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Discounted Stochastic Games

Natural generalization of infinitely repeated games

n players

infinitely many periods, common discount factor δ < 1

in every period there is a state x ∈X (finite)

Stage game

I actions a = (a1, ...,an) ∈ A(x)
I payoffs π(a,x)

State can change after every period

I τ(x ′|x ,a): probability that new state is x ′

This talk: Players publicly observe a and x (perfect monitoring)



Example: Cournot Model with Stochastic Reserves

Two firms i = 1,2 that operate hydro-electric power plants

State x = (x1,x2) ∈ {0,1, ..., x̄}2 amount of hydro-energy in each
firm’s water reservoir

Firma i can sell in a period ai ∈ {0,1, ...,xi} units of energy.

Stage game profits:

πi (a,x) = P(a1,a2)ai

New state depends on random rainfall:

x ′i = xi −ai + εi



Solving stochastic games... for Markov perfect

equilibria?

Most applied literature: Markov perfect equilibria (MPE)

I actions depend only on current state x

Problems with MPE

Multiple MPE can exist (e.g. Besanko et. al., 2010)

Set of MPE payoffs often unknown

Set of MPE payoffs can be very sensitive to state space

I single state (infinitely repeated game):
MPE = repetition of static Nash equilibrium

I including (almost) payoff irrelevant states, e.g. output in
previous period, may allow quite collusive MPE



Solving stochastic games... for subgame perfect

equilibria?

Set of SPE payoffs hard to characterize

Large discount factors (δ → 1) & irreducible stochastic game

I Dutta (1995), Hörner et. al. (2011)

Fixed δ : Extending algorithms for repeated games?

I Abreu, Pearce and Stachetti (1990), Judd, Yeltekin, Conklin
(2003), Abreu & Sannikov (2011)

Pareto-optimal equilibria don’t have in general a simple structure



This paper

Considers an economic relevant subset of stochastic games

Main results:

I every SPE payoff can be implemented with a simple class of
equilibria

I methods to analytically find or to compute equilibrium payoff
sets

Stochastic games with voluntary monetary transfers and
risk-neutral players

I repeated games: Levin (2003), Goldluecke und Kranz (2010),
Malcomson & McLeod (1989), Doornik (2006), Rayo (2007),
Klimenko, Ramey and Watson (2008), Harrington and
Skrzypacz (2007),...

I transfers implemented in several cartels via sales between firms
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Structure of a period in game with transfers

transfers actions
new state
x ′ drawn transfers

Transfers: players chooses simultaneously amount of money they
want to transfer to other players

I no binding liquidity constraints
I money burning possible
I received net amount of money will be added to payoffs πi (a,x)



Simple strategy profiles

Basic structure

n + 1 phases k ∈ {e,1, ...,n}
I equilibrium phase k = e
I a punishment phase k = i



Simple strategy profiles

Play in phase k state x

transfers

no transfers

exception:
upfront transfers

in first period

actions

αk(x) ∈∆A(x)

draw new
state x ′ transfers

pk(x ′,x ,a)



Simple strategy profiles

Transition between phases

phase only changes after upfront transfer or after transfer at end
of period

I player i unilaterally deviates from his transfer
⇒punishment phase k = i

I no player unilaterally deviates from transfer
⇒equilibrium phase k = e

punishment have a stick-and-carrot structure (similar to Abreu,
1986)



Main Result

Theorem
Fix a discount factor δ : Every SPE payoff can be implemented with
an equilibrium in simple strategies.



Intuition

Incentive compatible monetary transfers can be used for
three important functions

1 Distribute joint payoffs (with upfront payments)

2 Balance incentive constraints between players

3 Fines as punishment



1. Distributing with upfront transfers
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blue area =
equilibrium payoffs
without
upfront transfers
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1. Distributing with upfront transfers

u2

u1

Punish players that deviate
from upfront transfers
with optimal penal codes
á la Abreu (1988)

blue area =
equilibrium payoffs
without
upfront transfers



1. Distributing with upfront transfers

u2

u1

With upfront money burning
can implement every payoff
in the triangle (simplex)
Payoff set described
by n+1 numbers blue area =

equilibrium payoffs
without
upfront transfers



2. Balancing incentive constraints

Repeated asymmetric Prisoners’ dilemma

Aim: (C,C) in every period

Punishment: (D,D) forever

C D

C 3,1 -1,4
D 4,-1 0,0

Incentive constraints for subgame perfection

Player 1:
∞

∑
t=0

3δ
t =

3

1−δ
≥ 4⇔ δ ≥ 1

4

Player 2:
∞

∑
t=0

δ
t =

1

1−δ
≥ 4⇔ δ ≥ 3

4

Given asymmetries stationary equilibrium play may not be
optimal (without transfers)



