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Abstract
A goodness-of-fit test for exchangeable Archimedean copulas is presented. In a
large-scale simulation study it is shown that the test performs well according to
the error probability of the first kind and the power under several alternatives,
especially in large dimensions. The proposed test is compared to other known tests
for Archimedean copulas. In contrast to the latter, the former is simple and easy
to apply in any dimension. Commonly applied goodness-of-fit tests are numerically
demanding according to precision and runtime, especially as the dimension increases,
which is also investigated in this work. The presented goodness-of-fit test is based on
a transformation originally intended for sampling random variates from exchangeable
Archimedean copulas and its correctness is proven. The proposed goodness-of-fit
test may therefore be interpreted as an analogon to the goodness-of-fit test based on
Rosenblatt’s transformation which is linked to the conditional distribution method for
sampling random variates. Further, it complements in some sense another commonly
used goodness-of-fit test based on the probability integral transformation.
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1 Introduction
In contrast to the most widely used class of elliptical copulas, exchangeable Archimedean
copulas, simply referred to as Archimedean copulas in the sequel, are given explicitly by

C(u) = ψ(ψ−1(u1) + · · ·+ ψ−1(ud)), u ∈ Id, (1)

where an (Archimedean) generator ψ : [0,∞] → I := [0, 1] is a continuous, decreasing
function, which satisfies ψ(0) = 1, ψ(∞) := limt→∞ ψ(t) = 0, and is strictly decreasing
on [0, inf{t : ψ(t) = 0}]. A necessary and sufficient condition under which (1) is indeed a
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1 Introduction

proper copula is that ψ is d-monotone, i.e. ψ is continuous on [0,∞], admits derivatives
up to the order d− 2 satisfying (−1)k dk

dtk
ψ(t) ≥ 0 for all k ∈ {0, . . . , d− 2}, t ∈ (0,∞),

and (−1)d−2 dd−2

dtd−2ψ(t) is decreasing and convex on (0,∞), see McNeil and Nešlehová
(2009).

Archimedean copulas build a famous class of copulas due to several reasons. Members
of this class have an explicit form, given by (1), which often allows for easy handling in
calculations. Further, relevant properties of Archimedean copulas can be expressed in
terms of the generator ψ, a one-place function. Moreover, in contrast to elliptical copulas,
Archimedean copulas may introduce radial asymmetry which allows to model different
kinds of tail dependence, a desired feature for many applications.
Goodness-of-fit techniques for copulas only recently gained interest, see e.g. Genest

and Rivest (1993), Breymann et al. (2003), Fermanian (2005), Berg and Bakken (2006),
Dobrić and Schmid (2007), Genest et al. (2006), Berg and Bakken (2007), Genest et al.
(2009), and references therein. This can also be seen by consulting the standard textbook
of Cherubini et al. (2004, pp. 176) which only contains two pages that explicitly address
goodness-of-fit tests for estimated copula families. Similarly, the famous textbook of
McNeil et al. (2005, pp. 236) only gives short references to specific goodness-of-fit tests.
Although usually presented in a d-dimensional setting, only some of the publications
in this area actually apply goodness-of-fit tests in more than two dimensions, including
Berg and Bakken (2007) and Savu and Trede (2008) up to dimension d = 5, Berg (2009)
up to dimension d = 8, and Berg and Bakken (2006) up to dimension d = 10. The
common deficiency of goodness-of-fit tests for copulas in general, but also for the class
of Archimedean copulas, seems to be their limited applicability when the dimension
increases. This is mainly due to the fact that goodness-of-fit techniques feasible in
small dimensions lack a simple or at least numerically accessible form as the dimension
increases. Further, parameter estimation usually becomes much more demanding in large
dimensions.

From the practitioner’s point of view, however, there is an increasing interest in copula
theory and applications in large dimensions. This is intuitively clear if one considers
e.g. financial applications including a large number of assets, risks, and so forth. One
of our goals is therefore to present and explore goodness-of-fit tests for Archimedean
copulas applicable in a large-dimensional framework, say e.g. d = 10 or d = 20, or even
much larger. Further, we investigate the influence of the dimension on the conducted
goodness-of-fit tests and address the problems that specifically arise in large dimensions.

As a general goodness-of-fit test, the transformation of Rosenblatt (1952) is well-known.
It is important to note that the inverse of this transformation leads to a popular sampling
algorithm, the conditional distribution method, see e.g. Embrechts et al. (2001). In
other words, for a bijective transformation which converts d independent and identically
distributed (i.i.d.) standard uniform random variables to d random variables distributed
according to some copula, the corresponding inverse transformation may be applied to
obtain d i.i.d. standard uniform random variables from d random variables distributed
according to some given copula. In this work we precisely use this idea based on a
transformation originally proposed by Wu et al. (2006) for sampling Archimedean copulas.
Based on the work of McNeil and Nešlehová (2009) we present a more elegant proof under
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weaker assumptions. We then apply the first d− 1 components of the transformation to
build a general goodness-of-fit test for Archimedean copulas. This complements goodness-
of-fit tests based on the d-th component, the probability integral transformation, see
e.g. Genest et al. (2006), Savu and Trede (2008), or Genest et al. (2009). Further, our
proposed test can be interpreted as an Archimedean analogon to the goodness-of-fit tests
based on the transformation of Rosenblatt (1952) for copulas in general, as it establishes
a link between a sampling algorithm and a goodness-of-fit test. The appealing property
of the transformation of Wu et al. (2006) for Archimedean copulas is that it is easily
applied in any dimension, whereas the general transformation of Rosenblatt (1952), as
well as the test based on the probability integral transformation, face several numerical
difficulties.
This paper is organized as follows. In Section 2, commonly used goodness-of-fit tests

are recalled. In Section 3, a new goodness-of-fit test for Archimedean copulas is presented.
Section 4 contains details about the conducted large-scale simulation study, including the
implementation in Section 4.1 and the experimental design in Section 4.2. The results of
the simulation study are presented in Section 5. Finally, Section 6 concludes.

2 Goodness-of-fit tests for copulas
Let X = (X1, . . . , Xd)T , d ∈ N\{1}, denote a random vector with common distribution
function H and continuous marginals F1, . . . , Fd. By Sklar’s Theorem, see e.g. Sklar
(1996), there exists a unique copula C which couples F1, . . . , Fd with H, i.e.

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)).

