ONLINE APPENDIX

to

The Impact of a Firm's Share of Exports on Revenue, Wages, and Measure of Workers Hired

Theory and Evidence

Gregor Hesse
Institute of Economics, Ulm University, Germany

This Appendix provides the basic derivations of the multi-country trade model of heterogeneous firms presented in Hesse (2014). The ensuing presentation borrows from Dixit \& Stiglitz (1977), Melitz (2003) as well as Helpman et al. (2010a) and its technical appendix, Helpman et al. (2010b).

1. A FIRM'S REVENUE AND EXPORT DECISION

a. Domestic Demand

The preferences of a representative consumer are given by a C.E.S. utility function over a continuum of varieties indexed by ω :

$$
U=\left[\int_{\omega \in \Omega} y(\omega)^{\rho} d \omega\right]^{\frac{1}{\rho}},
$$

where $y(\omega)$ indexes the amount of variety ω and Ω represents the set of available varieties within the sector. These varieties are substitutes, implying $0<\rho<1$ and an elasticity of substitution between any two varieties of

$$
\begin{equation*}
\sigma=\frac{1}{1-\rho}>1 \quad \Leftrightarrow \quad \rho=1-\frac{1}{\sigma}=\frac{\sigma-1}{\sigma} . \tag{A.1}
\end{equation*}
$$

The consumer's constrained maximization problem may be solved by the Lagrangian

$$
\mathcal{L}=U^{\rho}-\lambda\left(\int_{\omega \in \Omega} p(\omega) y(\omega) d \omega-I\right),
$$

where U^{ρ} is a strictly increasing transformation of $U, p(\omega)$ the price of variety ω, and I the consumer's income. The maximization problem yields the following first-order condition

$$
\frac{\partial \mathcal{L}}{\partial y(\omega)}=\rho y(\omega)^{\rho-1}-\lambda p(\omega)=0 .
$$

By dividing the first-order condition of one variety ω_{1} by the first-order condition of another variety ω_{2}, we obtain the relative demand

$$
\frac{y\left(\omega_{1}\right)}{y\left(\omega_{2}\right)}=\left(\frac{p\left(\omega_{1}\right)}{p\left(\omega_{2}\right)}\right)^{\frac{1}{\rho-1}}
$$

Multiplying both sides with $y\left(\omega_{2}\right)$ and using (A.1) yields

$$
y\left(\omega_{1}\right)=y\left(\omega_{2}\right)\left(\frac{p\left(\omega_{1}\right)}{p\left(\omega_{2}\right)}\right)^{-\sigma} .
$$

When multiplying both sides with $p\left(\omega_{1}\right)$ and taking the integral with respect to ω_{1}, we get

$$
\int_{\omega \in \Omega} p\left(\omega_{1}\right) y\left(\omega_{1}\right) d \omega_{1}=\int_{\omega \in \Omega} y\left(\omega_{2}\right) p\left(\omega_{1}\right)^{1-\sigma} p\left(\omega_{2}\right)^{\sigma} d \omega_{1}
$$

On the left-hand side we now have the consumer's total expenditure on all varieties, R, which is assumed to be equal to his income I, i.e.,

$$
R=I=y\left(\omega_{2}\right) p\left(\omega_{2}\right)^{\sigma} \int_{\omega \in \Omega} p\left(\omega_{1}\right)^{1-\sigma} d \omega_{1}
$$

Solving for $y\left(\omega_{2}\right)$ yields the Marshallian demand for ω_{2}

$$
y\left(\omega_{2}\right)=\frac{I p\left(\omega_{2}\right)^{-\sigma}}{\int_{\omega \in \Omega} p\left(\omega_{1}\right)^{1-\sigma} d \omega_{1}} .
$$

By defining an index of the overall price level

$$
P=\left[\int_{\omega \in \Omega} p(\omega)^{1-\sigma} d \omega\right]^{\frac{1}{1-\sigma}}
$$

