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Abstract

This paper studies discounted stochastic games with perfect or imper-
fect public monitoring and the opportunity to conduct voluntary monetary
transfers. We show that for all discount factors every public perfect equilib-
rium payoff can be implemented with a simple class of equilibria that have a
stationary structure on the equilibrium path and optimal penal codes with
a stick and carrot structure. We develop algorithms that exactly compute
or approximate the set of equilibrium payoffs and find simple equilibria that
implement these payoffs.
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1 Introduction

Discounted stochastic games are a natural generalization of infinitely repeated
games that provide a very flexible framework to study relationships in a wide
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future payoffs with a common discount factor. Payoffs and available actions in a
period depend on a state that can change between periods in a deterministic or
stochastic manner. The probability distribution of the next period’s state only
depends on the state and chosen actions in the current period. For example,
in a long-term principal-agent relationship, a state may describe the amount of
relationship specific capital or the current outside options of each party. In a
dynamic oligopoly model, a state may describe the number of active firms, the
production capacity of each firm, or demand and cost shocks that can be persistent
over time.
In many relationships of economic interest, parties cannot only perform actions
but also have the option to transfer money to each other or to a third party.
Repeated games with monetary transfers and risk-neutral players have been widely
studied in the literature. Examples include studies of employment relations by
Levin (2002, 2003) and Malcomson and MacLeod (1989), partnerships and team
production by Doornik (2006) and Rayo (2007), prisoner dilemma games by Fong
and Surti (2009), international trade agreements by Klimenko, Ramey and Watson
(2008) and cartels by Harrington and Skrzypacz (2007, 2011).1 Levin (2003) shows
for repeated principal agent games with transfers that one can restrict attention
to a simple class of stationary equilibria in order to implement every public perfect
equilibrium payoff. Goldlücke and Kranz (2012) derive a similar characterization
for general repeated games with transfers.
This paper extends these results to stochastic games with voluntary transfers
and imperfect monitoring of actions. For any given discount factor δ ∈ [0, 1),
all public perfect equilibrium (PPE) payoffs can be implemented with a simple
class of equilibria. Based on that result, algorithms are developed that allow to
approximate or to exactly compute the set of PPE payoffs.
A simple equilibrium is described by an equilibrium phase and for each player a
punishment phase. In the equilibrium phase the chosen action profile only depends
on the current state, like in a Markov Perfect equilibrium. Voluntary transfers
after the new state has been realized are used to smooth incentive constraints
across players. Play moves to a player’s punishment phase whenever that player
refuses to make a required transfer. Punishments have a simple stick-and-carrot
structure: one punishment action profile per player and state is defined. After
the punished profile has been played and subsequent transfers are conducted,
play moves back to the equilibrium phase. We show that for every discount
factor there is an optimal simple equilibrium that implements in every state the
highest joint continuation payoffs (i.e. the sum of payoffs across all players) in the
equilibrium phase and in the punishment phases the lowest continuation payoff for
the punished player that can be achieved by any simple equilibrium. By varying
up-front payments in the very first period, one can implement every PPE payoff
with such an optimal simple equilibrium.

1Miller and Watson (2011), Gjertsen et. al (2010), Fong and Surti (2009), Kranz and Ohlen-
dorf (2009) and Baliga and Evans (2000) study renegotiation-proof equilibria in repeated games
with transfers.
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Based on that result, we develop algorithms for games with finite action spaces
that allow to approximate or to exactly compute the set of pure strategy PPE
payoffs and yield (optimal) simple equilibria to implement any payoff. To compute
inner and outer approximations of the PPE payoff set, one can use decomposition
methods, in which attention can be restricted to state-wise maximal joint contin-
uation payoffs and minimal continuation payoffs for each player. Sufficiently fine
approximations allow to reduce for each state the set of action profiles that can
possibly be part of an optimal simple equilibrium. If these sets can be sufficiently
reduced, a brute force method that solves a linear optimization for every combi-
nation of remaining action profiles allows to find an optimal simple equilibrium
and to exactly compute the set of PPE payoffs.
If actions can be perfectly monitored, the characterization of optimal simple equi-
libria substantially simplifies. Decomposition steps just require to evaluate a
simple formula for each state and action profile, while under imperfect monitor-
ing a linear optimization problem has to be solved. Furthermore, we develop an
alternative policy elimination algorithm that exactly computes the set of pure
strategy subgame perfect equilibrium payoffs by repeatedly solving a single agent
Markov decision problem for the equilibrium phase and a nested variation of a
Markov decision problem for the punishment phases.
In general, the flexibility of discounted stochastic games comes at the price that
solving them entails considerably more difficulties than solving infinitely repeated
games. Finding just a single equilibrium of a stochastic game can be challenging,
while an infinite repetition of the stage game Nash equilibrium is always an equi-
librium in a repeated game. Complexities increase when one wants to determine
the set of all equilibrium payoffs. For stochastic games without transfers and in
the limit case as the discount factor converges towards 1, folk theorems have been
established by Dutta (1995) for perfect monitoring and Fudenberg and Yamamoto
(2010) and Hörner et. al. (2011) for imperfect monitoring of actions in irreducible
stochastic games. For fixed discount factors Judd, Yeltekin and Conklin (2003)
and Abreu and Sannikov (2011) have developed numerical methods, based on the
seminal recursive techniques by Abreu, Pearce and Stacchetti (1990, henceforth
APS), to approximate the equilibrium payoff sets for repeated games with public
correlation and perfect monitoring. In principle, these methods can be extended
to general stochastic games (see, e.g. Sleet and Yeltekin, 2003), but it is still an
open question how tractable such extensions will be in terms of computational
requirements, delivering guidance for closed-form solutions, and the ability to
deal with imperfect monitoring. This paper shows that in stochastic games with
monetary transfers, one can very effectively handle these issues.
Applied literature that studies stochastic games typically restricts attention to
Markov perfect equilibria (MPE) in which actions only condition on the current
state.2 Voluntary transfers that do not change the state would then never be

2Examples include studies of learning-by-doing by Benkard (2004) and Besanko et. al.
(2010), advertisement dynamics by Doraszelski and Markovich (2007), consumer learning by
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conducted. Focusing on MPE has advantages, e.g. strategies have a simple struc-
ture and there exist quick algorithms to find a MPE. However, there are also
drawbacks.
One issue is that the set of MPE payoffs can be very sensitive to the definition of
the state space. For example, a repeated game has by definition just one state,
so only an infinite repetition of the same stage game Nash equilibrium can be
a MPE. Yet, if one specifies a state to be described by the action profile of the
previous period (which may have some small influence on the current period’s
payoff function), also collusive grim-trigger strategies can be implemented as a
MPE.
Another issue is that there are no effective algorithms to compute all MPE payoffs
of stochastic game, even if one just considers pure strategies.3 Existing algorithms,
e.g. Pakes & McGuire (1994, 2001), are very effective in finding one MPE, but
except for special games there is no guarantee that it is unique. Besanko et. al.
(2010) illustrate the multiplicity problem and show how the homotopy method
can be used to find multiple MPE. Still there is no guarantee, however, that all
(pure) MPE are found.
For those reasons, effective methods to compute the set of all PPE payoffs and
an implementation with a simple class of strategy profiles generally seem quite
useful in order to complement the analysis of MPE.
While monetary transfers may not be feasible in all social interactions, the pos-
sibility of transfers is plausible in many problems of economic interest. Even for
illegal collusion, transfer schemes are in line with the evidence from several ac-
tual cartel agreements. For example, the citric acid and lysine cartels required
members that exceeded their sales quota in some period to purchase the prod-
uct from their competitors in the next period; transfers were implemented via
sales between firms. Harrington and Skrzypacz (2011) describe transfer schemes
used by cartels in more detail and provide further examples.4 Risk-neutrality is
also often a sensible approximation, in particular if players are countries or firms
or if payments of the stochastic games are small in comparison to expected life-
time income and individuals have access to well functioning financial markets.
Even in contexts in which transfers or risk-neutrality may be considered strong

Ching (2010), capacity expansion by Besanko and Doraszelski (2004), or network externalities
by Markovich and Moenius (2009).

3For a game with finite action spaces, one could always use a brute-force method that checks
for every pure strategy Markov strategy profile whether it constitutes a MPE. Yet, the number
of Markov strategy profiles increases very fast: is given by

∏
x∈X |A(x)|, where |A(x)| is the

number of strategy profiles in state x. This renders a brute force method practically infeasible
except for very small stochastic games.

4Further examples of cartels with transfers schemes include the choline chloride, organic per-
oxides, sodium gluconate, sorbates, vitamins, and zinc phosphate cartels. Interesting detailed
descriptions can also be obtained from older cases, in which cartel members more openly doc-
umented their collusive agreements. An example is the Supreme Court decision Addyston Pipe
& Steel Co. v. U. S., 175 U.S. 211 (1899). It describes the details of a bid-rigging cartel in
which a firm that won a contract had to make payment to the other cartel members.
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assumptions, our results can be useful since the set of implementable PPE payoffs
with transfers provides an upper bound on payoffs that can be implemented by
equilibria without transfers or under risk-aversion.
The structure of this paper is as follows. Section 2 describes the model and
defines simple strategy profiles. Section 3 first provides an intuitive overview of
how transfers facilitate the analysis. It is then shown that every PPE can be
implemented with simple equilibria. Section 4 describes algorithms that allow to
approximate or exactly compute the set of pure strategy PPE payoffs. Section 5
shows how the results simplify for games with perfect monitoring and develops
an alternative algorithm that exploits these simplifications. Section 6 illustrates
with examples how numerical or analytical solutions can be obtained with the
developed methods. All proofs are relegated to an Appendix.

2 Model and Simple Strategy Profiles

2.1 Model

We consider an n player stochastic game of the following form. There are infinitely
many periods and future payoffs are discounted with a common discount factor
δ ∈ [0, 1). There is a finite set of states X and x0 ∈ X denotes the initial state.
A period is comprised of two stages: a transfer stage and an action stage. There
is no discounting between stages.
In the transfer stage, every player simultaneously chooses a non-negative vector of
transfers to all other players.5 To have a compact strategy space, we assume that
a player’s transfers cannot exceed some finite upper bound. Yet, we assume that
this upper bound is large enough to be never binding given the constraint that
transfers must be voluntary. Players also have the option to transfer money to a
non-involved third party, which has the same effect as burning money.6 Transfers
are perfectly monitored.
In the action stage, players simultaneously choose actions. In state x ∈ X, player
i can choose a pure action ai from a finite or compact action set Ai(x). The set
of pure action profiles in state x is denoted by A(x) = A1(x)× ...× An(x).
After actions have been conducted, a signal y from a finite signal space Y and
a new state x′ ∈ X are drawn by nature and commonly observed by all players.