In a copula model for X, C is assumed to belong to a class C0 with

C0 := {Cϑ |ϑ ∈ Θ},

where, in our framework, ϑ denotes a single parameter in the set Θ of admissible
parameters. After estimating ϑ by ϑ̂ based on n ∈ N realizations of i.i.d. random vectors
Xi = (Xi1, . . . , Xid)T , i ∈ {1, . . . , n} of H, the goal is to test the null hypothesis

H0 : C ∈ C0. (2)

In practical applications, one usually either assumes that the marginals F1, . . . , Fd belong
to some known parametric families which are estimated beforehand or the marginals
are treated as nuisance parameters and are replaced by their (usually slightly scaled)
empirical counterparts, see Genest et al. (2009). Following the latter approach one ends
up with rank-based pseudo-observations Ui = (Ui1, . . . , Uid)T , i ∈ {1, . . . , n}, which
are interpreted as observations of C and are therefore used for parameter estimation
and goodness-of-fit techniques to test H0. As e.g. Dobrić and Schmid (2007) describe,
there are two problems with this approach. First, the pseudo-observations are neither
realizations of perfectly independent random vectors nor are the components perfectly
following a univariate standard uniform distribution. This affects the null distribution
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of the test statistic under consideration. However, all goodness-of-fit approaches suffer
from these effects and a solution may be a bootstrap procedure to access the exact
null distribution. Note that particularly in large dimensions, conducting a bootstrap is
often too time-consuming, especially for the commonly used goodness-of-fit tests. For a
comparison with our proposed goodness-of-fit test, we therefore assume that we have
data from C directly. Second, using estimated copula parameters additionally affects the
null distribution. In our large-scale simulation study, we take care of this problem by
investigating the behavior of the tests under some variations of the tested parameters,
described in Section 4.2. Since our proposed goodness-of-fit test turns out to be fast
enough, even in large dimensions, we conduct a bootstrap procedure for this approach,
see Section 4.2.

In order to conduct a goodness-of-fit test, the given data Ui, i ∈ {1, . . . , n}, is usually
first transformed to some data U ′i , i ∈ {1, . . . , n}, so that the distribution of the latter
is known under the null hypothesis; for Rosenblatt’s transformation, see Section 2.1,
the data U ′i , i ∈ {1, . . . , n}, is also d-dimensional; for the testing approach based on
the probability integral transformation, described in Section 2.2, it is one-dimensional;
and for the goodness-of-fit approach we propose in Section 3, it is d− 1-dimensional. If
not already one-dimensional, after such a transformation, the data U ′i , i ∈ {1, . . . , n}, is
usually mapped to one-dimensional data Yi, i ∈ {1, . . . , n}, such that the corresponding
distribution FY is again known under the null hypothesis. So indeed, instead of (2), one
usually considers some adjusted hypothesis

H∗0 : FY ∈ F0

under which a goodness-of-fit test can be carried out in a one-dimensional setting. For
this, different approaches exist, see Section 2.2. The reasoning behind this procedure
is that if H∗0 is rejected, so is H0. However, due to informational loss by reducing the
dimension, H0 is a subset of H∗0 and hence the two hypotheses are not equivalent. So we
keep in mind that in fact there is already some informational loss inherent in commonly
used goodness-of-fit test as they are carried out in a one-dimensional setting.

2.1 Rosenblatt’s transformation
The transformation introduced by Rosenblatt (1952) is a standard approach for obtaining
realizations of standard uniform random vectors U ′i , i ∈ {1, . . . , n}, given the random
vectors Ui, i ∈ {1, . . . , n}, which can then be tested or further mapped to one-dimensional
variates for testing purposes. Consider a representative d-dimensional random vector U
distributed according to the copula C. To obtain a standard uniform random vector U ′
on Id, Rosenblatt (1952) proposed the transformation R : U → U ′, given by

U ′1 := U1,

U ′2 := C2(U2 |U1),
...

U ′d := Cd(Ud |U1, . . . , Ud−1),
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where for j ∈ {2, . . . , d}, Cj(uj |u1, . . . , uj−1) denotes the conditional distribution function
of Uj given U1 = u1, . . . , Uj−1 = uj−1. This transformation is quite general in that it
applies to any copula.
Note that the inverse transformation R−1 of Rosenblatt’s transformation leads to a

general sampling algorithm for copulas, the so-called conditional distribution method,
see e.g. Embrechts et al. (2001). In fact, this link brings rise to the general idea of
using sampling algorithms based on transformations of d i.i.d. standard uniform random
variables to construct goodness-of-fit tests. This is done in Section 3 to construct
a goodness-of-fit test for Archimedean copulas based on a transformation originally
proposed by Wu et al. (2006) for sampling random variates.

To find the quantities Cj(uj |u1, . . . , uj−1), j ∈ {2, . . . , d}, for a specific copula C, the
following connection between conditional distributions and partial derivatives is usually
applied, a proof of which can be found in Schmitz (2003, p. 20). Assuming C admits
continuous partial derivatives with respect to the first d− 1 arguments, then

Cj(uj |u1, . . . , uj−1) = Dj−1,...,1C
(1,...,j)(u1, . . . , uj)

Dj−1,...,1C(1,...,j−1)(u1, . . . , uj−1)
, j ∈ {2, . . . , d}, (3)

where C(1,...,k) denotes the k-dimensional marginal copula of C corresponding to the first
k arguments and Dj−1,...,1 denotes the mixed partial derivative of order j−1 with respect
to the first j − 1 arguments.
The problem in applying (3) in large dimensions is that it is usually quite difficult

to access the involved derivatives, the price which one has to pay for such a general
transformation. Further, numerically evaluating the derivatives is often time-consuming
and prone to numerical errors.

Rosenblatt’s transformation as a method for constructing goodness-of-fit tests is denoted
by R in the sequel.

2.2 Reducing the dimension
In order to apply a goodness-of-fit test in a one-dimensional setting one has to summarize
the d-dimensional data Ui or U ′i to one-dimensional quantities Yi, i ∈ {1, . . . , n}, for
which the distribution is known under the null hypothesis. In what follows, some popular
mappings achieving this task are described.
Nd: Under H0, the one-dimensional random variables Yi = Fχ2

d

(∑d
j=1(Φ−1)2(U ′ij)

)
,

i ∈ {1, . . . , n}, should be i.i.d. according to a standard uniform distribution, where
Fχ2
d
denotes the distribution function of a χ2

d distribution, i.e. a χ2 distribution
with d degrees of freedom, and Φ denotes the standard normal distribution function.
This transformation is denoted by Nd in the sequel.

SBn,d: Another test statistic is proposed by Genest et al. (2009). As an overall result, they
recommend to use a distance between the distribution under H0, assumed to be
standard uniform on Id, and the empirical distribution, namely

SBn,d := n

∫
Id

(Dn(u)−Π(u))2 du,
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where Π(u) denotes the independence copula and Dn(u) := 1
n

∑n
i=1 1{U ′

i
≤u}, i.e.

the empirical distribution function based on the random vectors U ′i , i ∈ {1, . . . , d}.
This transformation is referred to as SBn,d.

KC : For a copula C let KC denote the probability integral transformation (or Kendall’s
transformation), i.e. KC(t) := P(C(U) ≤ t), t ∈ I, where U ∼ C, see Barbe et al.
(1996) or McNeil and Nešlehová (2009). Under H0 and if KC is continuous, the
random variables Yi := KC(C(Ui)) should be i.i.d. according to a standard uniform
distribution. This approach for goodness-of-fit testing will be referred to as KC .
Note that in this case, no multidimensional transformation of the data is performed
beforehand. Further, it is well known, that KC(t) is not unique, in the sense that
there can be more than one copula admitting the same KC(t), see Genest and Boies
(2003). This fact implies that a test based on KC(t) cannot distinguish between
two copulas having the same KC(t).