Marshallian demand for a variety ω simplifies to

$$
y(\omega)=p(\omega)^{-\sigma} P^{\sigma-1} I=\left(\frac{p(\omega)}{P}\right)^{-\sigma} \frac{I}{P} .
$$

Domestic demand, denoted by $y_{d}(\omega)$, can accordingly be written as

$$
y_{d}(\omega)=p_{d}(\omega)^{-\sigma} P_{d}^{\sigma-1} I_{d}=\left(\frac{p_{d}(\omega)}{P_{d}}\right)^{-\sigma} \frac{I_{d}}{P_{d}},
$$

where $p_{d}(\omega)$ denotes the price of the good in the domestic market while P_{d} and I_{d} indicate the domestic aggregate price and domestic income, respectively.

b. Domestic Revenue

With a firm's domestic output being equal to domestic demand, domestic firm revenue can be written as

$$
r_{d}(\omega)=y_{d}(\omega) p_{d}(\omega)=I_{d}\left(\frac{p_{d}(\omega)}{P_{d}}\right)^{1-\sigma}
$$

Note that with $p_{d}(\omega)=y_{d}(\omega)^{\frac{1}{\sigma}} P_{d}^{\frac{\sigma-1}{\sigma}} I_{d}^{\frac{1}{\sigma}}$ and (A.1) domestic revenue can also be written as in HIR, i.e.,

$$
r_{d}(\omega)=y_{d}(\omega)^{1-\frac{1}{\sigma}} P_{d}^{\frac{\sigma-1}{\sigma}} I_{d}^{\frac{1}{\sigma}}=y_{d}(\omega)^{\rho} P_{d}^{\rho} I_{d}^{1-\rho}=y_{d}(\omega)^{\rho} A_{d},
$$

where A_{d} is called the domestic demand shifter, with $A_{d}=P_{d}^{\rho} I_{d}^{1-\rho}$. As with increasing productivity a firm's output and thereby its domestic revenue will increase continuously, we can write domestic revenue - and revenue in general - as

$$
r_{d}(\varphi)=y_{d}(\varphi)^{\rho} A_{d} .
$$

c. Revenue from Exporting

By assuming country specific iceberg trading costs, τ_{c}, such that $\tau_{c}>1$ units of a variety must be exported for a unit to arrive in country c, we can write the revenue from exporting to country c as

$$
r_{x, c}(\varphi)=\frac{y_{x, c}(\varphi)}{\tau_{c}} p_{x, c}(\varphi)=\left(\frac{y_{x, c}(\varphi)}{\tau_{c}}\right)^{\rho} P_{x, c}^{\rho} I_{x, c}^{1-\rho}=\left(\frac{y_{x, c}(\varphi)}{\tau_{c}}\right)^{\rho} A_{x, c},
$$

where $A_{x, c}=I_{x, c}^{1-\rho} P_{x, c}^{\rho}$ is the demand shifter of country c.
d. Υ and a Derivation of $y_{d}(\varphi)=y(\varphi) / \Upsilon$

Using the first-order conditions (5), we can write a firm's total output,

$$
y(\varphi)=y_{d}(\varphi)+\sum_{c=1}^{c^{\prime}} y_{x, c}(\varphi),
$$

as

$$
y(\varphi)=y_{d}(\varphi)+\sum_{c=1}^{c^{\prime}} \mathbb{I}_{c} \tau_{c}^{\frac{\rho}{\rho-1}} y_{d}(\varphi)\left(\frac{A_{x, c}}{A_{d}}\right)^{\frac{1}{1-\rho}}=y_{d}(\varphi)\left(1+\sum_{c=1}^{c^{\prime}} \mathbb{I}_{c} \tau_{c}^{\frac{\rho}{\rho-1}}\left(\frac{A_{x, c}}{A_{d}}\right)^{\frac{1}{1-\rho}}\right),
$$