5To have a compact strategy space, we assume that a player’s transfers cannot exceed an
upper bound of 1

1−δ
∑n
i=1
[
maxx∈X,a∈A(x) πi(a, x)−minx∈X,a∈A(x) πi(a, x)

]
where πi(a, x) are

expected stage game payoffs defined below. That bound is large enough to be never binding
given the incentive constraints of voluntary transfers.

6An extension to the case without money burning is possible if one allows for a public
correlation device. Instead of burning money, players will coordinate with positive probability a
continuation equilibrium that minimizes the sum of continuation payoffs. In a similar fashion as
in Goldlücke and Kranz’s (2012) analysis for repeated games, one can provide a characterization
with an extended class of simple equilibria.
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We denote by φ(y, x′|x, a) the probability that signal y and state x′ are drawn;
it depends only on the current state x and the chosen action profile a. Player i’s
stage game payoff is denoted by π̂i(ai, y, x) and depends on the signal y, player i’s
action ai and the initial state x. We denote by πi(a, x) player i’s expected stage
game payoff in state x if action profile a is played. If the action space in state x is
compact then stage game payoffs and the probability distribution of signals and
new states shall be continuous in the action profile a.
We assume that players are risk-neutral and that payoffs are additively separable
in the stage game payoff and money. This means that the expected payoff of
player i in a period with state x, in which she makes a net transfer of pi and
action profile a has been played, is given by πi(a, x)− pi.
When referring to (continuation) payoffs of the stochastic game, we mean expected
average discounted continuation payoffs, i.e. the expected sum of continuation
payoffs multiplied by (1−δ). A payoff function u : X → Rn maps every state into
a vector of payoffs for each player. We generally use upper case letters to denote
joint payoffs of all players, e.g.

U =
n∑
i=1

ui.

We study the payoff sets of pure strategy equilibria and for finite action spaces
we also consider the case that players can mix over actions. If equilibria with
mixed actions are considered, A(x) shall denote the set of mixed action profiles
at the action stage in state x otherwise A(x) = A(x) shall denote the set of pure
action profiles. For a mixed action profile α ∈ A(x), we denote by πi(α, x) player
i’s expected stage game payoff taking expectations over mixing probabilities and
signal realizations.
A public history of the stochastic game describes the sequence of all states, public
signals and monetary transfers that have occurred before a given point in time.
A public strategy σi of player i in the stochastic game maps every public history
that ends before the action stage into a possibly mixed action αi ∈ Ai(x), and
every public history that ends before a payment stage into a vector of monetary
transfers. A public perfect equilibrium is a profile of public strategies that con-
stitutes mutual best replies after every history. We restrict attention to public
perfect equilibria.
A vector α that assigns an action profile α(x) ∈ A(x) to every state x ∈ X is
called a policy and A = ×x∈XA(x) denotes the set of all policies. For briefness
sake, we abbreviate an action profile α(x) by the policy α if it is clear which
action profile is selected, e.g. π(α, x) ≡ π(α(x), x).

2.2 Simple strategy profiles

We now describe the structure of simple strategy profiles. In a simple strategy
profile, it will never be the case that a player at the same time makes and receives
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transfers. We therefore describe transfers by the net payments that players make.7

A simple strategy profile is characterized by n + 2 phases. Play starts in the
up-front transfer phase, in which players are required to make up-front transfers
described by net payments p0. Afterwards, play can be in one of n + 1 phases,
which we index by k ∈ K = {e, 1, 2, ..., n}. We call the phase k = e the equilibrium
phase and k = i ∈ {1, ..., n} the punishment phase of player i.
A simple strategy profile specifies for each phase k ∈ K and state x an action
profile αk(x) ∈ A(x). We refer to αe as the equilibrium phase policy and to αi as
the punishment policy for player i. From period 2 onwards, required net transfers
are described by net payments pk(y, x′, x) that depend on the current phase k,
the realized signal y, the realized state x′ and the previous state x. The vectors
of all policies (αk)k∈K and all payment functions (pk(.))k∈K are called action plan
and payment plan, respectively.
The transitions between phases are simple. If no player unilaterally deviates from
a required transfer, play transits to the equilibrium phase: k = e. If player i
unilaterally deviates from a required transfer, play transits to the punishment
phase of player i, i.e. k = i. In all other situations the phase does not change.
A simple equilibrium is a simple strategy profile that constitutes a public perfect
equilibrium of the stochastic game.

3 Characterization with simple equilibria

This section first provides some intuition and then derives the main result that
all PPE payoffs can be implemented with simple equilibria. It is helpful to think
of three ways in which monetary transfers simplify the analysis:

1. Upfront transfers in the very first period allow flexible distribution of the
joint equilibrium payoffs.

2. Transfers in later periods allow to balance incentive constraints between
players.

7Any vector of net payments p can be mapped into a matrix of gross transfers p̃ij from i to
j as follows. Denote by IP = {i|pi > 0} the set of net payers and by IR = {i|pi ≤ 0} ∪ {0} the
set of net receivers including the sink for burned money indexed by 0. For any receiver j ∈ IR,
we denote by

sj = |pj |∑
j∈IR

|pj |

the share she receives from the total amount that is transferred or burned and assume that each
net payer distributes her gross transfers according to these proportions

p̃ij =
{

sjpi if i ∈ IP and j ∈ IR
0 otherwise.

Note that the sum of net payments is always non-negative, since players can only perform
non-negative gross transfers.
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3. The payment of fines allows to settle punishments within one period.

3.1 Distributing with upfront transfers

Consider Figure 1. The shaded area shall illustrate for a two player stochastic
game with fixed discount factor all payoffs of PPE that do not use upfront trans-
fers. The set is assumed to be compact. The point ū is the equilibrium payoff
with the highest sum of payoffs for both players.
If one could impose enforceable upfront transfers without any liquidity constraints,
the set of Pareto-optimal payoffs would be simply given by a line with slope −1
through this point. If upfront transfers must be incentive compatible, their max-
imum size is bounded by the harshest punishment that can be credibly imposed
on a player that deviates from a required transfers. The harshest credible pun-
ishment for player i = 1, 2 is given by the continuation equilibrium after the first
transfer stage that has the lowest payoff for player i. The idea to punish any
deviation with the worst continuation equilibrium for the deviator is the crux of
Abreu’s (1988) optimal penal codes.
Points w1 and w2 in Figure 1 illustrate these worst equilibria for each player and
v̄ is the point where each coordinate i = 1, 2 describes the worst payoff of player i.
The Pareto frontier of subgame perfect equilibrium payoffs with voluntary upfront
transfers is given by the shown line segment through point ū with slope −1 that is
bounded by the lowest equilibrium payoff v̄1 of player 1 at the left and the lowest
equilibrium payoff v̄2 of player 2 at the bottom. If we allow for money burning
in upfront transfers, any point in the depicted triangle can be implemented in an
incentive compatible way. That intuition naturally extends to n player games.

u2

u1

ū

w1

w2v̄

Figure 1: Distributing with upfront transfers
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Proposition 1. Assume that across all PPE that do not use transfers in the first
period there exists a highest joint payoff Ū and for every player i = 1, ..., n a
lowest payoff v̄i . Then the set of PPE payoffs with transfers in the first period is
the simplex

{u ∈ Rn|
n∑
i=1

ui ≤ Ū and ui ≥ v̄i}.

That highest joint payoffs Ū and lowest payoffs v̄i always exist is formally shown
in Theorem 1 and not very surprising given the compactness result for the payoff
sets of repeated games by APS. The set of PPE is thus defined by just n+ 1 real
numbers: the highest joint PPE payoff Ū and the lowest PPE payoffs v̄i for every
player i = 1, ..., n.

3.2 Balancing incentive constraints

We now illustrate how transfers in later periods can be used to balance incentive
constraints between players. Consider an infinitely repeated asymmetric prisoner’s
dilemma game described by the following payoff matrix:

C D
C 4,2 -3,6
D 5,-1 0,1

The goal shall be to implement mutual cooperation (C,C) in every period on
the equilibrium path. Since the stage game Nash equilibrium yields the min-max
payoff for both players, grim trigger punishments constitute optimal penal codes:
any deviation is punished by playing forever the stage game Nash equilibrium
(D,D).
No transfers First consider the case that no transfers are conducted. Given grim-
trigger punishments, player 1 and 2 have no incentive to deviate from cooperation
on the equilibrium path whenever the following conditions are satisfied:

Player 1: 4 ≥ (1− δ)5 ⇔ δ ≥ 0.2,
Player 2: 2 ≥ (1− δ)6 +δ ⇔ δ ≥ 0.8.

The condition is tighter for player 2 than for player 1 for three reasons:

i) player 2 gets a lower payoff on the equilibrium path (2 vs 4),

ii) player 2 gains more in the period of defection (6 vs 5),

iii) player 2 is better off in each period of the punishment (1 vs 0).
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Given such asymmetries, it is not necessarily optimal to repeat the same action
profile in every period. For example, if the discount factor is δ = 0.7, it is not
possible to implement mutual cooperation in every period, but one can show that
there is a SPE with non-stationary equilibrium path in which in every fourth
period (C,D) is played instead of (C,C). Such a strategy profile relaxes the tight
incentive constraint of player 2, by giving her a higher equilibrium path payoff.
The incentive constraint for player 1 is tightened, but there is still sufficiently
much slack left.
Note that even if players have access to a public correlation device, stationary
equilibrium paths will not always be optimal.8

With transfers Assume now that (C,C) is played in every period and from period
2 onwards player 1 transfers an amount of 1.5

δ
to player 2 in each period on the

equilibrium path. Using the one shot deviation property, it suffices to check that
no player has an incentive for a one shot deviation from the actions or the transfers.
Player 1 has no incentive to deviate from the transfers on the equilibrium path if
and only if9

(1− δ) ∗ 1.5 ≤ δ ∗ (4− 1.5)⇔ δ ≥ 0.375
and there is no profitable one shot deviation from the cooperative actions if and
only if

Player 1: 4− 1.5 ≥ (1− δ)5 ⇔ δ ≥ 0.5,
Player 2: 2 + 1.5 ≥ (1− δ)6 +δ ⇔ δ ≥ 0.5.