KΠ: One can also consider the random vectors U ′i , i ∈ {1, . . . , n}, in conjunction with the
independence copula, i.e. define Ỹi :=

∏d
j=1 U

′
ij , where Ỹi has distribution function

KΠ(t) = t
∑d−1
k=0

1
k!(− log t)k. Under H0, the sample Yi := KΠ(Ỹi), i ∈ {1, . . . , n},

should indicate a uniform distribution on the unit interval. This approach is
referred to as KΠ.

In the approaches Nd, KC , and KΠ we have to test the hypothesis that realizations of
the random variables Yi, i ∈ {1, . . . , n}, follow a uniform distribution on the unit interval.
This may be achieved in several ways, the following two of which are applied in the
sequel.
χ2: Pearson’s χ2 test, see Rao (2001, p. 391), shortly referred to as χ2.
AD: The so-called Anderson-Darling test, a specifically weighted Cramér-von Mises test,

see Anderson and Darling (1952) and Anderson and Darling (1954). This method
is referred to as AD.

3 A goodness-of-fit test for Archimedean copulas
In this section we present a goodness-of-fit test for Archimedean copulas in large dimen-
sions. This test is based on the following transformation originally presented in Wu et al.
(2006) for generating random variates from Archimedean copulas. Note that we present
a rather short proof of this interesting result, under weaker assumptions.

Theorem 3.1 (The main transformation)
Let U ∼ C, d ∈ N\{1}, where C is an Archimedean copula with d-monotone generator
ψ and continuous probability integral transformation KC . Then U ′ ∼ U(Id), where

U ′j =
(∑j

k=1 ψ
−1(Uk)∑j+1

k=1 ψ
−1(Uk)

)j
, j ∈ {1, . . . , d− 1}, U ′d = KC(C(U)). (4)

Proof
As shown in McNeil and Nešlehová (2009), (ψ−1(U1), . . . , ψ−1(Ud))T has an l1-norm
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symmetric distribution with survival copula C and radial distribution FR = W−1
d [ψ],

whereWd[·] denotes the Williamson d-transform. Hence, (ψ−1(U1), . . . , ψ−1(Ud))T
d= RS,

where R ∼ FR and S ∼ U({x ∈ Rd
+ | ||x||1 = 1}) are independent. For Z(0) := 0,

Z(d) := 1, and (Z1, . . . , Zd−1) ∼ U(Id−1), it follows from Devroye (1986, p. 207) that
Sj

d= Z(j) − Z(j−1), j ∈ {1, . . . , d}, independent of R. This implies that ψ−1(Uj)
d=

R(Z(j) − Z(j−1)), j ∈ {1, . . . , d}, and hence that

U ′
d=

(Z(1)
Z(2)

)1

, . . . ,

(
Z(d−1)
Z(d)

)d−1

,KC(ψ(R))

 =:X.

Since KC is continuous and ψ(R) ∼ KC , KC(ψ(R)) is uniformly distributed in I. Further,
as a function in R, KC(ψ(R)) is independent of (X1, . . . , Xd−1)T . It therefore suffices to
show that (X1, . . . , Xd−1)T ∼ U(Id−1), a proof of which can be found in Devroye (1986,
p. 212).
The proof of Theorem 3.1 implies the following result.

Corollary 3.2
Let U ∼ C, d ∈ N\{1}, where C is an Archimedean copula with d-monotone generator
ψ. Then (U ′1, . . . , U ′d−1)T ∼ U(Id−1), where

U ′j =
(∑j

k=1 ψ
−1(Uk)∑j+1

k=1 ψ
−1(Uk)

)j
, j ∈ {1, . . . , d− 1}.

The transformation T : U → U ′ addressed in (4) can be interpreted as an analogon
to Rosenblatt’s transformation R specifically for Archimedean copulas. Both T and
R map d random variables to d random variables and can therefore be used in both
directions, for generating random variates and goodness-of-fit testing; the latter approach
for T is proposed in this paper. The advantage of this approach for obtaining the data
U ′i ∼ U(Id), i ∈ {1, . . . , n}, from Ui ∼ C, i ∈ {1, . . . , n}, in comparison to Rosenblatt’s
transformation lies in the fact that it may be much easier to compute the quantities
in (4) than accessing the derivatives in (3). One can then proceed as for Rosenblatt’s
transformation and use one of the transformations listed in Section 2.2 to transform
the data U ′i , i ∈ {1, . . . , n}, to the one-dimensional data Yi, i ∈ {1, . . . , n}, for testing
H∗0 . A test involving the transformation T to obtain the random vectors U ′i ∼ U(Id),
i ∈ {1, . . . , n}, is referred to as approach Td in the sequel.
One may argue that the evaluation of KC involves knowledge of the derivatives of ψ,

see Barbe et al. (1996) or McNeil and Nešlehová (2009), so evaluating KC for computing
Td may be as difficult as computing the derivatives in (3). However, first note that
evaluation of numerically complicated quantities is only required for computing U ′d in
(4), whereas computing U ′j , j ∈ {1, . . . , d − 1}, is easily achieved for any Archimedean
copula, even under no additional assumption on ψ, see Corollary 3.2. Further, if KC is
continuous, which holds e.g. if ψ is d− 1 times continuously differentiable, see McNeil
and Nešlehová (2009), it can be written as KC(t) =

∑d−1
k=0(0− ψ−1(t))kψ(k)(ψ−1(t))/k!.
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For fixed t ∈ I, KC can therefore be interpreted as a Taylor polynomial of order d− 1
about ψ−1(t) evaluated at 0. Since computing Taylor polynomials is numerically well
investigated, evaluating KC is generally a good-natured problem. Still, the computation
of KC may be numerically demanding in large dimensions.
Now assume the dimension to be large. For d→∞, KC converges pointwise to the

distribution function which jumps from 0 to 1 at zero. Further, for large d, evaluation
of KC is often numerically complicated, except for specific cases such as Clayton’s
Archimedean copula family where all involved derivatives of ψ are directly accessible, see
Wu et al. (2006). Moreover, note that applying Td for obtaining the transformed data U ′i ,
i ∈ {1, . . . , n}, requires n-times the evaluation of the probability integral transformation
KC , which can be computationally intense, especially in simulation studies. With the
informational loss inherent in the goodness-of-fit tests following the approaches addressed
in Section 2.2 in mind, one may therefore suggest to omit the last component Td of T and
only consider T1, . . . , Td−1, i.e. using the data (U ′i1, . . . , U ′id−1), i ∈ {1, . . . , n}, for testing
purposes if d is large. Our main goal is to show that this leads to fast goodness-of-fit
tests for Archimedean copulas in large dimensions, such that the informational loss due
to omitting Td is negligible. A goodness-of-fit test based on omitting the last component
of the transformation T is referred to as approach Td−1 in the sequel.

4 A large-scale simulation study
4.1 A word concerning the implementation
All numerical experiments are run on a compute node which consists of eight cores (two
four-core Intel Xeon E5440 Harpertown CPUs with 2.83GHz and 6MB second level cache)
and 16GB memory. The node is part of the bwGRiD Cluster Ulm, see bwGRiD. All
algorithms are implemented in C/C++ and compiled using GCC 4.2.4 with option -O2
for code optimization. Moreover, we use the algorithms of the Numerical Algorithms
Group, see NAG, the GNU Scientific Library 1.12, see GSL, and the OpenMaple interface
of Maple 12, see Maplesoft. For generating uniform random variates an implementation
of the Mersenne Twister by Wagner (2003) is used. For the Anderson-Darling test, the
procedures suggested in Marsaglia and Marsaglia (2004) are used.