where \mathbb{I}_{c} equals 1 if the firm exports to country c and 0 otherwise. By defining $\Upsilon \equiv 1+\sum_{c=1}^{c^{\prime}} \mathbb{I}_{c} \tau_{c}^{\frac{\rho}{\rho-1}}\left(\frac{A_{x, c}}{A_{d}}\right)^{\frac{1}{1-\rho}}$, we obtain

$$
y_{d}(\varphi)=y(\varphi) / \Upsilon .
$$

e. Total Revenue

A firm's total revenue is given by

$$
r(\varphi) \equiv r_{d}(\varphi)+\sum_{c=1}^{c^{\prime}} r_{x, c}(\varphi)=y_{d}(\varphi)^{\rho} A_{d}+\sum_{c=1}^{c^{\prime}} \tau_{c}^{-\rho} y_{x, c}(\varphi)^{\rho} A_{x, c} .
$$

Using again the first-order conditions (5), this can be written as

$$
\begin{aligned}
r(\varphi) & =y_{d}(\varphi)^{\rho} A_{d}+\sum_{c=1}^{c^{\prime}} \tau_{c}^{\frac{\rho}{\rho-1}} y_{d}(\varphi)^{\rho} A_{x, c}\left(\frac{A_{x, c}}{A_{d}}\right)^{\frac{\rho}{1-\rho}} \\
& =y_{d}(\varphi)^{\rho} A_{d}\left(1+\sum_{c=1}^{c^{\prime}} \mathbb{I}_{c} \tau_{c}^{\frac{\rho}{\rho-1}}\left(\frac{A_{x, c}}{A_{d}}\right)^{\frac{1}{1-\rho}}\right)=y_{d}(\varphi)^{\rho} A_{d} \Upsilon .
\end{aligned}
$$

With $y_{d}(\varphi)=y(\varphi) / \Upsilon$ we obtain

$$
\begin{equation*}
r(\varphi)=y(\varphi)^{\rho} A_{d} \Upsilon^{1-\rho} \tag{A.2}
\end{equation*}
$$

f. Revenue as a Function of a Firm's Productivity

Using the earlier definition of $r(\varphi)$ in (A.2), the production function (2), and the first-order conditions (8) and (9), we are now able to express revenue as

$$
\begin{equation*}
r(\varphi)=\left(\frac{\zeta_{d}}{\zeta_{d}-1} a_{\min , d}^{\gamma_{d}} \varphi\left(\frac{\rho \gamma}{(1+\rho \gamma) b}\right)^{\gamma}\left(\frac{\rho\left(1-\gamma \zeta_{d}\right)}{\varepsilon(1+\rho \gamma)}\right)^{\frac{1-\gamma \zeta_{d}}{\delta}}\right)^{\frac{\rho}{\Gamma}} A_{d}^{\frac{1}{\Gamma}} r^{\frac{1-\rho}{\Gamma}}, \tag{A.3}
\end{equation*}
$$

where $\Gamma \equiv 1-\rho \gamma-\rho\left(1-\gamma \zeta_{d}\right) / \delta$. In a next step, we compute the firm's profits by making once more use of the first-order conditions

$$
\pi(\varphi)=\frac{\Gamma}{1+\rho \gamma} r(\varphi)-f_{d}-\sum_{c=1}^{c^{\prime}} \mathbb{I}_{c} f_{x, c} .
$$

Furthermore, we know that the firm with the lowest productivity, φ_{d}, makes zero profit and is not exporting, hence no productivity gains from exporting are possible, i.e., $\varphi_{d} \equiv \varphi_{d}^{\prime}$. It follows

$$
\begin{equation*}
\frac{\Gamma}{1+\rho \gamma} r\left(\varphi_{d}\right)=f_{d} \quad \Rightarrow \quad r\left(\varphi_{d}\right) \equiv r_{d}^{\prime}=\frac{1+\rho \gamma}{\Gamma} f_{d} \tag{A.4}
\end{equation*}
$$