The incentive constraints between the players are now perfectly balanced. Indeed,
if we sum both players’ incentive constraints

Joint: 4 + 2 ≥ (1− δ)(5 + 6) + δ(0 + 1)⇔ δ ≥ 0.5.
8For an example, consider the following stage game:

A B
A 0,0 -1,3
B 3,-1 0,0

Using a public correlation device to mix with equal probability between the profiles (A,B)
and (B,A) on the equilibrium path and punishing deviations with infinite repetition of the stage
game Nash equilibrium (B,B) constitutes a SPE whenever δ ≥ 1

2 . One can easily show that no
other action profile with a stationary equilibrium path can sustain positive expected payoffs for
any discount factor below 1

2 . Yet, a non-stationary equilibrium path {(A,B), (B,A), (A,B), ...}
that deterministically alternates between (A,B) and (B,A) can be implemented for every δ ≥ 1

3 .
The reason is that when the profile (A,B) shall be played, only player 1 has an incentive to
deviate. It is thus beneficial to give her a higher continuation payoff than player 2 and the
reverse holds true if (B,A) shall be played. Unlike the stationary path, the non-stationary path
has the feature that the player who currently has higher incentives to deviate gets a higher
continuation payoff. Applying the results below, one can moreover establish that for δ < 1

3 , one
cannot implement any joint payoff above 0, even if one would allow for monetary transfers.

9To derive the condition, it is useful to think of transfers taking place at the end of the
current period but discount them by δ. Indeed, one could introduce an additional transfer stage
at the end of period (assuming the new state would be already known in that stage) and show
that the set of PPE payoffs would not change.
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we find the same critical discount factor as for the individual constraints. Intu-
itively, our formal results below show that in general stochastic games incentive
constraints can always be perfectly balanced. This result is crucial for being
able to restrict attention to simple equilibria and also facilitates computation of
optimal equilibria within the class of simple equilibria.

3.3 Intuition for fines and stick-and-carrot punishments

If transfers are not possible, optimally deterring a player from deviations can
become a very complicated problem. Basically, if players observe a deviation or
an imperfect signal that is very likely under a profitable deviation, they have to
coordinate on future actions that yield a sufficiently low payoff for the deviator.
The punishments must themselves be stable against deviations and have to take
into account how states can change on the desired path of play or after any
deviation. Under imperfect monitoring, suspicious signals can also arise on the
equilibrium path, which means “punishments” in Pareto optimal equilibria must
entail as low efficiency losses as possible.
The benefits of transfers for simplifying optimal punishments are easiest seen for
the case of pure strategy equilibria under perfect monitoring. Instead of conduct-
ing harmful punishment actions, one can always give the deviator the possibility
to pay a fine that is as costly as if the punishment actions were conducted. If
the fine is paid, one can move back to efficient equilibrium path. Punishment
actions must only be conducted if a deviator fails to pay a fine. After one period
of punishment actions, one can again give the punished player the chance to move
back to efficient equilibrium path play if she pays a fine that will be as costly
as the remaining punishment. This is the key intuition for why optimal penal
codes can be characterized with stick-and-carrot type punishments with a single
punishment action profile per player and state.10

If monitoring is imperfect or mixed strategies are used, deviations from prescribed
actions may not be perfectly detected so that there is no clear notion of a fine.
Still one can impose higher payments under signals that are relatively more likely
under profitable deviations than on the equilibrium path.
There can be signals, like a project-failure in a team production setting, that in-
dicate that some player has deviated but are not informative about which player
deviated. In such cases it can be necessary to punish with a jointly inefficient
continuation equilibrium. In our framework, such joint inefficiencies can be im-
plemented via money burning.11

10That transfers can balance incentive constraints among several punishing players is also
relevant for the result that stick-and-carrot punishments always suffice.

11Alternatively, if players would have a public correlation device, one could coordinate with
some probability to a continuation equilibrium with low joint continuation payoffs in a similar
fashion as Goldlücke and Kranz (2012) describe for repeated games.
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3.4 Complications compared to repeated games with trans-
fers

The overview above correctly suggests that many insights from repeated games
with transfers carry over to the analysis of stochastic games with transfers. Nev-
ertheless, substantial complications are introduced by allowing for multiple states.
In a repeated game, the current action profile does not affect the set of contin-
uation payoffs. This means that the harshest punishment that can in principle
be imposed on a deviating player is independent of the form of a deviation. The
analysis of Goldlücke and Kranz (2012) heavily exploits this fact. It allows to
compress all the relevant information of the continuation payoff set, which is cru-
cial to determine whether and how effective an action profile can be used, into
a single number that is given by the difference of joint equilibrium phase payoffs
and the sum of all players’ punishment payoffs multiplied by a factor that adjusts
for discounting. One can formulate the relevant incentive constraints for simple
equilibria by separating a joint measure of all player’s current incentives to de-
viate from that number characterizing the continuation payoff set. This result is
extremely useful for the formal characterization and allows to develop very fast
algorithms to compute the PPE or SPE payoff set.
In stochastic games, different deviations can cause different state transitions, i.e.
the scope for punishment is a function of the exact nature of the deviation. While
obviously we have to distinguish the continuation payoff sets for the different
states, a resulting additional complication is that the relevant information con-
tained in each continuation payoff set can no more be compressed into a single
number. We have to keep track separately of each player’s punishment payoffs
and it is not possible anymore to separate incentive constraints into a measure of
all players’ joint current incentives to deviate and joint measures characterizing
future payoffs. Fortunately, however, the results below show that it is still possi-
ble to characterize the PPE payoff set with a relatively simple class of equilibria.
Furthermore, the algorithms developed in this paper to compute the equilibrium
payoff sets are still quite quick for a moderate number of states and action profiles.

3.5 Characterization

Let W (x) denote the set of PPE continuation payoffs at the action stage in state
x. Consider a PPE in which after some history a (possibly mixed) action profile
α ∈ A(x) is played in state x. Let τ(x′, y) denote the subsequent vector of
gross transfers if subsequently state x′ ∈ X and signal y ∈ Y realize and let
w(x′, y, τ ′) ∈ W (x) be the vector of continuation payoffs at the subsequent action
stage if actual transfers τ ′ have been conducted. Being part of a PPE these values
satisfy the following conditions. No player i has an incentive to deviation from
any pure action ai in the support of αi, i.e.for all i ∈ {1, ...n}, all ai ∈ supp(αi)
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and all âi ∈ Ai(x)

(1− δ)πi(ai, α−i, x) + δE[wi(x′, y, τ)− (1− δ)pτi (x′, y)|x, ai, α−i] ≥
(1− δ)πi(âi, α−i, x) + δE[wi(x′, y, τ)− (1− δ)pτi (x′, y)|x, âi, α−i]. (AC’)

No player i has incentives to deviate from any required transfers

−(1−δ)
∑
j 6=i

max(τi(x′, y), 0)+wi(x′, y, τ) ≥ −(1−δ)
∑
j 6=i

max(τ ′ij, 0)+wi(x′, y, (τ ′i , τ−i)).

(TC’)
We say (w, τ) implements an action profile α if for all states x, we have w(x) ∈
W (x) and (AC) and (TC) are satisfied.
The possibility of transfers allows to use a schedule of transfers and continuation
equilibria an equivalent pair to (w, τ) with a simple structure that implements α.
For each player i, let vi be a payoff function that satisfies for each player i and
for every state x′ that vi(x′) ∈ Wi(x) and vii(x) is at least as small as the lowest
continuation payoff of player i if player i transfers nothing in state x′:

ṽii(x′) ≤ min
y∈Y

wi(x′, y, (0, τ−i)).

We will commonly refer to vi(x′) as a punishment payoff for player i in state x′.
Let u be a payoff function such that for every state x′, i) we have u(x′) ∈ W (x),
ii) ui(x′) ≥ vii(x′), and iii)

Ũ(x′) ≡
n∑
i=1

ũi(x′) ≥ max
y

n∑
i=1

wi(x′, y, τ).

Let

p̃(x′, y) = pτ (x′, y) + ũ(x′)− w(x′, y, τ)
1− δ .

and τ̃ a profile of gross transfers that implements the net payments p̃(x′, y) in
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such a fashion that no player simultaneously receives and makes transfers.12 Let

w̃(x′, y, τ ′) =


ũ(x′) if τ ′ = τ̃

ṽi(x′) if τ ′i 6= τ̃i and τ ′−i = τ̃−i

ũ(x′) otherwise.

If no player deviates from the required transfers (or multilateral deviations take
place), continuation payoffs will only depend on the state x′ and be given by ũ(x′),
if player i unilaterally deviates from the required transfers, continuation payoffs
will be given by the associated punishment payoffs vi(x′).

Lemma 1. If α can be implemented with a payment functions p and continuation
payoff functions w and v then α can also be implemented if for every state x′ there
exists payoff vectors ũ(x′) such that

Ũ(x′) ≡
n∑
i=1

ũi(x′) ≥ max
y

n∑
i=1

wi(x′, y),

and for each player i there is a payoff ṽi(x′) with ṽi(x′) ≤ vi(x′) and ṽi(x′) ≤ ũi(x′).
To implement α, we set continuation payoffs if no player unilaterally deviates from
payments to w̃(x′, y) = ũ(x′) and required net payments to

p̃(x, y) = pi(x′, y) + ũi(x′)− wi(x′, y)
1− δ .

If players’ actions can only be imperfectly monitored, it is sometimes only possible
to implement an action profile α for given u and v if after some signals money is
burned. We denote by

Û(x, α, u, v) = max
p

((1− δ)Π(α, x) + δE[U(x′, y)− (1− δ)
n∑
i=1

pi(x′, y)|x, α])

s.t.(AC),(PC),(BC) (LP-e)
12Any vector of net payments p can be mapped into a matrix of gross transfers τ̃ij from i to

j as follows. Denote by IP = {i|pi > 0} the set of net payers and by IR = {i|pi ≤ 0} ∪ {0} the
set of net receivers including the sink for burned money indexed by 0. For any receiver j ∈ IR,
we denote by

sj = |pj |∑
j∈IR

|pj |

the share she receives from the total amount that is transferred or burned and assume that each
net payer distributes her gross transfers according to these proportions

p̃ij =
{

sjpi if i ∈ IP and j ∈ IR
0 otherwise.