4.2 The experimental design
In this section the experimental design for the large-scale simulation study to compare
various goodness-of-fit tests, including our proposed goodness-of-fit transformation, is
described. Focus is put on two features, the error probability of the first kind, i.e.
if a test maintains its nominal level, and the power under several alternatives. To
distinguish between the different approaches we use either pairs or triples, e.g. the
approach (Td−1, Nd−1, AD) denotes a goodness-of-fit test based on first applying our
proposed transformation T without the last component Td, then using the approach based
on the χ2

d−1 distribution to transform the data to one dimension, and then applying the
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Anderson-Darling statistic to test H∗0 ; similarly, (Td−1, S
B
n,d−1) denotes a goodness-of-fit

test which uses the approach SBn,d−1 for reducing the dimension and testing H∗0 .
In the conducted Monte Carlo simulation, the following nine different goodness-of-fit

approaches are tested:

(Td−1, Nd−1, AD), (Td−1, S
B
n,d−1), (KC , χ

2), (KC , AD), (Td, Nd, AD),
(Td,KΠ, AD), (Td, SBn,d), (R,Nd, AD), (R,SBn,d). (5)

We investigate all possible combinations of two sample sizes (n = 150 and n = 500),
two different dependence levels, measured with Kendall’s τ (τ = 0.25 and τ = 0.5),
and three dimensions (d = 5, d = 10, and d = 20). For every scenario, we simulate
the corresponding Archimedean copulas of Ali-Mikhail-Haq (A), Clayton (C), Frank(F),
Gumbel (G), and Joe (J), see Nelsen (2007, pp. 116), as well as the Gaussian (Ga) and t
copula with four degrees of freedom (t4). For the scenarios (R,Nd, AD) and (R,SBn,d),
all of the seven copula families are tested; otherwise, only the Archimedean among these
copula families can be considered as at least one component of the transformation T is
involved. Due to the fact that it is not possible for an Ali-Mikhail-Haq copula to attain
Kendall’s tau equal to 0.5, this copula family is only involved if τ = 0.25. All in all, this
amounts to 3498 goodness-of-fit testing scenarios.
For all testing scenarios, we assume the random vectors Ui ∼ C, i ∈ {1, . . . , n}, to

be independent with standard uniform marginals, so there is no need to consider ranks,
which would additionally affect the null distribution. For estimating the copula parameter
there exist several procedures including maximum likelihood estimation or the inversion
of Kendall’s tau based on averaged pairwise Kendall’s taus; the latter approach is followed
e.g. by Berg (2009) for estimating copula parameters. Note that parameter estimation
may also change the null distribution. This generally requires a bootstrap procedure
for accessing the correct null distribution. However, note that a bootstrap can be quite
time-consuming in large dimensions, even parameter estimation already turns out to
be computationally demanding. In the dimensions we work, this would have exceeded
reasonable amounts of computational time. For comparing the goodness-of-fit tests listed
in (5) in the first part of our simulation study, we therefore proceed as follows. We
imitate an estimation procedure and test the known and correct parameter, i.e. the one
which is used to simulate the random variates, but also two further parameters, denoted
by ϑ− and ϑ+. These are determined in the following way. Given the correct value of τ ,
we consider minus and plus one standard deviation of the averaged pairwise Kendall’s
tau estimator and take the parameters ϑ− and ϑ+ corresponding to these Kendall’s
taus, respectively. For all involved dimensions d, sample sizes n, Kendall’s taus τ , and
copula families, the standard deviation of the averaged pairwise Kendall’s tau estimator
is determined by simulation beforehand, based on 500 000 replications. So indeed, for
each of the 3498 scenarios, the three parameters ϑ−, ϑ, and ϑ+ are tested.

In contrast to all other investigated goodness-of-fit tests, our proposed goodness-of-fit
test works fast even in large dimensions. We are therefore able to investigate our test
with a bootstrap procedure. This is done in the second part of our simulation study.

We now address the chosen parameters in our simulation study. For all testing
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approaches listed in (5), N = 1 000 replications are used for computing the empirical level
and power, except for the tests involving Rosenblatt’s transformation for the Gaussian and
the t4 H0 copulas, where N = 100 replications are used due to extensive computational
effort. The significance level is arbitrarily fixed at α = 5%. For the χ2-test, 20 cells were
used. For each n and d, m = 10 000 values of the test statistic SBn,d are computed via
simulated vectors of U(Id)-distributed random variates beforehand. These values are
used in goodness-of-fit tests involving SBn,d for deciding whether H∗0 is rejected or not.
Concerning the use of Maple, we proceed as follows. For computing the first d − 1

components T1, . . . , Td−1 of the transformation T involved in the first two and the fifth
to seventh approach listed in (5), Maple is only used if working under double precision
in C/C++ leads to errors. With errors, non-float values including nan, -inf, and inf,
as well as float values less than zero or greater than one are meant. For computing
the last component Td involved in the fifth to seventh approach, Maple is used for all
tested Archimedean families except Clayton’s where an explicit form of all derivatives
and hence KC is known, see Wu et al. (2006). The same holds for computing KC for the
third and fourth approach in (5). For the approaches involving Rosenblatt’s transform,
a computation in C/C+ is tried for Clayton’s family, the Gaussian, and the t4 copula,
whereas Maple is used for all other copula families or if the computation for the former
three copulas leads to errors. If Rosenblatt’s transformation produces errors even after
computations in Maple, we disregard the corresponding goodness-of-fit test and use the
remaining test results of the simulation for computing the empirical level and power.

As mentioned several times, one usually performs a bootstrap procedure in order to get
rid of the unrealistic assumption of perfectly standard uniformly distributed marginals or
a perfect estimation procedure. It will become clear from the results in Section 5 that our
proposed goodness-of-fit test is fast enough to be applied in conjunction with a bootstrap
procedure, described in the remaining part of this section. Bootstrap versions of all other
goodness-of-fit tests in our investigations are presented in Genest et al. (2009), however,
only applied in a two-dimensional setting where computations are usually much simpler
and faster.
Note that for our proposed approach (Td−1, Nd−1, AD) it is not clear whether the

bootstrap procedure is valid from a theoretical point of view, see e.g. Dobrić and Schmid
(2007) and Genest et al. (2009). However, empirical results, presented in Section 5,
indicate the validity of this approach, described as follows.
(1) Given the data Ui, i ∈ {1, . . . , n}, build the vectors of componentwise scaled ranks
U(i) = (Ui(1), . . . , Ui(d))T , where Ui(j) := (

∑n
k=1 1{Ukj≤Uij})/(n + 1), i ∈ {1, . . . , n},

j ∈ {1, . . . , d}. Based on U(i), i ∈ {1, . . . , n}, estimate the unknown parameter ϑ by
ϑ̂.