In the following, we use the expression for $r(\varphi)$ from (A.3) and determine the relative revenue of a firm in comparison to the firm with the lowest productivity. We obtain

$$
\begin{equation*}
\frac{r(\varphi)}{r_{d}^{\prime}}=\Upsilon^{\frac{1-\rho}{\Gamma}}\left(\frac{\varphi}{\varphi_{d}}\right)^{\frac{\rho}{\Gamma}} \Rightarrow r(\varphi)=r_{d}^{\prime}\left(\frac{\varphi}{\varphi_{d}}\right)^{\frac{\rho}{\Gamma}} \Upsilon^{\frac{1-\rho}{\Gamma}} \tag{A.5}
\end{equation*}
$$

Since we can decompose a firm's productivity into its initial productivity, φ^{\prime}, and the possible productivity gain from exporting, $e^{\mathbb{I}(\varphi)}$, we can write revenue as

$$
r\left(\varphi^{\prime}\right)=r_{d}^{\prime}\left(\frac{\varphi^{\prime}}{\varphi_{d}}\right)^{\frac{\rho}{\Gamma}} \Upsilon^{\frac{1-\rho}{\Gamma}} e^{\frac{\frac{\partial u l\left(\varphi^{\prime}\right)}{\Gamma}}{T}} .
$$

2. A FIRM'S AVERAGE WAGE

By the same token, we are able to compute $a_{\varepsilon}(\varphi)$. We employ the first-order condition (9) and get

$$
\begin{equation*}
\frac{a_{\varepsilon}(\varphi)^{\delta}}{a_{\varepsilon}\left(\varphi_{d}\right)^{\delta}}=\Upsilon^{\frac{1-\rho}{T}}\left(\frac{\varphi}{\varphi_{d}}\right)^{\frac{\rho}{T}} \Rightarrow \quad a_{\varepsilon}(\varphi)=a_{\varepsilon}\left(\varphi_{d}\right)\left(\frac{\varphi}{\varphi_{d}}\right)^{\frac{\rho}{\tau T}} \Upsilon^{\frac{1-\rho}{\delta T}} . \tag{A.6}
\end{equation*}
$$

Using (A.4) together with (9), we can compute

$$
a_{\varepsilon}\left(\varphi_{d}\right)=\left(\frac{\rho(1-\gamma k)}{(1+\rho \gamma) \varepsilon} \frac{1+\rho \gamma}{\Gamma} f_{d}\right)^{\frac{1}{\delta}}=\left(\frac{\rho\left(1-\gamma \zeta_{d}\right)}{\varepsilon \Gamma} f_{d}\right)^{\frac{1}{\delta}}
$$

With the wage condition from (10), the lowest wage paid by a domestic firm is then

$$
w\left(\varphi_{d}\right) \equiv w_{d}^{\prime}=b\left(\frac{a_{\varepsilon}\left(\varphi_{d}\right)}{a_{\min }}\right)^{\zeta_{d}}=\left(\frac{\rho\left(1-\gamma \zeta_{d}\right)}{\varepsilon \Gamma a_{\min }^{\delta}} f_{d}\right)^{\frac{\zeta_{d}}{\delta}}
$$

This yields a wage relation that is solely dependent on $\varphi, \Upsilon(\varphi), \varphi_{d}$, and parameters, namely

$$
\frac{w(\varphi)}{w_{d}^{\prime}}=\left(\frac{a_{\varepsilon}(\varphi)}{a_{\varepsilon}\left(\varphi_{d}\right)}\right)^{\zeta_{d}}=\left(\frac{\varphi}{\varphi_{d}}\right)^{\frac{\rho \zeta_{d}}{\delta T}} \Upsilon^{\frac{\zeta_{d}(1-\rho)}{\delta \tau}} \Rightarrow w(\varphi)=w_{d}^{\prime}\left(\frac{\varphi}{\varphi_{d}}\right)^{\frac{\rho \zeta_{d}}{\delta T}} \Upsilon^{\frac{\zeta_{d}(1-\rho)}{\delta \tau}} .
$$