Note that the sum of net payments is always non-negative, since players can only perform
non-negative gross transfers.
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Let W (x) denote the set of PPE continuation payoffs before the action stage in
state x and Wi(x) the set of corresponding continuation payoffs of player i.We
say a (possibly mixed) action profile α ∈ A(x) can be implemented in state x if
for every possible realization of subsequent state x′ ∈ X and signal y ∈ Y there
exists a payments p(x′, y′) and subsequent continuation payoffs w(x′, y) ∈ W (x′)
for the case that no player unilaterally deviates from the required payment and
continuation payoffs vi(x′) ∈ Wi(x) for the case player i unilaterally deviates from
a required payment that satisfy the following constraints.
The action constraints that no player i has an incentive to deviation from any
pure action ai in the support of αi: For all ai ∈ supp(αi) and all âi ∈ Ai(x)

(1− δ)πi(ai, α−i, x) + δE[wi(x′, y)− (1− δ)pi(x′, y)|x, ai, α−i] ≥
(1− δ)πi(âi, α−i, x) + δE[wi(x′, y)− (1− δ)pi(x′, y)|x, âi, α−i]. (AC)

The payment constraint that no player i has incentives to deviate from required
payments after the action stage

(1− δ)pi(x′, y) ≤ wi(x′, y)− vi(x′). (PC)

The budget constraints that the sum of payments are non-negative for all x′ ∈ X
and y ∈ Y

n∑
i=1

pi(x′, y) ≥ 0. (BC)

This sum of payments is simply the total amount of money that is burned.

Lemma 2. Assume α can be implemented with a payment functions p and con-
tinuation payoff functions w and v then α can also be implemented if for every
state x′ there exists payoff vectors ũ(x′) such that

Ũ(x′) ≡
n∑
i=1

ũi(x′) ≥ max
y

n∑
i=1

wi(x′, y),

and for each player i there is a payoff ṽi(x′) with ṽi(x′) ≤ vi(x′) and ṽi(x′) ≤ ũi(x′).
To implement α, we set continuation payoffs if no player unilaterally deviates from
payments to w̃(x′, y) = ũ(x′) and required net payments to

p̃(x, y) = pi(x′, y) + ũi(x′)− wi(x′, y)
1− δ .

Lemma 4 states that it becomes easier to implement an action profile if the sum
of continuation payoffs gets larger or the punishment payoffs of any player are
reduced in any state or after any signal. The payments p̃ in Lemma 1 are chosen
such that player i’s expected continuation payoff

E[ui(x′, y)− (1− δ)pi(x′, y)|x, ai, α−i]
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given the information available at the action stage are the same for ũ and p̃ as
for u and p, no matter which action profile is played. This means transforming
the original PPE by replacing the payments p by p̃ and subsequent continuation
payoffs u by ũ does not change incentives for a one shot deviation at any prior
point of time.
If players’ actions can only be imperfectly monitored, it is sometimes only possible
to implement an action profile α for given u and v if after some signals money is
burned. We denote by

Û(x, α, u, v) = max
p

((1− δ)Π(α, x) + δE[U(x′, y)− (1− δ)
n∑
i=1

pi(x′, y)|x, α])

s.t.(AC),(PC),(BC) (LP-e)

the highest expected continuation payoff that can be achieved if an action profile
α shall be implemented in state x given continuation and punishment payoffs u
and v. For the punishment phases, we similarly denote by

v̂i(x, α, u, v) = min
p

((1− δ)πi(α, x) + δE[ui(x′, y)− (1− δ)pi(x′, y)|x, α])

s.t.(AC),(PC),(BC) (LP-i)

the minimum expected payoff that can be imposed on player i if an action profile
α shall be implemented. (LP-e) and (LP-i) are just linear optimization problems.
Lemma 1 guarantees that if two payoff functions u and ũ have the same joint
payoffs U and satisfy u, ũ ≥ v then (LP-k), for each k ∈ {e, 1, ..., n}, has the same
solution for u and ũ. With slight abuse of notation we will therefore write these
solutions as functions of joint payoffs U , i.e. as Û(x, α, U, v) and v̂i(x, α, U, v),
respectively. If joint continuation payoffs are below joint punishment payoffs in
some state x′ ∈ X, i.e. U(x′, y) < V (x′) for some y ∈ Y , or no solution to (LP-k)
exists, we set Û(x, α, U, v) = −∞ and v̂i(x, α, U, v) = ∞, respectively. The next
result is also direct consequence of Lemma 4.
If players’ actions can only be imperfectly monitored, it is sometimes only possible
to implement an action profile α for given u and v if after some signals money is
burned. We denote by

Û(x, α, u, v) = max
p

((1− δ)Π(α, x) + δE[U(x′, y)− (1− δ)
n∑
i=1

pi(x′, y)|x, α])

s.t.(AC),(PC),(BC) (LP-e)

3.6 Characterization

The one shot deviation property establishes that a profile of public strategies is
a PPE if and only if after no public history any player has a profitable one shot
deviation. Consider the continuation play of a PPE after some history ending
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before the action stage in state x. First a (possibly mixed) action profile α ∈ A(x)
is played and then, when state x′ arises and signal y is observed, payments p(x′, y)
are conducted. Expected continuation payoffs after the payment stage, in case no
player deviates, shall be denoted by ui(x′, y). Let vi(x′) denote the infimum of
player i’s continuation payoffs if she deviates from a required payment pi(x′, y) in
state x′, where the infimum is taken across all possible signals y and all possible
deviations from the payment. We will call vi(x′) player i’s punishment payoff in
state x′.
Player i has no incentive for a one shot deviation from any pure action ai in the
support of αi if and only if the following action constraints are satisfied for all
ai ∈ supp(αi) and all âi ∈ Ai(x)

(1− δ)πi(ai, α−i, x) + δE[ui(x′, y)− (1− δ)pi(x′, y)|x, ai, α−i] ≥
(1− δ)πi(âi, α−i, x) + δE[ui(x′, y)− (1− δ)pi(x′, y)|x, âi, α−i]. (AC)

The following payment constraint is a necessary condition that player i has no
incentives to deviate from required payments after the action stage

(1− δ)pi(x′, y) ≤ ui(x′, y)− vi(x′). (PC)

Since there is no external funding, it must also be the case that the sum of
payments are non-negative

n∑
i=1

pi(x′, y) ≥ 0. (BC)

This sum of payments is simply the total amount of money that is burned.
We say an action profile α ∈ A(x) is implemented in state x with a payment
function p given continuation and punishment payoffs u and v if the constraints
(AC),(PC) and (BC) are satisfied.
For given u and p , let us define

U(x′|u) = max
y

n∑
i=1

ui(x′, y)

Lemma 3. Assume α is implemented in state x with a payment function p given
continuation and punishment payoffs u and v. Then given continuation payoffs ũ
that satisfy

U(x′|ũ) ≥ U(x′|u)∀x′ ∈ X
and punishment payoffs ṽ that satisfy the payment function

p̃i(x′, y) = pi(x′, y) + ũi(x′, y)− ui(x′, y)
1− δ

given continuation and punishment payoffs ũ and ṽ that satisfy vi(x′) ≥ ṽi(x′),
ũ(y, x′) ≥ ṽi(x′) and

n∑
i=1

ũi(x′, y) ≥
n∑
i=1

ui(x′, y)∀x′, y.
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Lemma 4. If α is implemented in state x with a payment function p given contin-
uation and punishment payoffs u and v then α is also implemented by the payment
function

p̃i(x′, y) = pi(x′, y) + ũi(x′, y)− ui(x′, y)
1− δ

given continuation and punishment payoffs ũ and ṽ that satisfy vi(x′) ≥ ṽi(x′),
ũ(y, x′) ≥ ṽi(x′) and

n∑
i=1

ũi(x′, y) ≥
n∑
i=1

ui(x′, y)∀x′, y.

Lemma 4 states that it becomes easier to implement an action profile if the sum
of continuation payoffs gets larger or the punishment payoffs of any player are
reduced in any state or after any signal. The payments p̃ in Lemma 1 are chosen
such that player i’s expected continuation payoff

E[ui(x′, y)− (1− δ)pi(x′, y)|x, ai, α−i]

given the information available at the action stage are the same for ũ and p̃ as
for u and p, no matter which action profile is played. This means transforming
the original PPE by replacing the payments p by p̃ and subsequent continuation
payoffs u by ũ does not change incentives for a one shot deviation at any prior
point of time.
If players’ actions can only be imperfectly monitored, it is sometimes only possible
to implement an action profile α for given u and v if after some signals money is
burned. We denote by

Û(x, α, u, v) = max
p

((1− δ)Π(α, x) + δE[U(x′, y)− (1− δ)
n∑
i=1

pi(x′, y)|x, α])

s.t.(AC),(PC),(BC) (LP-e)

the highest expected continuation payoff that can be achieved if an action profile
α shall be implemented in state x given continuation and punishment payoffs u
and v. For the punishment phases, we similarly denote by

v̂i(x, α, u, v) = min
p

((1− δ)πi(α, x) + δE[ui(x′, y)− (1− δ)pi(x′, y)|x, α])

s.t.(AC),(PC),(BC) (LP-i)

the minimum expected payoff that can be imposed on player i if an action profile
α shall be implemented. (LP-e) and (LP-i) are just linear optimization problems.
Lemma 1 guarantees that if two payoff functions u and ũ have the same joint
payoffs U and satisfy u, ũ ≥ v then (LP-k), for each k ∈ {e, 1, ..., n}, has the same
solution for u and ũ. With slight abuse of notation we will therefore write these
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solutions as functions of joint payoffs U , i.e. as Û(x, α, U, v) and v̂i(x, α, U, v),
respectively. If joint continuation payoffs are below joint punishment payoffs in
some state x′ ∈ X, i.e. U(x′, y) < V (x′) for some y ∈ Y , or no solution to (LP-k)
exists, we set Û(x, α, U, v) = −∞ and v̂i(x, α, U, v) = ∞, respectively. The next
result is also direct consequence of Lemma 4.
Lemma 5. For all i, j = 1, ..., n and all x′, x ∈ X and y ∈ Y

• Û(x, α, U, v) is weakly increasing in U(x′) and weakly decreasing in vj(x′),

• v̂i(x, α, U, v) is weakly decreasing in U(x′, y) and weakly increasing in vj(x′).