(2) Based on U(i), i ∈ {1, . . . , n}, compute the first d− 1 components U ′ij , i ∈ {1, . . . , n},
j ∈ {1, . . . , d−1}, of the transformation T as in Equation (4) and Yi :=

∑d−1
j=1(Φ−1(U ′ij))2,

i ∈ {1, . . . , n}. Then compute the Anderson-Darling test statistic An := −n −
1
n

∑n
i=1(2i− 1)[log(Fχ2

d−1
(Yi)) + log(1− Fχ2

d−1
(Yi))].

(3) Choose the number N of bootstrap repetitions. For each k ∈ {1, . . . , N} do:
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(3.1) Generate the random sample U∗i,k = (U∗i1,k, . . . , U∗id,k)T ∼ Cϑ̂, i ∈ {1, . . . , n},
and compute the vectors of componentwise scaled ranks U∗(i),k, i ∈ {1, . . . , n}.
Based on U∗(i),k, i ∈ {1, . . . , n}, estimate the unknown parameter ϑ by ϑ̂∗k.

(3.2) Based on U∗(i),k, i ∈ {1, . . . , n}, compute the first d − 1 components U ′∗ij,k,
i ∈ {1, . . . , n}, j ∈ {1, . . . , d−1}, of the transformation T as in Equation (4) and
Y ∗i,k :=

∑d−1
j=1(Φ−1(U ′∗ij,k))2, i ∈ {1, . . . , n}. Then compute the Anderson-Darling

test statistic A∗n,k := −n− 1
n

∑n
i=1(2i−1)[log(Fχ2

d−1
(Y ∗i,k))+log(1−Fχ2

d−1
(Y ∗i,k))].

(4) An approximate p-value for the test (Td−1, Nd−1, AD) is given by 1
N

∑N
k=1 1{A∗n,k>An}.

5 Results
In this section we present the results from the large-scale simulation study conducted for
the nine different goodness-of-fit approaches listed in (5) and described in Section 4. To
reduce the rather huge amount of test results, we are restricted to report only a limited
amount of such, summarizing the characteristics we found in the simulation study.

As an overall effect, we find that all goodness-of-fit tests show larger power against the
investigated alternatives if the sample size n increases from n = 150 to n = 500, as well
as if the dependence increases from τ = 0.25 to τ = 0.5. This is supported by intuition,
as it is usually easier to distinguish between data sets if the number of samples is larger
or the dependence is stronger. We therefore only report results for the case n = 150
and τ = 0.25. One of the main results we found is that the empirical power against all
investigated alternatives increases if the dimension increases. However, so does runtime.
Further, the obtained results indicate that ten dimensions represent an intermediate
state between five and twenty dimensions according to the empirical power against the
investigated alternatives and runtime. We therefore report the results only for the cases
d = 5 and d = 20, and address the case d = 10 only when needed.
Let us first discuss the methods that show a comparably weak performance in the

conducted simulation study. We start with the results that are based on the test statistics
SBn,d−1 or SBn,d to reduce the dimension. Although keeping the error probability of the first
kind, the goodness-of-fit tests (Td−1, S

B
n,d−1), (Td, SBn,d), and (R,SBn,d) show a comparably

weak performance against the investigated alternatives, at least in our test setting as
described in Section 4.2. For example, for n = 150, d = 5, and τ = 0.25, the method
(R,SBn,d) leads to an empirical power of 3.4% for testing Clayton’s copula when the
simulated copula is Ali-Mikhail-Haq’s, 2.0% for testing the Gaussian copula on Ali-
Mikhail-Haq copula data, 4.1% for testing Ali-Mikhail-Haq’s copula on data from Frank’s
copula, and 3.4% for testing Gumbel’s copula on data from Joe’s copula. Similarly
for n = 500, d ∈ {10, 20}, τ = 0.5, and the methods (Td−1, S

B
n,d−1) and (Td, SBn,d). We

therefore do not further report on the methods involving SBn,d−1 or SBn,d. The method
(Td,KΠ, AD) also shows a rather weak performance for both investigated sample sizes n
and all three investigated dimensions d, however, note that the empirical power against
the investigated alternative families of Clayton, Frank, Gumbel, and Joe significantly
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increases for τ = 0.5 in this case. The goodness-of-fit testing approach (KC , χ
2) faced

problems uniformly over all dimensions d ∈ {5, 10, 20} and dependencies τ ∈ {0.25, 0.5},
where the empirical error probability of the first kind is around 10%. Only for n = 500,
uniformly over all d and τ , the expected level of approximately 5% is obtained.

Now consider the goodness-of-fit testing approaches (Td−1, Nd−1, AD), (KC , AD), and
(Td, Nd, AD). Recall that (Td−1, Nd−1, AD) is based on the first d− 1 components of the
transformation T addressed in Equation (4), (KC , AD) applies only the last component
of T , and (Td, Nd, AD) applies the whole transformation T in d dimensions, where all
three approaches use the Anderson-Darling test to test H∗0 . The test results for the
three goodness-of-fit tests with n = 150, τ = 0.25, and d ∈ {5, 20} are reported in
Tables 1, 2, and 3, respectively. As mentioned above, we test and report three different
parameters, the known and correct parameter ϑ which is reported in the middle of the
relevant block, and the parameters ϑ− and ϑ+ which are reported above, respectively
below, the true parameter. Note that, for the true parameter, all three approaches keep
the error probability of the first kind at approximately 5% as expected. However, we see
significant deviations thereof when ϑ− or ϑ+ is used. This indicates that a bootstrap
procedure is needed when the parameter involved is estimated. As all procedures have
these effects in common, we first compare them without conducting a bootstrap. First
consider the low-dimensional case d = 5. On average, method (KC , AD) shows the
largest empirical power against the investigated Archimedean alternatives and method
(Td−1, Nd−1, AD) the largest against the Gaussian and the t4 copula. For (Td, Nd, AD),
even if the transformation T with all d components is applied, there surprisingly seems
to be no gain in power, which can be inferred from Table 3. Now let us turn to the
large-dimensional case d = 20. Again on average, method (KC , AD) shows the largest
empirical power against the Archimedean alternatives and method (Td−1, Nd−1, AD) has
the largest empirical power against the Gaussian and the t4 the copula. However, the
differences in power vanish. This is also supported by the case d = 10 which we do not
report.
Table 4 shows the empirical power of the method (R,Nd, AD). In comparison to the

goodness-of-fit approach (Td−1, Nd−1, AD), both methods seem to have advantages over
each other. On average, for d = 5, the empirical power for the H0 copula of Clayton
is larger for (R,Nd, AD) than for (Td−1, Nd−1, AD); the other way round for Gumbel’s
copula; for the family of Frank, if the true copula is Ali-Mikhail-Haq’s or Clayton’s copula,
then (R,Nd, AD) shows larger power, and if the true copula is Gumbel’s, Joe’s, or the
Gaussian copula, then (Td−1, Nd−1, AD) shows larger power. For the large-dimensional
case d = 20 the differences among the methods are again much smaller.