2. Balancing incentive constraints

Assume pl. 1 transfers 1 unit of money every period on eq. path
to pl. 2. No incentives to deviate from (C ,C ):

Player 1:
3−1

1−δ
≥ 4⇔ δ ≥ 1

2

Player 2:
1+1

1−δ
≥ 4⇔ δ ≥ 1

2

Consider summed incentive constraints:

3 + 1

1−δ
≥ 4 + 4⇔ δ ≥ 1

2

General result: if summed incentive constraints hold, one can
always find transfers such that no player has incentives to
deviate from individual actions or transfers



3. Fines as punishment

Allow a player who deviates to avoid punishment actions by
paying a fine

Punishment actions only necessary if fines not paid

After one period of punishment actions, remaining punishment
can be settled again with a fine

⇒ Optimal penal codes can be described by one action profile per
state (plus transfer / fine scheme)

For mixed action profiles transfer make a player indifferent
between all pure actions in the support



Optimal Simple Equilibria & Algorithms

Paper develops additional results for finding optimal simple
equilibria that can implement every SPE payoff by varying
upfront transfers.

I different numerical algorithms
I guidance to find closed-form solutions



Solving the model of Cournot Competition with Stochastic
Reserves...



Prices under Collusion

Reserves firm 1

R
es

er
ve

s 
fir

m
 2

0

5

10

15

20

0 5 10 15 20

8

10

12

14

16

18

20

δ = 2
3

x̄ = 20

P(a) = 20−a1−a2

rain: 3 or 4 units

441 states

∼30 sec. to solve

on my notebook



Principal-Agent Relationship with a Durable

Product

State describes whether principal has a durable product:
x ∈ {0,1}

πP(a,x) = x

Agent can exert costly effort to build or destroy the product
a ∈ {−1,0,1}

πA(a,x) =−c |a|

x ′ = min{max{x + a,0},1}

Unique MPE: no transfers, a(x) = 0

‘
‘grim-trigger-style” equilibria: after deviation play MPE forever
⇒only zero effort can be implemented
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Principal-Agent Relationship with a Durable

Product
State describes whether principal has a durable product:
x ∈ {0,1}

πP(a,x) = x

Agent can exert costly effort to construction or destroy the
product a ∈ {−1,0,1}

x ′ = min{max{x + a,0},1}

πA(a,x) =−c |a|
Unique MPE: a(x) = 0, no transfers

Optimal simple equilibria: construction in equilibrium phase and
destruction as punishment whenever

(1−δ
2)c ≤ δ

2.



Summary

Allow transfers & assume risk-neutrality in discounted stochastic
game

I Every SPE payoff can be implemented with simple equilibria
I Algorithms to solve for equilibrium payoff sets
I Results extend to imperfect monitoring of actions



Useful results to find optimal simple equilibria
Perfect monitoring, finite action space, set of pure strategy SPE

There are optimal transfers for given actions (ak(x))∀k,x

Computing joint equilibrium payoffs and punishment
payoffs

U(x |ae) = (1−δ )Π(ae(x),x) +δE [U(x ′|ae)|ae(x),x ]

vi (x |ai ) = maxai∈A(x){(1−δ )πi (a,x) +δE [vi (x
′|ai )|ai ,ai−i (x),x ]}

ak(x) can be implemented if and only if

(1−δ )Π(ak(x),x) + δE [U(x ′|ae)|ak(x),x ]≥
n

∑
i=1

max
ai∈A(x)

{(1−δ )πi (ai ,a
k
−i (x),x) + δE [vi (x

′|ai )|ai ,ak−i (x),x ]}



Basic idea of one algorithm

Assume in round r all action profiles in Ar (x)⊂ A(x) can be
implemented

In round r = 0 all action profiles can be implemented

Let

U(x |Ar ) = max
ae∈Ar

U(x |ae) Markov decision process

vi (x |Ar ) = min
ai∈Ar

vi (x |ai ) Nested Markov decision process

Let Ar+1(x) be all profiles that survive joint incentive
constraints given U(.|Ar ) and vi (x |Ar )

Stop once Ar = Ar+1



Public Correlation and Non-Optimality of

Stationary Equilibrium paths

Stage game:

A B
A 0,0 -1,3

B 3,-1 0,0

Mix between (A,B) and (B ,A) →δ ≥ 1
2

Alternate {(A,B),(B ,A),(A,B), ...}→δ ≥ 1
3