Lemma 5 states that higher joint continuation payoffs or lower punishment payoffs
in any state x′ allow to implement higher joint payoffs Û(.) and lower punishment
payoffs v̂i(.). Reminiscent to the decomposition methods by APS, one can inter-
pret Û(x, α, U, v) as the highest joint payoffs and v̂i(x, α, U, v) as the lowest payoff
for player i that can be decomposed in state x with an action profile α given a
continuation payoff whose highest joint payoffs for each state are given by U and
lowest payoffs for each state and player by v. Lemma 5 loosely corresponds to the
fact that in APS the set of payoffs that can be decomposed gets weakly larger if
the set of continuation payoffs gets larger.
Let A(x, U, v) ⊂ A(x) be the subset of action profiles that can be implemented in
state x given U and v for some payment function. This means solutions to LP-e
and LP-i exist if and only if α ∈ A(x, U, v).
Lemma 6. The set of implementable action profiles A(x, U, v) is compact and
upper-hemi continuous in U and v. Û(x, α, U, v) and v̂i(x, α, U, v) are continuous
in α for all α ∈ A(x, U, v).

We can now establish our key result that there exists optimal simple equilibria
that can implement any PPE payoff.
Theorem 1. Assume a PPE exists. Then an optimal simple equilibrium with an
action plan (ᾱk)k∈K exists such that by varying its upfront transfers in an incentive
compatible way, every PPE payoff can be implemented. The sets of PPE contin-
uation payoffs for every state x are compact; their maximal joint continuation
payoffs and minimal punishment payoffs satisfy

Ū(x) = Û(x, ᾱe, Ū , v̄)∀x,
v̄i(x) = v̂i(x, ᾱi, Ū , v̄)∀x, i.

4 Computing Payoff Sets and Optimal Simple
Equilibria

Based on the previous results, this section describes different methods to exactly
compute or to approximate the set of PPE payoffs and to find (optimal) simple
equilibria to implement these payoffs.
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4.1 Optimal payment plans and a brute force algorithm

For a given simple strategy profile, we denote expected continuation payoffs in the
equilibrium phase and the punishment phase for player i by us and vsi , respectively.
The equilibrium phase payoff are implicitly defined by

usi (x) = (1− δ)πi(αe, x) + δE[−(1− δ)pei (x′, y, x) + usi (x′)|αe, x]). (1)

Player i’s punishment payoffs are given by

vsi (x) = (1− δ)πi(αi, x) + δE[−(1− δ)pii(x′, y, x) + usi (x′)|αi, x]). (2)

Let (AC-k), (PC-k) and (BC-k) denote the action payment and budget constraints
for policy αk and payment function pk(.) given continuation and punishment
payoffs us and vs.
We say a payment plan is optimal for a given action plan if all constraints (AC-k),
(PC-k) and (BC-k) are satisfied and there is no other payment plan that satisfies
these conditions and yields a higher joint payoff U s(x) or a lower punishment
payoff vsi (x) for some state x and some player i.

Proposition 2. There exists a simple equilibrium with an action plan (αk)k∈K
if and only if there exists a payment plan (p̄k)k∈K that solves the following linear
program

(p̄k)k ∈ arg max
(pk)k

∑
x∈X

n∑
i=1

(usi (x)− vsi (x)) (LP-OPP)

s.t.(AC-k),(PC-k),(BC-k)∀k = e, 1, ..., n

(p̄k)k∈K is an optimal payment plan for (αk)k∈K. A simple equilibrium with action
plan (αk)k∈K and an optimal payment plan satisfies

U s(x) = Û(x,αe, U s, vs),
vsi (x) = v̂i(x,αi, U s, vs).

An optimal simple equilibrium has an optimal action plan and a corresponding
optimal payment plan. Together with Theorem 1, this result directly leads to a
brute force algorithm to characterize the set of pure strategy PPE payoffs given
a finite action space: simply go through all possible action plans and solve (LP-
OPP). An action plan with the largest solution will be optimal. Similarly, one
can obtain a lower bound on the set of mixed strategy PPE payoffs, by solving
(LP-OPP) for all mixing probabilities from some finite grid. Despite an infinite
number of mixed action plans, the optimization problem for each mixed action
plan is finite because only deviations to pure actions have to be checked.
The weakness of this method is that it can become computationally infeasible,
already for moderately sized action and state spaces. That is because the number
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of possible action plans grows very quickly in the number of states and actions
per state and player.
For particular applications there will exist more efficient methods to jointly opti-
mize over payment and action plans than a brute force search over all action plans.
In general, however, the joint optimization problem is non-convex, as e.g. joint
equilibrium phase payoffs U s are not jointly concave in the actions and payments.
One can therefore not in general rely on efficient methods for convex optimization
problems that guarantee a global optimum. For mixed strategy equilibria, there
is the additional complication that number of action constraints depends on the
support of the mixed action profiles that shall be implemented.

4.2 Decomposition Methods for Outer and Inner Approx-
imations

In this subsection we illustrate how the methods for repeated games of APS and
Judd, Yeltekin and Conklin (2003, henceforth JYC) can be translated to our
framework to get an algorithm that allows outer and inner approximations of the
equilibrium payoff set.
Let D : R(n+1)|X| → R(n+1)|X| be a decomposition operator that maps a collection
(U, v) of joint equilibrium and punishment payoffs into a new collection of of such
payoffs (U ′, v′) that satisfy for each state x ∈ X:

U ′(x) = max
α∈A(x)

Û(x, α, U, v), (3)

v
′

i(x) = min
α∈A(x)

v̂i(x, α, U, v). (4)

This means D computes the largest joint equilibrium payoff and lowest punish-
ment payoffs that can be decomposed with any action profiles α ∈ A(x). For any
integer m, we denote by Dm the operator that m times applies D.

Proposition 3. Let U0 and v0 be payoffs satisfying U0(x) ≥ Ū(x) and v0
i (x) ≤

v̄i(x) for all x ∈ X and all i = 1, ..., n. Then the resulting payoffs after m
decomposition steps, i.e. Dm(U0, v0), converge to Ū (from above) and v̄ (from
below) as m→∞.

Repeatedly applying the decomposition operator D yields in every round a tighter
outer approximation for Ū and v̄ and of the corresponding payoff set of PPE
equilibria.
A tighter outer approximation is obtained more quickly if the initial values U0

and v0 are closer to Ū and v̄. For games with imperfect monitoring, good initial
values U0 and v0 will be the optimal joint equilibrium and punishment payoffs of
a perfect monitoring version of the game, which can be solved much faster using
methods that will be described in Section 5.
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To obtain bounds on the approximation error, it is also necessary to obtain inner
approximations of the equilibrium payoff sets. To find an inner approximation for
the payoff set of a repeated game, JYC suggest to shrink the outer approximation
of the payoff set by a small amount, say 2%-3% and to apply the decomposition op-
erator on the shrunken set. If the decomposition operator increases the shrunken
set then the decomposed set forms an inner approximation of the equilibrium
payoff set.
A similar approach can be used in our framework. One reduces the outer ap-
proximations of Ū and increases the outer approximations of v̄ by a small amount
and then applies the decomposition operator D on these shrunken values. If the
decomposition increases all joint equilibrium payoffs and reduces all punishment
payoffs, we have found an inner approximation. For each decomposition step,
we get a corresponding action plan consisting of the optimizers of (3) and (4).
Propoposition 4 shows that for this action plan the linear program (LP-OPP)
always has a solution. We obtain from that solution a simple equilibrium and an
even tighter inner approximation.
Proposition 4. There exists a simple equilibrium with an action plan (αk)k∈K
if and only if there exists joint equilibrium and punishment payoffs U and v such
that

Û(x,αe, U, v) ≥ U(x)∀x ∈ X, (5)
v̂i(x,αi, U, v) ≤ vi(x)∀x ∈ X, i = 1, ..., n. (6)

An alternative method to search for an inner approximation is to run (LP-OPP)
for the action plans that result from the decomposition steps of the outer approx-
imation. If a solution exists, it also forms an inner approximation.
Inner and outer approximations allow to reduce for every state and phase the
set of action profiles that can possible be part of an optimal action plan. Let
(U in, vin) and (U out, vout) describe the inner and outer approximations. Consider
a state x and an action profile α ∈ A(x). If α cannot be implemented given U out

and vout, there does not exist any PPE in which α is played and we can dismiss
it. If α can be implemented, but

Û(x, α, U out, vout) < U in(x)

then α will not be played in the equilibrium phase in state x of an optimal equi-
librium, since even with the outer approximations of U and v it can decompose a
lower joint payoff than the current inner approximation. Similarly, if

v̂i(x, α, U out, vout) > vini (x)
then α will not be an optimal punishment profile for player i in state x.
Hence, finer inner and outer approximations speed up the computation of new
approximations since a smaller set of action profiles has to be considered. More-
over, once the number of candidate action profiles has been sufficiently reduced,
it can become tractable to compute the exact payoff set by applying the brute
force method from Subsection 4.1 on the remaining action plans.
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5 Perfect monitoring

5.1 Decomposition

In this section, attention is restricted to equilibria in pure strategies in games with
perfect monitoring, i.e. players commonly observe all past action profiles. The
following proposition shows how the problems (LP-k) drastically simplify in this
case.
Proposition 5. Assume monitoring is perfect, a is a pure strategy profile, and
U(x′) ≥ V (x′)∀x′ ∈ X. Then

1. all solutions to (LP-e) satisfy

Û(a, x, U, v) = (1− δ)Π(a, x) + δE[U(x′)|a, x], (7)

2. all solutions to (LP-i) satisfy for all i ∈ {1, ..., n}

v̂i(a, x, U, v) = max
âi∈Ai(x)

{(1− δ)πi(âi, a−i, x) + δE[vi(x′)|âi, a, x]}, (8)

3. a solution to (LP-k) for given a, x, U and v exists if and only if for all k ∈ K

(1− δ)Π(a, x) + δE[U(x′)|a, x] ≥
n∑
i=1

max
âi∈Ai(x)

{(1− δ)πi(âi, a−i, x) + δE[vi(x′)|âi, a−i, x]}. (9)

These results are quite intuitive. Since deviations can be perfectly observed, there
is no need to burn money on the equilibrium path. Equation (7) simply describes
the joint continuation payoffs in the absence of money burning. Furthermore,
perfect monitoring allows in punishment phases, to always reduce the punished
player’s payoff to his best reply payoff given that continuation payoffs are given
by v. These best-reply payoffs are given by (8). Condition (9) is the sum of the
resulting action constraints across all players. That this condition is sufficient
is due to the fact that payments can be used to perfectly balance incentives to
deviate across players in the way Section 3.2 has exemplified.
Proposition 5 allows a quick implementation of the decomposition steps to find
inner and outer approximations described in Section 4. For a decomposition step
one just has to evaluate conditions (9) and (7) or (8) for the candidate set of
possibly optimal action profiles; no linear optimization problem has to be solved.