Another aspect, especially in large-scale simulation studies is computational efficiency.
In going from the low- to the large-dimensional case we faced several problems during
our computations. As indicated by the symbol ∗ in Table 4, the approach (R,Nd, AD)
shows difficulties in testing the H0 copula of Ali-Mikhail-Haq for d = 20. Although
applying Maple with Digits set to 15, all of the N = 1 000 goodness-of-fit tests indicated
numerical problems and so no test result was obtained. Another problem appeared partly
for the Gaussian and the t4 copula. Although we only used N = 100 replications for
testing these two H0 copulas, we did not obtain a result within seven days of runtime,
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True copula, d = 5 True copula, d = 20

H0 A C F G J Ga t4 A C F G J Ga t4
16.4 29.4 11.5 37.1 48.2 6.1 91.3 28.0 62.6 10.6 66.7 81.8 47.9 100.0

A 5.1 8.0 5.5 8.5 13.4 11.7 77.9 4.2 20.5 17.3 18.9 76.4 82.8 100.0
20.0 9.9 29.1 10.1 11.2 50.6 66.4 35.1 8.2 76.5 45.6 98.3 99.6 100.0
8.0 20.6 8.0 21.5 32.6 6.4 90.7 21.9 42.1 87.8 92.9 100.0 97.2 100.0

C 14.1 4.7 25.9 8.8 20.9 38.8 79.6 80.9 5.0 99.7 99.5 100.0 100.0 100.0
51.0 22.9 71.3 44.7 59.6 84.8 78.8 99.5 49.3 100.0 100.0 100.0 100.0 100.0
15.2 26.2 13.6 41.9 57.0 7.3 91.5 31.1 59.2 25.7 89.7 94.2 74.8 100.0

F 6.6 9.0 4.3 12.4 21.4 8.4 77.8 5.8 29.4 4.9 44.4 65.8 83.4 100.0
16.2 16.0 14.9 4.0 5.3 34.0 66.7 22.4 33.1 27.6 6.1 26.4 96.5 100.0
16.5 32.2 9.6 23.3 40.4 14.0 95.2 50.1 87.6 22.6 55.5 85.7 99.8 100.0

G 34.0 43.7 25.5 2.9 6.6 40.4 90.4 87.5 98.5 78.7 4.3 16.6 99.9 100.0
74.7 76.2 68.6 23.5 10.8 80.6 90.8 99.8 99.9 99.8 61.7 27.4 100.0 100.0
51.0 70.0 28.6 13.7 26.6 45.0 97.3 98.4 100.0 86.1 23.5 73.6 100.0 100.0

J 83.7 90.3 69.0 11.6 4.3 80.7 98.1 100.0 100.0 99.5 35.4 4.9 100.0 100.0
98.5 99.0 96.1 61.9 33.0 97.5 99.1 100.0 100.0 100.0 98.4 78.1 100.0 100.0

Table 1 Empirical power in % for testing ϑ−, ϑ, and ϑ+ for (Td−1, Nd−1, AD) based on
N = 1 000 replications with n = 150, τ = 0.25, and d = 5 (left), respectively
d = 20 (right).
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True copula, d = 5 True copula, d = 20

H0 A C F G J Ga t4 A C F G J Ga t4
7.2 14.9 19.1 57.9 96.7 7.1 12.0 9.7 55.0 75.5 98.9 100.0 31.2 49.9

A 3.4 8.8 21.7 69.8 98.3 12.0 17.8 5.4 35.2 83.3 99.5 100.0 45.8 54.3
5.2 7.8 30.2 80.2 98.9 25.2 29.5 7.4 21.7 86.0 99.9 100.0 63.0 62.9

15.6 9.5 59.4 84.5 99.7 23.2 20.4 38.1 9.8 99.2 100.0 100.0 57.5 32.1
C 10.8 5.1 54.0 86.5 99.7 28.0 24.7 29.8 5.9 98.6 100.0 100.0 70.4 45.8

13.0 5.6 54.5 88.2 99.6 38.6 36.4 30.6 7.3 98.6 100.0 100.0 81.7 63.9
22.6 54.7 7.4 22.1 61.4 7.7 18.4 99.5 100.0 8.5 70.8 99.9 86.8 98.6

F 17.4 52.5 5.5 21.4 64.5 8.6 21.3 98.3 100.0 4.9 73.5 100.0 88.0 98.8
15.4 54.2 5.8 24.5 70.2 13.2 31.2 95.7 100.0 4.5 79.1 100.0 90.2 99.3
51.0 70.5 21.4 8.0 13.0 13.9 19.7 99.0 99.6 66.0 8.4 66.9 57.7 82.8

G 37.4 63.3 12.9 5.1 12.1 9.5 17.0 96.7 98.9 38.3 5.6 74.7 42.4 76.7
29.7 61.1 9.2 5.7 14.8 8.3 16.8 89.8 98.4 23.7 6.0 83.8 38.1 76.1
96.1 98.4 56.0 19.0 7.7 59.2 65.3 100.0 100.0 100.0 98.6 12.9 100.0 100.0

J 94.0 98.7 40.1 12.1 5.2 55.3 65.2 100.0 100.0 100.0 94.2 5.6 100.0 100.0
93.7 98.8 30.6 10.2 5.2 58.3 70.5 100.0 100.0 100.0 88.4 7.4 100.0 100.0

Table 2 Empirical power in % for testing ϑ−, ϑ, and ϑ+ for (KC , AD) based on N = 1 000
replications with n = 150, τ = 0.25, and d = 5 (left), respectively d = 20 (right).
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True copula, d = 5 True copula, d = 20

H0 A C F G J Ga t4 A C F G J Ga t4
10.5 16.9 7.3 14.7 15.2 7.2 91.4 19.9 41.2 7.3 54.6 63.1 46.8 100.0

A 5.5 6.9 7.1 9.8 14.7 10.1 83.4 4.5 14.1 22.1 43.6 73.0 81.0 100.0
14.0 7.2 33.1 28.9 50.3 38.4 75.6 30.9 10.5 81.0 79.4 98.3 99.1 100.0
8.5 11.4 25.3 31.6 56.3 17.6 92.5 36.9 36.1 96.0 97.5 100.0 98.3 100.0

C 19.4 6.0 52.7 53.6 79.0 47.1 89.0 84.8 5.8 99.8 100.0 100.0 100.0 100.0
47.9 14.6 81.5 82.5 95.6 81.8 90.8 99.5 43.6 100.0 100.0 100.0 100.0 100.0
8.5 11.1 8.6 17.5 22.1 6.1 90.0 7.2 26.4 18.0 70.3 86.0 57.7 100.0

F 4.7 6.3 4.1 8.5 8.4 6.2 82.0 7.4 20.5 4.4 33.9 52.0 77.6 100.0
11.0 9.5 8.9 6.7 5.6 19.6 71.9 35.5 43.5 22.9 19.4 31.3 93.9 100.0
10.6 10.6 6.6 12.2 24.7 10.0 89.4 35.6 52.7 20.2 44.4 85.0 97.8 100.0

G 24.4 25.6 18.7 4.9 6.7 26.3 84.8 84.5 89.2 74.5 4.3 19.4 99.7 100.0
55.2 53.3 48.6 14.9 6.5 60.0 85.7 99.7 99.7 99.4 52.6 18.0 100.0 100.0
47.9 55.8 28.4 6.4 14.4 40.6 93.5 99.9 100.0 91.4 8.6 62.2 100.0 100.0

