte Variable)

LS // Dependent Variable is LOG(YT)

Sample: 1960:1 1989:4

Included observations: 120

Variable	Coefficient	Std. ErrorT	======================================	Prob.
C	-4.289145	1.517816	-2.825866	0.0056
@SEAS(1)	-0.069824	0.005463	-12.78073	0.0000
@SEAS(2)	-0.034393	0.005543	-6.204790	0.0000
@SEAS(3)	0.019634	0.005877	3.340839	0.0011
T	0.012716	0.004160	3.056678	0.0028
T^2	-4.63E-05	1.31E-05	-3.540673	0.0006
LOG(K)	0.237311	0.227287	1.044103	0.2987
LOG(Q)	0.344839	0.055403	6.224201	0.0000
LOG(LT)	0.546957	0.163346	3.348464	0.0011
LOG(H)	0.691310	0.122896	5.625155	0.0000
=======================================	========		=======	
R-squared	0.995029	Mean dep	endent var	5.589478
Adjusted R-squared	0.994622	S.D. dep	endent var	0.259055
S.E. of regression	0.018997	Sum squa	red resid	0.039699
Log likelihood	310.5622	F-statis	tic	2446.441
Durbin-Watson stat	1.174896	Prob(F-s	tatistic)	0.000000

Zeitreihenanalyse der Residuen

LS // Dependent Variable is RES

Sample: 1961:3 1989:4

Included observations: 114 after adjusting endpoints

	:========		
Variable	Coefficient	Std. ErrorT-Statistic	Prob.
C RES(-1) RES(-2) RES(-3) RES(-4)	-0.000187 0.343691 -0.052885 0.062613 0.672380	0.001086 -0.172092 0.097442 3.527128 0.100400 -0.526742 0.072477 0.863901 0.069444 9.682353	0.8637 0.0006 0.5995 0.3896 0.0000
RES(-5) RES(-6)	-0.206988 0.012003	0.095720 -2.162420 0.093102 0.128925	0.0328
R-squared Adjusted R-squared S.E. of regression Log likelihood		1	
Durbin-Watson stat	1.973950	Prob(F-statistic) (0.000000

=======================================		===========	
Breusch-Godfrey Ser	rial Correlat	ion LM Test:	
=======================================		===========	
F-statistic	17.15475	Probability	0.000000
Obs*R-squared	68.83756	Probability	0.000000

Test Equation:
LS // Dependent Variable is RESID

Variable	Coefficient	Std. ErrorT-Statistic	Prob.
C @SEAS(1) @SEAS(2) @SEAS(3) T T^2 LOG(K)	-1.428387	1.249411 -1.143248	0.2556
	-0.002138	0.003776 -0.566282	0.5724
	-0.001382	0.004043 -0.341951	0.7331
	-0.000219	0.004469 -0.048988	0.9610
	-0.004758	0.003074 -1.547661	0.1248
	1.52E-05	9.68E-06 1.570078	0.1195
	0.256921	0.169386 1.516775	0.1324
LOG(Q) LOG(LT) LOG(H) RESID(-1) RESID(-2) RESID(-3) RESID(-4) RESID(-5) RESID(-6) RESID(-6) RESID(-7) RESID(-8)	0.084357	0.046904 1.798510	0.0751
	-0.194611	0.126037 -1.544072	0.1257
	-0.015287	0.109821 -0.139198	0.8896
	0.292982	0.105062 2.788646	0.0063
	-0.025329	0.107444 -0.235738	0.8141
	-0.025941	0.105906 -0.244939	0.8070
	0.673722	0.104016 6.477121	0.0000
	-0.183104	0.108944 -1.680707	0.0959
	0.041569	0.112417 0.369776	0.7123
	0.097294	0.108700 0.895063	0.3729
	0.062488	0.105344 0.593181	0.5544
R-squared Adjusted R-squared S.E. of regression Log likelihood Durbin-Watson stat	0.012882 361.7114	Mean dependent var S.D. dependent var Sum squared resid F-statistic Prob(F-statistic)	0.018265