5.2 Simple Equilibria with Optimal Payment Plans

We now show, how for a given action plan one can compute joint equilibrium
payoffs and punishment payoffs under an optimal payment plan. Assume a simple
equilibrium exists for an action plan (ak)k∈K. Recall from Proposition 2 that

Û(ae(x), x, U s, vs) = U s(x).
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Together with (9) , we find that U s can be easily computed by solving the following
system of linear equations:

U s = (1− δ)Π(ae) + Ω(ae)U s (10)

where Ω(a) shall denote the transition matrix between states given that players
follow the policy a.
For the punishment states, Propositions 2 and 5 imply that punishment payoffs
must satisfy the following Bellman equation:

vsi (x) = max
âi∈Ai(x)

{(1− δ)
(
πi(âi,ai−i, x)

)
+ δE[vsi (x′)|x, âi,ai−i]}. (11)

It follows from the contraction mapping theorem that there exists a unique payoff
vector vsi that solves this Bellman equation. The solution corresponds to player
i’s payoffs in case she refuses to make any payments and plays a best reply in
every period assuming that other players follow the policy ai−i in all future.
Finding player i’s punishment payoffs constitutes a single agent dynamic opti-
mization problem, more precisely, a discounted Markov decision process. One can
compute vsi , for example, with the policy iteration algorithm.13 It consists of a
policy improvement step and a value determination step. The policy improvement
step calculates for some punishment payoffs vi an optimal best-reply action ãi(x)
for each state x, which solves

ãi(x) ∈ arg max
ai∈Ai(x)

{(1− δ)
(
πi(ai,ai−i, x)

)
+ δE[vi(x′)|x, ai,ai−i]}.

The value determination step calculates the corresponding payoffs of player i by
solving the system of linear equations

vi = (1− δ)πi(ãi,ai−i) + δΩ(ãi,ai−i)vi. (12)

Starting with some arbitrary payoff function vi, the policy iteration algorithm
alternates between policy step and value iteration step until the payoffs do not
change anymore, in which case they will satisfy (11).
Together with Propositions 2 and 5 these observations lead to the following result:

Corollary 1. Under perfect monitoring, the joint equilibrium payoffs U s and
player i’s punishment payoffs vsi in a simple equilibrium with (pure) action plan
(ak)k∈K and an optimal payment plan are given by the solutions of (10) and (11),
respectively. A simple equilibrium with action plan (ak)k∈K exists if and only if
for every state x and every phase k ∈ {e, 1, ..., n}

(1− δ)Π(ak, x) + δE[U s(x)|ak, x] ≥
n∑
i=1

max
âi∈Ai(x)

{(1− δ)πi(âi,ak−i, x) + δE[vsi (x′)|âi,ak−i(x), x]}. (13)

13For details on policy iteration, convergence speed and alternative computation methods to
solve Markov Decision Processes, see e.g. Puterman (1994).
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When applying the methods described in Section 4, Corollary 1 is useful for com-
puting inner approximations and to find an optimal simple equilibrium once the
candidate set of action plans has been sufficiently reduced.

5.3 A Policy Elimination Algorithm

We now develop a quick policy elimination algorithm that exactly computes the
set of pure strategy SPE payoffs in stochastic games with perfect monitoring and
a finite action space.
In every round of the algorithm there is a candidate set of action profiles Â(x) ⊂
A(x) which have not yet been ruled out as being possible played in some simple
equilibrium. Â = ×x∈XÂ(x) shall denote the corresponding set of policies. Let
U s(.|ae) denote the solution of (10) for equilibrium phase policy ae and vsi (.|ai)
the solution of (11) under punishment policy ai. We denote by

U s(x|Â) = max
ae∈Â

U s(x|ae) (14)

the maximum joint payoff that can be implemented in state x using equilibrium
phase policies from Â. The problem of computing U e(.|Â) is a finite discounted
Markov decision process (MDP). Standard results for MDP establish that there
always exists a policy âe(Â) ∈ Â that solves (14) simultaneously in all states.
One can compute U e(.|Â) with a policy iteration algorithm, for which the value
determination step is given by (10).
For the punishment phases, we define by

vsi (x|Â) = min
ai∈Â

vsi (x|ai) (15)

player i’s minimal punishment payoff in state x across all punishment policies
in Â. Computing vsi (x|Â) constitutes a nested dynamic optimization problem:
one has to compute player i’s best-reply policy against each considered candidate
punishment policy. The analysis of this problem is relegated to Appendix A. It
is shown that there always exists a punishment policy âi(Â) ∈ Â that solves
(15) simultaneously for all states x ∈ X and a nested policy iteration method is
developed that strictly improves punishment policies in each step and allows to
quickly compute vi(.|Â).
The policy elimination algorithm works as follows:

Algorithm. Policy elimination algorithm to find optimal action plans

0. Let r = 0 and initially consider all policies as candidates: Â0 = A

1. Compute U s(.|Âr) and a corresponding optimal equilibrium phase policy
âe(Âr)
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2. For every player i compute vsi (.|Â
r) and a corresponding optimal punishment

policy âi(Âr)

3. For every state x, let Âr+1(x) be the set of all action profiles that satisfy con-
dition (9) from Proposition (5) using U s(.|Âr) and vsi (.|Â

r) as equilibrium
phase and punishment payoffs.

4. Stop if the optimal policies âk(Âr) are contained in Âr+1. They then con-
stitute an optimal action plan. Also stop if for some state x the set Âr+1 is
empty. Then no SPE in pure strategies exists. Increment the round r and
repeat Steps 1-3 until one of the stopping conditions is satisfied.

The policy elimination algorithm always stops in a finite number of rounds. It
either finds an optimal action plan (āk)k∈K or yields the result that no SPE in
pure strategies exists. Given our previous results, it is straightforward that this
algorithm works.
Unless the algorithm stops in the current round, Step 3 always eliminates some
candidate policies, i.e. the set of candidate policies Âr gets strictly smaller with
each round. Therefore U s(x|Âr) weakly decreases and vsi (x|Â

r) weakly increases
each round. Condition (9) is easier satisfied for higher values of U s(x|Âr) and for
lower values of vs(x|Âr). Therefore, a necessary condition that an action profile
is ever played in a simple equilibrium is that it survives Step 3. Conversely, if
the polices âk(Âr) all survive Step 3, it follows from Corollary 1 that a simple
equilibrium with these policies exists. That they constitute an optimal action plan
simply follows again from the fact that U s(x|Âr) weakly decreases and vsi (x|Â

r)
weakly increases each round. That the algorithm terminates in a finite number
of round is a consequence of the finite action space and the fact that the set of
possible policies Âr gets strictly smaller each round.

6 Examples

6.1 Quantity competition with stochastic reserves

As first example, we consider a stochastic game version of the example Cournot
used to motivate his famous model of quantity competition. There are two pro-
ducers of mineral water producers who have finite water reserves in their reser-
voirs. A state is two dimensional x = (x1, x2) and xi describes the amount of
water currently stored in firm i’s reservoir. In each period, each firm i simul-
taneously chooses an integer amount of water ai ∈ {0, 1, 2, ..., xi} that it takes
from its reservoir and sells on the market. Market prices are given by an inverse
demand function P (a1, a2). A firm’s reserves can increase after each period by
some random integer amount, up to a maximal reservoir capacity of x̄.
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Prices under Collusion
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Figure 2: Optimal collusive prices as function of firms’ reserves. Brighter areas
correspond to lower prices.

Sum of punishment payoffs
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Figure 3: Sum of punishment payoffs v̄1(x) + v̄2(x). Darker areas correspond to
lower punishment payoffs.

The example is solved with an R implementation of the policy elimination algo-
rithm described in Section 5.3. The following parameters are used: maximum
capacity of each firm x̄ = 20, discount factor δ = 2

3 , inverse demand function
P (a1, a2) = 20− a1 − a2, and reserves refill with equal probability by 3 or 4 units
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each period.14 Figure 2 illustrates the solution of the dynamic game by show-
ing the market prices in an optimal collusive equilibrium as a function of the oil
reserves of both firms.
Starting from the lower left corner, one sees that prices are initially reduced when
firms’ water reserves increase. Yet, the upper right corner illustrates that equi-
librium prices are not monotonically decreasing in reserves: once reserves become
sufficiently large, prices increase again. An intuitive reason for this observation is
that once reserves grow large, it becomes easier to facilitate collusion as deviations
from a collusive agreement can be punished more severely by a credible threat to
selling large quantities in the next period.
Figure 3 fosters this intuition. It illustrates the sum of punishment payoffs v̄1(x)+
v̄2(x) that can be imposed on players as function of the current state. One sees
how harsh punishments can be credibly implemented when reserves are large.

6.2 A Principal-Agent Game with a Durable Good

This example illustrates how our results can be used to easily obtain closed form
solutions in a simple stochastic game that describes a principal agent relationship.
An agent (player 1) can produce a single durable good for a principal (player 2).
If the product has been successfully produced, the state of the world will be given
by x1 and otherwise it is x0. In state x0, the agent can choose production effort
e ∈ [0, 1] and the product will be successfully produced in the next period with
probability e. The principal’s stage game payoff is 1 in state x1 and 0 in state x0.
The agent’s stage game payoff is −ce where c > 0 is an exogenous cost parameter.
For the moment, we assume that once the product has been produced, the state
stays x1 forever.

Perfect monitoring We first consider the case of perfect monitoring. In the
terminal state x1 joint payoffs are given by U(x1) = 1. The joint equilibrium
payoff in state x0 in a simple equilibrium with effort e satisfies

U s(e, x0) = −(1− δ)ce+ δ(e+ (1− e)U s(e, x0))⇔

U s(e, x0) = δ − (1− δ)c
δe+ (1− δ)e.