J 81.9 83.7 61.4 15.1 4.8 73.4 95.0 100.0 100.0 99.9 66.2 4.3 100.0 100.0
97.2 97.3 90.2 50.7 19.7 94.1 97.8 100.0 100.0 100.0 99.5 69.6 100.0 100.0

Table 3 Empirical power in % for testing ϑ−, ϑ, and ϑ+ for (Td, Nd, AD) based on
N = 1 000 replications with n = 150, τ = 0.25, and d = 5 (left), respectively
d = 20 (right).
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True copula, d = 5 True copula, d = 20

H0 A C F G J Ga t4 A C F G J Ga t4
10.7 18.1 7.2 12.4 9.8 5.1 86.7 ∗ ∗ ∗ ∗ ∗ ∗ ∗

A 4.7 7.1 6.6 8.0 13.2 13.3 75.9 ∗ ∗ ∗ ∗ ∗ ∗ ∗
15.5 7.1 31.8 33.9 49.9 48.0 69.3 ∗ ∗ ∗ ∗ ∗ ∗ ∗
7.8 12.2 20.4 27.7 47.4 14.7 85.9 50.4 38.0 98.0 99.3 100.0 98.6 100.0

C 17.9 5.2 49.3 54.9 77.6 48.5 83.9 87.1 5.7 99.9 100.0 100.0 100.0 100.0
49.8 14.9 81.8 84.0 95.3 86.1 89.5 99.4 45.4 100.0 100.0 100.0 100.0 100.0
8.4 13.3 9.4 19.9 23.9 5.3 90.9 9.4 39.8 17.1 77.6 92.9 47.7 100.0

F 5.3 6.6 4.2 7.7 10.2 9.0 81.5 20.2 36.0 4.6 33.1 63.9 80.0 100.0
12.6 11.5 9.6 6.2 5.5 28.6 71.2 55.3 60.7 22.8 8.6 24.0 96.3 100.0
9.7 10.1 6.8 12.0 23.3 8.6 87.0 34.6 33.6 15.8 44.0 83.4 78.9 100.0

G 25.2 21.2 20.7 5.0 6.5 28.4 81.7 85.1 80.9 74.9 4.7 20.7 97.2 100.0
56.4 50.0 48.1 15.2 6.4 62.5 81.2 99.8 99.4 99.7 51.5 16.0 100.0 100.0
55.4 54.8 33.8 7.9 14.5 41.6 94.6 100.0 99.8 98.7 22.3 52.8 100.0 100.0

J 83.3 81.7 64.3 16.0 5.2 73.1 94.9 100.0 100.0 100.0 76.6 3.9 100.0 100.0
98.2 97.9 91.2 49.2 19.4 94.4 97.3 100.0 100.0 100.0 99.7 65.0 100.0 100.0
20.0 30.0 12.0 26.0 21.0 10.0 96.0 − − − − − − 100.0

Ga 12.0 10.0 12.0 11.0 12.0 1.0 94.0 − − − − − − 100.0
15.0 11.0 26.0 9.0 11.0 11.0 87.0 − − − − − − 100.0
39.0 31.0 53.0 27.0 29.0 61.0 14.0 100.0 100.0 100.0 − − − −

t4 65.0 48.0 69.0 54.0 52.0 86.0 5.0 100.0 100.0 100.0 − − − −
86.0 70.0 91.0 77.0 71.0 96.0 10.0 100.0 100.0 100.0 − − − −

Table 4 Empirical power in % for testing ϑ−, ϑ, and ϑ+ for (R,Nd, AD) based on
N = 1 000 replications (N = 100 for the Gaussian and the t4 copula) with
n = 150, τ = 0.25, and d = 5 (left), respectively d = 20 (right).
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indicated by the symbol − in Table 4. Concerning the testing approaches (KC , AD) and
(Td, Nd, AD) involving the evaluation of the probability integral transformation KC(t),
we even had to choose a rather large precision of 64 for Digits in order to obtain reliable
testing results. This has an effect on the computational time for these testing methods.
Tables 5 and 6 present the runtimes in minutes for simulating the empirical power of a
goodness-of-fit procedure for testing one parameter based on N = 1 000 replications with
n = 150 and τ = 0.25 for the methods (Td−1, Nd−1, AD) and (KC , AD), respectively.
The results are obtained by taking the average of the corresponding runtimes for the
three parameters ϑ−, ϑ, and ϑ+ as presented in Tables 1 and 2. Similarly for Table
7, where the entries for the Gaussian and the t4 H0 copulas are based on N = 100
runs. Note that the runtimes for the goodness-of-fit approach (Td, Nd, AD) were slightly
larger than those for (KC , AD) and much larger than those for (Td−1, Nd−1, AD), as
expected, and are therefore omitted. As the results indicate, for d = 5, the goodness-of-fit
approach (Td−1, Nd−1, AD) is the fastest, then (KC , AD), and finally (R,Nd, AD), but
all in all the differences in runtimes for these approaches seem to be acceptable small.
For the large-dimensional case d = 20, again our proposed method (Td−1, Nd−1, AD) is
the fastest, however, the differences in runtimes between this and the other methods
is much larger than for the case d = 5. Note that the small runtimes for the approach
(KC , AD) and the H0 copula of Clayton stem from the fact that for Clayton’s family,
the function KC can be efficiently evaluated, as mentioned in Section 4.2. For all other
H0 copulas, evaluation of KC takes quite different and rather large amounts of runtime,
due to the derivatives involved.

True copula, d = 5 True copula, d = 20

H0 A C F G J Ga t4 A C F G J Ga t4
A 0.7 0.7 0.7 0.7 1.4 0.7 0.7 3.5 3.5 3.5 3.5 4.2 3.5 3.5
C 0.7 0.7 0.7 0.7 1.4 0.7 0.7 3.5 3.5 3.5 3.5 4.2 3.5 3.5
F 0.7 0.7 0.7 0.7 1.4 0.7 0.7 3.5 3.5 3.5 3.5 4.2 3.5 3.5
G 0.7 0.7 0.7 0.7 1.4 0.7 0.7 3.5 3.5 3.5 3.5 4.2 3.5 3.5
J 0.7 0.7 0.7 0.7 1.4 0.7 0.7 3.5 3.5 3.5 3.5 4.2 3.5 3.5

Table 5 Runtimes in minutes for (Td−1, Nd−1, AD) based on N = 1 000 replications with
n = 150, τ = 0.25, and d = 5 (left), respectively d = 20 (right).