As can be seen from this last equation, wages increase with firm productivity and are always higher for exporting firms than for non-exporting firms. Ultimately, we decompose productivity into its components and obtain

$$
w\left(\varphi^{\prime}\right)=w_{d}^{\prime}\left(\frac{\varphi^{\prime}}{\varphi_{d}}\right)^{\frac{\rho \zeta_{d}}{\delta \tau}} \Upsilon^{\frac{\xi_{d}(1-\rho)}{\delta \tau}} e^{\frac{\rho_{d} d\left(\varphi^{\prime}\right)}{\delta \tau}}
$$

3. A FIRM'S MEASURE OF WORKERS HIRED

In a similar manner, we can derive the lowest measure of workers hired

$$
h\left(\varphi_{d}\right) \equiv h_{d}^{\prime}=m\left(\varphi_{d}\right)\left(\frac{a_{\mathrm{min}, d}}{a_{\varepsilon}\left(\varphi_{d}\right)}\right)^{\zeta_{d}}=\frac{\rho \gamma}{1+\rho \gamma} \frac{r_{d}^{\prime}}{b}\left(\frac{a_{\mathrm{min}, d}}{a_{\varepsilon}\left(\varphi_{d}\right)}\right)^{\zeta_{d}} .
$$

Using (A.5) and (A.6), the relation to $h(\varphi)$ is then given by

$$
\begin{aligned}
\frac{h(\varphi)}{h_{d}^{\prime}}=\frac{r(\varphi)}{r_{d}^{\prime}}\left(\frac{a_{\varepsilon}\left(\varphi_{d}\right)}{a_{\varepsilon}(\varphi)}\right)^{\zeta_{d}} & =\Upsilon^{\frac{1-\rho}{\Gamma}}\left(\frac{\varphi}{\varphi_{d}}\right)^{\frac{\rho}{\Gamma}} \Upsilon^{\frac{\zeta_{d}(\rho-1)}{\sigma \tau}}\left(\frac{\varphi}{\varphi_{d}}\right)^{\frac{-\zeta_{d} \rho}{\delta \Gamma}} \\
& =\Upsilon^{\frac{(1-\rho)\left(1-\zeta_{d} / \rho\right)}{\Gamma}}\left(\frac{\varphi}{\varphi_{d}}\right)^{\rho\left(1-\frac{\zeta_{d}}{\delta}\right)}
\end{aligned}
$$

which ultimately leads with (1) to

$$
h\left(\varphi^{\prime}\right)=h_{d}^{\prime}\left(\frac{\varphi^{\prime}}{\varphi_{d}}\right)^{\rho\left(1-\frac{\zeta_{d}}{\delta}\right)} \Upsilon^{\frac{(1-\rho)\left(1-\zeta_{d} / \delta\right)}{\Gamma}} e^{\rho\left(1-\frac{\zeta_{d}}{\delta}\right) \pi\left(\varphi^{\prime}\right)} .
$$

REFERENCES

Dixit, A. K. \& Stiglitz, J. E. (1977), 'Monopolistic Competition and Optimum Product Diversity', American Economic Review 67(3), 297-308.
Helpman, E., Itskhoki, O. \& Redding, S. (2010a), 'Inequality and Unemployment in a Global Economy', Econometrica 78(4), 1239-1283.
Helpman, E., Itskhoki, O. \& Redding, S. (2010b), 'Supplement to 'Inequality and Unemployment in a Global Economy", Econometrica 78(4). Available online at http://econometricsociety.org/ecta/ Supmat/8640_extensions.pdf.
Hesse, G. (2014), 'The Impact of a Firm's Share of Exports on Revenue, Wages, and Measure of Workers Hired — Theory and Evidence'. Available online at http://uni-ulm.de/fileadmin/website_ uni_ulm/mawi.inst.160/pdf_dokumente/hesse_shareofexports.pdf.
Melitz, M. J. (2003), 'The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity', Econometrica 71(6), 1695-1725.