We assume (1− δ)k < δ, i.e. it is socially efficient that the agent exerts maximum
effort. In an optimal simple equilibrium, the agent’s punishment payoff in both
states are 0 and the principal’s punishment payoff’s are vs2(x0) = 0 and vs2(x1) = 1.
Using Corrollary (1) one then finds that effort e can be implemented if and only
if

(1− δ) c ≤ δ2(1− e). (16)
14 Solving this example with 21*21=441 states takes less than a minute on an average notebook

bought in 2009.
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Condition (16) implies that positive effort can be induced under sufficiently large
discount factors, while it is not possible to induce full effort e = 1 under any
given discount factor δ ∈ [0, 1). On first thought, that result seems surprising
since effort costs are linear. The intuition is simple, however. Once the product
has been successfully built, the game is in the absorbing state x1. Since payoffs
in x1 are fixed, the principal won’t conduct any transfers. How can the principal
credible reimburse the agent for positive effort? This is only possible with a
transfer in the case that the agent has exerted high effort but the project has not
been successful: the probability that the agent gets reimbursed for the required
effort level is thus given by (1− e). Thus, the agent cannot be reimbursed for full
effort, but there is a positive chance to get reimbursed for partial effort.

Imperfect Monitoring Consider now imperfect monitoring in the form that
the principal can only observe the realized state. It is straightforward that then
in every simple equilibrium the agent chooses zero effort and no transfers are
conducted. That is because the principal cannot be induced to make any payments
in state x1 and at the same time any transfers by the principal in the state
x0 increase the agent’s incentives not to conduct any effort. This observation
illustrates how monitoring imperfections may be much more devastating in a
stochastic game than in a repeated game: in a standard repeated principal agent
games with a noisy public signal about the agent’s effort choice, (approximately)
socially optimal effort levels can always be implemented under sufficiently large
discount factors.

Costly punishment Assume now that in state x1 the agent can choose de-
structive effort d ∈ {0, 1} where d = 1 has the consequence that the product is
destroyed in the next round while for d = 0 the product remains intact. The
agent incurs costs for destructive efforts of size kd with k ≥ 0.
Since d can be induced from the state transitions, we can assume w.l.o.g. that
d is perfectly observable. It follows from condition (9) in Proposition 5 that the
agent can be induced to destroy the product if and only if

(1− δ)k ≤ δU s(e, x0). (17)

In an optimal simple equilibrium with d = 1, the principal’s punishment payoffs
satisfy

vs2(d = 1, x0) = 0
vs2(d = 1, x1) = (1− δ).

The maximum payment the principal can then be induced to make in state x1 is
thus given by

pmax2 (x1) = 1
1− δ (1− (1− δ)) = δ

1− δ .
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Assume effort e is imperfectly monitored and only the realized state can be ob-
served. Given pmax2 (x1), the agent can be induced to implement an effort level
e > 0 if and only if

ce ≤ δe
δ

1− δ ⇔

(1− δ)c ≤ δ2. (18)

Since U s(e, x0) is strictly increasing in e, in every optimal simple equilibrium in
which the agent chooses positive effort, we have maximal effort e = 1. The joint
equilibrium phase payoff in state x0 is then given by

U s(e = 1, x0) = −(1− δ)c+ δ.

Inserting this payoff into condition (17), we find that high effort can be imple-
mented if and only if

(1− δ)(δc+ k) ≤ δ2 (19)

and (18) hold. Hence, if the agent has the opportunity to exert costly effort to
punish the principal after a successful project, full effort provision can be imple-
mented under sufficiently large discount factors. Note that conditions (18) and
(19) are also necessary and sufficient for the existence of a simple equilibrium with
positive effort in a perfect monitoring variant of the principal agent game in which
only binary effort choices e ∈ {0, 1} are possible.

Optimal penal codes vs grim-trigger punishments The constructed simple
equilibria use optimal penal codes in which the agent uses a punishment that is
costly in the current period and that is only conducted because it is rewarded in
the future. In repeated games, simple grim-trigger punishments that punish any
deviation by an infinite reversion to a stage game Nash equilibrium are generally
also able to implement cooperative actions given sufficiently large discount factors.
In the current example, a natural variant of grim-trigger punishments would be to
punish any deviation from required effort or transfers by reverting to the unique
MPE of the stochastic game: e = d = 0 and no transfers. However, such grim-
trigger punishments won’t be able to implement any positive effort by the agent,
since the principal could not be induced to make positive transfers in state x1.
The ineffectiveness of grim-trigger punishments in this simple example illustrates
that for stochastic games it is particularly useful to have a simple characterization
of equilibria with optimal penal codes.
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Appendix A: Computing Punishment Payoffs in
Policy Elimination Algorithm

This appendix develops a quick algorithm to compute the punishment payoffs
vi(x|Â) and punishment policies âi(Â) in Step 2 of the policy elimination algo-
rithm described in Section 5.3. The problem cannot be reduced to a simple Markov
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decision process, but we show that a nested policy iteration method exists that
searches among possible candidate policies ai in a monotone fashion.
We denote by

ci(a, x, v) = max
âi∈Ai(x)

{(1− δ) (πi(âi, a−i|x)) + δE[vi(x′)|x, âi, a−i]}

player i’s best-reply payoff given that in the current period in state x action profile
a shall be played and continuation payoffs in the next period only depend on the
realized state x′ and are given by vi(x′).
The following nested policy iteration algorithm yields an optimal punishment
policy âi(Â).

Algorithm. Nested policy iteration to find an optimal punishment policy

0. Set the round to r = 0 and start with some initial policy a0 ∈ Â

1. Calculate player i’s punishment payoffs vi(.|ar) given punishment policy ar
by solving the corresponding Markov Decision Process

2. Let ar+1 be a policy that minimizes state by state player i’s best-reply payoff
against action profile ar+1(x) given continuation payoffs vi(.|ar), i.e.

ar+1(x) ∈ arg min
a∈Â(x)

ci(x, a, vi(.|ar)) (20)

3. Stop if ar itself solves step 3. Otherwise increment the round r and go back
to step 2.

In Step 2, we update the punishment policy by minimizing state-by-state the
best reply payoffs ci(x, a, vi(.|ar)). This operation can be performed very quickly.
The following result shows that this updating rule causes the punishment payoffs
vi(.|ar) to monotonically decrease in every round.

Proposition 6. Algorithm 2 always terminates in a finite number of periods yield-
ing an optimal punishment policy ai(Â). The punishment payoffs decrease in
every round (except for the last round):

vsi (x|ar+1) ≤ vsi (x|ar) for all x ∈ X and
vsi (x|ar+1) < vsi (x|ar) for some x ∈ X.

The proof heavily exploits monotonicity properties of the contraction mapping
operator that is used to solve the Markov decision process in Step 2. In the ex-
amples we computed, the algorithm typically finds an optimal punishment policy
by examining just a very small fraction of all possible policies. While one can
construct examples in which the algorithm has to check every possible policy in
Â, the monotonicity results suggest that the algorithm typically stops after a few
rounds.
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Appendix B: Proofs

Proposition 1, Lemma 1 and Lemma 2 are straightforward and proofs are omitted.
Proof of Lemma 6: The first sentence follows from the fact that action constraints
and payment constraints are weak inequalities and linear in U and v. The second
sentence follows then directly from the Theorem of the Maximum.�
Proof of Theorem 1: Denote by Ū(x) the supremum of joint continuation payoffs
across all public perfect continuation equilibria starting in state x. Similarly,
denote by v̄i(x) the infimum of player i’s continuation payoffs across all PPE
continuation payoffs starting in state x. Denote by ū some payoff function that
satisfies

n∑
i=1

ūi(x) = Ū(x)∀x, y

and
ūi(x) ≥ v̄i(x)∀x, i

Let {Ū(x,m)}∞m=1 be a sequence of joint PPE continuation payoffs that converges
to Ū(x). Let σ̄e(x,m) be a PPE starting at the action stage in state x that
implements the joint payoff Ū(x,m). Let ᾱe(x,m) denote the first action profile
that is played in σ̄e(x,m). Let p̂e(.|x, ū,m) denote a payment function that solves
(LP-e) for ᾱe(x,m), ū and v̄. That such a payment function exists follows from
Lemma 1. Since {ᾱe(x,m), p̂e(.|x, ū,m)}m is an infinite sequence in a compact
space, there must be a converging subsequence with a limit (ᾱe(x), p̂e(.|x, ū))
where ᾱe(x) ∈ A(x). All action, payment and budget constraints will be satisfied
for this limit point, because these constraints are weak inequalities and continuous
in actions and payments. It follows from the Theorem of the Maximum that
p̂e(.|x, ū) solves (LP-e) for ᾱe(x) given ū and v̄; the corresponding value of (LP-e)
satisfies

Û(x, ᾱe(x), ū, v̄) ≥ Ū(x) (21)

In a similar fashion, we can show that for every player i and every state x there
exists an action profile ᾱi(x) ∈ A(x) and a payment function p̂i(.|x, ū) that solves
(LP-i) for ᾱi(x) given ū and v̄. The corresponding value of (LP-i) satisfies

v̂i(x, ᾱi(x), ū, v̄) ≤ v̄i(x) (22)

Let σ̃ be a simple strategy profile with action plan (ᾱk)k∈K as specified above and
a payment plan (p̃k)k∈K that is specified below. Expected continuation payoffs at
the action stage in state x and equilibrium phase of σ̃ are given by

ũi(x) = (1− δ)πi(ᾱk, x) + δE[−(1− δ)p̃ei (x′, y, x) + ũi(x′)|x, ᾱe]) (23)

The payments p̃e for the equilibrium phase shall be chosen such that ũi and p̃e

satisfy the transformation specified in Lemma 1 with respect to ū and p̂e:

p̃ei (x′, y, x) = p̂ei (x′, y|x, ū) + ũi(x′)− ūi(x′)
1− δ (24)
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Since ũi is a linear function of the payments p̃i, (24) describes a system of linear
equations with as many as unknowns as equations, i.e. at least one solution exists.
For the punishment phase of each player i, we similarly specify payments for each
player j = 1, ..., n by

p̃ij(x′, y, x) = p̂ij(x′, y|x, ū) + ũj(x′)− ūj(x′)
1− δ (25)

With these payments, expected continuation payoffs of σ̃ after the action stage
in state x and phase k are then the same as if continuation payoffs were ū and
payments were p̂k, i.e. we have

Ũ(x) = Û(x, ᾱe(x), Ū , v̄) (26)

and
ṽi(x) = v̂i(x, ᾱi(x), ū, v̄) (27)

which implies that Ũ(x) ≥ Ū(x) and ṽi(x) ≤ v̄i(x). It follows from Lemma 1 that
all action, payment and budget constraints of σ̃ are satisfied, i.e. σ̃ constitutes a
simple equilibrium. We thus must have

Ũ(x) = Ū(x) = Û(x, ᾱe(x), Ū , v̄)

and
ṽi(x) = v̂i(x, ᾱi(x), ū, v̄) = v̄i(x)

It then follows from Proposition 1 that every PPE payoff can be implemented by
varying the upfront transfers of σ̃ and that the payoff set is compact.�
Proof of Proposition 2: The set of payment plans that satisfy conditions (AC-
k), (PC-k) and (BC-k) is compact, i.e. for every state x there exists a maxi-
mum level Ū s(x|(αk)k∈K) of joint equilibrium phase payoffs and a minimum level
v̄si (x|(αk)k∈K) of player i’s punishment payoffs that can be implemented with sim-
ple equilibria with payment plan (αk)k. The proof now proceeds in similar steps
than the proof for Theorem 1. One can show that there always exists a payment
plan that creates a simple equilibrium that has joint payoffs of Ū s(x|(αk)k∈K) and
punishment payoffs of v̄si (x|(αk)k∈K) for all players at the same time in all states.
By maximizing ∑x∈X

∑n
i=1 (usi (x)− vsi (x)), we select a payment plan that solves

this problem.�
Proof of Proposition 3:The result follows directly from the monotonicity results
in Lemma 5 and from the continuity results in Lemma 6.�
Proof of Proposition 4: We first show sufficiency. Let p̂k(.|u, x) be the payment
function that solves (LP-k) given v and some u satisfying ∑ui(x) = U(x) for all
x. We now choose a payment plan (pk)k∈K such that a simple strategy profile
with (pk)k∈K and action plan (αk)k∈K has equilibrium phase and punishment
payoffs that satisfy usi (x) = ui(x) and vsi (x) = vi(x). Such a payment plan is
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given by a solution to the following system of linear equations that satisfies the
transformation in Lemma 1

pki (x′, y, x) = p̂ki (x′, y|x, u) + usi (x′)− ui(x′)
1− δ ∀i, x′, x, y, k

It follows from Lemma 1 that (pk)k∈K and (αk)k∈K form a simple equilibrium.
Necessity is straightforward. If there exists a simple equilibrium with action plan
(αk)k∈K then (LP-OPP) must have a solution. If U and v are the payoffs corre-
sponding to that solution, conditions (5) and (6) obviously hold true because the
separate problem (LP-e) and (LP-i) impose fewer constraints than (LP-OPP). �
Proof of Proposition 5:
1. To prove the first result, we show that if there is a solution to (LP-e) then
there is a solution without money burning. Consider the punishment phase i and
the case that no player has deviated in the previous action stage. If a player
j 6= i burns money, she can instead simply not burn it: not burning, relaxes j’s
action constraints while not changing i’s payoff. If player i burns money, she can
instead simply transfer the same amount to player j. Both arguments also work
the equilibrium phase. If some player i is asked to burn money after she deviated
in the previous period, she can simply transfer the same amount to another player
j 6= i. Since for j the deviation of i is a zero probability event, any such transfers
don’t change j’s action constraints.
2. We now prove the second result. Throughout the remaining proof, we assume
that u is the payoff vector with ∑n

i=1 ui = U and ui ≥ vi∀i that is used as argument
in problem (LP-k). We denote by

pmaxj (x) = 1
1− δ (uj(x)− vj(x))

the maximum payment that satisfies player j’s payment constraint in state x.
Since deviations are perfectly observed, player i’s incentives to deviate from an
action profile are minimized if whenever she deviates and state x′ realizes she has
to pay pmaxi (x′). Given such maximum fines, player i’s action constraint in state
x and for problem (LP − k) simplifies to

(1− δ)
(
πi(ak, x)− δE[pki |ak, x]

)
+ δE[u|ak, x] ≥

max
ai∈Ai(x)

(
(1− δ)πi(ai,ak−i, x) + δE[vi(x′)|ai,ak−i, x]

)
(28)

We now note that a player’s action constraints are weakly stricter than her pay-
ment constraints in the following sense. If payments satisfy pj(x′) = pmaxj (x′) for
all resulting states x′ ∈ X then the action constraint (28) becomes

(1− δ)πi(ak, x) + δE[vi(x′)|ak, x] ≥
max

ai∈Ai(x)

(
(1− δ)πi(ai, ak−i, x) + δE[vi(x′)|ai, ak−i, x]

)
(29)
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Obviously, condition (29) either binds exactly or is violated. In problem (LP-i) it is
optimal to choose expected payments for player i as high as possible given payment
constraints and action constraints. Optimal payments for player i will thus always
be such that player i′s action constraints are exactly binding; continuation payoffs
are thus given by (8).
3. Condition (9) is simply the sum of players’ action constraints (28) given max-
imum fines. Hence, (9) is necessary for the existence of solution to (LP-k).
We now show sufficiency. Obviously, for problem (LP-k) there always exist pay-
ments such for all but one freely selected player j 6= k all action and payment
constraints are satisfied. Furthermore, since action constraints are weakly stricter
than payment constraints, we also know that such payments exist under which the
action constraints of all players i 6= j are exactly binding. If no money burning is
used, expected payments of player j in state x satisfy:

−(1− δ)δE[pj(x′)|ak, x] =
(1− δ)

(
Π(ak, x)− πj(ak, x)

)
+ δ(U(x)− uj(x))

−
∑
i 6=j

max
âi∈Ai(x)

{(1− δ)πi(âi, ak−i, x) + δE[vi(x′)|âi, ak−i, x]} (30)

Plugging in these expected transfers into the action constraint for player j for
state x yields condition (9). This means (9) implies that there exist payments
without money burning that satisfy the action constraints for all players in all
states and phases and all payment constraints of all players i 6= j. We now show
that there also exists payments that additionally satisfy the payment constraints
for player j. If no money burning is used, the sum of payment constraints across
all players is always satisfied, since

n∑
i=1

pi(x′) = 0 ≤ 1
1− δ

n∑
i=1

(ui(x′)− vi(x′)) =
n∑
i=1

pmaxi (x′). (31)

Assume that given payments satisfy all action constraints and all payment con-
straints except for the payment constraints for player j in some realized state
x′. (31) then guarantees that there is a set of players J such that the transfers
pj(x′) of players j ∈ J can be sufficiently increased and transferred to player i
so that the payment constraints of all players {i} ∪ J are satisfied. Furthermore,
our previous result that for every player i action constraints are stricter than the
payment constraints, implies that there is a set of realized states X̂ ⊂ X such that
player i’s transfers pi(x̂′) for all x̂′ can be increased and given to players j ∈ J
such that with this compensation expected transfers E[pj(x′)|ak, x] do not change
for any player j ∈ J ∪ {i}.�
Proof of Proposition 6: Let Cai be a operator mapping the set of punishment pay-
offs in itself defined by

Cai (vi)[x] = ci(x,a(x), vi)
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It can be easily verified that Cai is a contraction-mapping operator. It follows
from the contraction-mapping theorem that player i’s best-reply payoffs are given
by the unique fixed point of Cai , which we denote by vi(a). This means

vi(a) = Cai (vi(a)) (32)

It is a well known result that the operator Cai is monotone. This means

vi ≤ ṽi ⇒ Cai (vi) ≤ Cai (ṽi) (33)

where vi ≤ ṽi is defined as vi(x) ≤ ṽi(x)∀x ∈ X. We denote by [Cai ]k the operator
that applies k times Cai and define its limit by

[Cai ]∞ = lim
k→∞

[Cai ]k.

The contraction mapping theorem implies that [Cai ]∞ is well defined and trans-
forms every payoff function v into the fixed point of Cai , i.e.

[Cai ]∞(v) = v(a) (34)

Furthermore, it follows from monotonicity of Cai that

Cai (vi) ≤ vi ⇒ [Cai ]∞(vi) ≤ vi (35)

and
Cai (vi) < vi ⇒ [Cai ]∞(vi) < vi (36)

where two payoff functions ui and ũi satisfy ui < ũi if ui ≤ ũi and ui 6= ũi.

We now show that for any two policies a and ã the following monotonicity results
hold

Cai (v(a)) = C ãi (v(a)) ⇒ v(a) = v(ã) (37)
Cai (v(a)) > C ãi (v(a)) ⇒ v(a) > v(ã) (38)

v(a) � v(ã) ⇒ Cai (v(a)) � C ãi (v(a)) (39)

We exemplify the proof for (38). It follows in this order from from (32), the left
part of (38), (35) and (34) that

v(a) = Cai (v(a)) > C ãi (v(a)) ≥
(
C ãi
)∞

(v(a)) = v(ã).

(37) and can be proven similarly. To prove (39), assume that there is some ã with
Cai (v) ≤ C ãi (v) but ṽ � v. We find

v = Cai (v) ≤ C ãi (v) ≤
(
C ãi
)∞

(v) = ṽ

which contradicts the assumption ṽ � v.
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Intuitively, these monotonicity properties of the cheating payoff operator are cru-
cial for why the algorithm works. If one wants to find out whether a policy ã can
yield lower punishment payoffs for player i than a policy a, one does not have
to solve player i’s Markov decision process under policy ã. It suffices to check
whether for some state x the cheating payoffs given policy ã and punishment pay-
offs v(a) are lower than v(a)(x). If this is not the case for any admissible policy
ã then a policy a is an optimal punishment policy, in the sense that it minimizes
player i’s punishment payoffs in every state.
The fixed point condition (32) of the value determination step and the policy
improvement step (20) imply that vr = Ca

r

i (vr) ≥ Ca
r+1

i (vr). We first establish
that if

vr = Ca
r

i (vr) = Ca
r+1

i (vr). (40)
then we have vri = v̂i. For a proof by contradiction, assume that condition holds
for some r but that there exists a policy â such that v(ar) � v(â), i.e. â leads
in at least some state x to a strictly lower best-reply payoff for player i than ar.
By (39) this would imply Ca

r

i (vr) ≮ C ãi (vr). This means that â must also be a
solution to the policy improvement step and since (40) holds, we then must have

Ca
r

i (vr) = C âi (vr)

However, (37) then implies that v(ar) = v(â), which contradicts the assumption
v(ar) � v(â). Thus if the algorithm stops in a round R, we indeed have vR = v̂i.
If the algorithm does not stop in round r, it must be the case that vr = Ca

r

i (vr) >
Ca

r+1
i (vr). (38) then directly implies the monotonicity result vr > vr+1. The

algorithm always stops in a finite number of rounds since the number of policies
is finite and there a no cycles because of the monotonicity result.�
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