Due to the small runtimes for our proposed goodness-of-fit approach (Td−1, Nd−1, AD)
it is possible to conduct a bootstrap procedure, see Section 4.2, for accessing the empirical
power of this goodness-of-fit approach. As an estimation procedure, we use the averaged
pairwise Kendall’s tau estimator as described in Section 4.2. The results for the bootstrap
procedure are reported in Table 8. Note that for the case d = 5 the empirical error
probability of the first kind is around or below 5% in most cases. However, for Clayton’s
and Gumbel’s copula the levels are rather large, being 6.0% for Clayton’s and 7.4% for
Gumbel’s copula. When the dimension is raised to d = 20 both levels drop. In the latter
case we get 5.3% for Gumbel’s copula, which seems to be a reasonable level. In the
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True copula, d = 5 True copula, d = 20

H0 A C F G J Ga t4 A C F G J Ga t4
A 2.0 1.9 1.9 1.9 2.6 1.8 1.8 58.2 61.8 60.5 62.6 65.2 64.3 62.7
C 0.9 0.8 0.8 0.8 1.5 0.8 0.8 3.7 3.7 3.7 3.8 4.4 3.7 3.8
F 3.0 3.0 2.9 2.9 3.6 3.0 2.9 326.3 329.3 338.1 338.3 335.3 338.1 332.8
G 3.0 3.1 3.0 3.1 3.7 3.0 3.0 98.8 99.6 100.3 105.9 101.3 102.6 99.5
J 3.1 3.1 3.0 3.0 3.8 3.0 3.0 40.4 42.9 45.3 42.5 44.6 40.1 41.9

Table 6 Runtimes in minutes for (KC , AD) based on N = 1 000 replications with n = 150,
τ = 0.25, and d = 5 (left), respectively d = 20 (right).

True copula, d = 5 True copula, d = 20

H0 A C F G J Ga t4 A C F G J Ga t4
A 4.0 3.8 3.5 3.6 4.2 3.7 3.7 31.2 31.5 31.7 32.2 32.7 30.8 30.4
C 6.1 5.7 5.7 5.6 6.1 5.5 5.6 24.9 24.4 24.7 24.5 25.0 24.4 24.2
F 4.6 4.6 4.6 4.5 5.1 4.3 4.5 44.7 44.8 44.6 47.1 47.8 46.9 46.0
G 10.2 10.1 10.5 10.5 10.9 10.1 10.3 367.7 361.7 367.5 366.5 365.7 367.0 358.8
J 9.8 10.1 10.0 10.0 10.6 9.9 10.0 335.3 327.0 331.1 335.9 329.0 335.3 325.7
Ga 798 1238 1226 1244 1206 1221 476 − − − − − − 1076
t4 1442 1430 1448 1439 1464 1440 1389 1134 615 533 − − − −

Table 7 Runtimes in minutes for (R,Nd, AD) based on N = 1 000 replications (N = 100
for the Gaussian and the t4 copula) with n = 150, τ = 0.25, and d = 5 (left),
respectively d = 20 (right).
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Clayton case the level is now 4.1% so there is again a small deviation, however, this time
on the conservative side. All other levels for the case d = 20 are around or below 5%,
except for Frank’s family, where we get 6.3%.

As in the tests where no bootstrap procedure is used, the power against wrong alterna-
tives increases when the dimension increases, uniformly over all cases. In comparison to
(Td−1, Nd−1, AD) without the bootstrap, the power increases in most cases when d = 5.
Contrary, for d = 20 there is a loss of power for the larger part of alternatives. The case
d = 10, which we do not report here, can again be seen as an intermediate state regarding
this fact, some family combinations show a decrease, some an increase in empirical power.
As before, the empirical power is especially large, when the simulated copula comes from
the Gaussian or t4 family. All in all, the bootstrap seems to work, although there is no
theoretical proof for the convergence of the procedure.

True copula, d = 5 True copula, d = 20

H0 A C F G J Ga t4 A C F G J Ga t4
A 4.0 11.3 5.8 7.7 21.0 5.6 93.2 4.3 32.7 12.8 55.0 87.9 82.8 100.0
C 6.6 6.0 18.9 25.2 52.4 13.1 95.6 18.8 4.1 79.9 91.2 99.2 84.1 100.0
F 8.7 26.4 4.6 3.8 4.6 10.7 94.3 16.6 72.2 6.3 29.1 70.0 98.8 100.0
G 46.0 70.0 27.1 7.4 3.0 45.2 99.0 69.9 96.7 25.3 5.3 14.9 100.0 100.0
J 89.6 94.2 69.6 16.3 4.6 85.1 100.0 99.6 99.8 89.1 18.0 4.7 100.0 100.0

Table 8 Empirical power in % for (Td−1, Nd−1, AD) applying a bootstrap procedure with
M = 1 000 bootstrap replications based on N = 1 000 replications with n = 150,
τ = 0.25, and d = 5 (left), respectively d = 20 (right).

6 Conclusion
A goodness-of-fit test for Archimedean copulas was presented, especially suited to large
dimensions. The proposed test is based on a transformation T known for generating
random variates and can therefore be viewed as an analogon to Rosenblatt’s transfor-
mation, which is also used for sampling, known as the conditional distribution method.
The suggested goodness-of-fit test proceeds in two steps. In a first step, the first d− 1
components of T are applied, which build a simple and easy-to-use transformation from
d to d− 1 dimensions. This complements one of the known goodness-of-fit tests using
only the d-th component of T requiring the knowledge of the generator derivatives. In a
second step, the d− 1 components are mapped to a one-dimensional setting, where the
hypothesis is tested. This second step is common to many goodness-of-fit approaches
and hence all known goodness-of-fit tests in a one dimensional setting can be applied.

The power of the proposed testing approach was investigated in a large-scale simulation
study, in comparison to other known goodness-of-fit tests. In this study, goodness-of-
fit tests even in dimension d = 20 were investigated for the first time. In such large
dimensions the computational effort for applying commonly known testing procedures
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turned out to be quite demanding according to precision and runtime. However, the
proposed approach is easily applied in any dimension and its evaluation requires only
small numerical precision. Due to the small runtime, the proposed testing method could
also be investigated with a bootstrap procedure based on the averaged pairwise Kendall’s
tau estimator, again showing good performance in large dimensions.
All in all, investigating large-dimensional problems involving copulas is still an open

field of research and more efficient methods in dealing with large dimensions are needed.

Acknowledgements
The authors would like to thank Christian Mosch and the Communication and Information
Center of Ulm University for providing computational power via the bwGRiD Cluster
Ulm and assistance in using it.

References
Anderson, T. W. and Darling, D. A. (1952), “Asymptotic theory of certain goodness-of-fit

criteria based on stochastic processes”, Annals of Mathematical Statistics, 23, 193–212.
Anderson, T. W. and Darling, D. A. (1954), “A test of goodness of fit”, Journal of the
American Statistical Association, 49, 765–769.

Barbe, P., Genest, C., Ghoudi, K., and Rémillard, B. (1996), “On Kendall’s Process”,
Journal of Multivariate Analysis, 58, 197–229.

Berg, D. (2009), “Copula goodness-of-fit testing: an overview and power comparison”,
The European Journal of Finance, http://www.informaworld.com/10.1080/135184
70802697428 (2009-03-25).

Berg, D. and Bakken, H. (2006), “Copula Goodness-of-fit Tests: A Comparative Study”,
http://www.danielberg.no/publications/CopulaGOF.pdf (2008-11-01).

Berg, D. and Bakken, H. (2007), “A copula goodness-of-fit approach based on the
conditional probability integral transformation”, http : / / www . danielberg . no /
publications/Btest.pdf (2008-11-01).

Breymann, W., Dias, A., and Embrechts, P. (2003), “Dependence structures for multi-
variate high-frequency data in finance”, Quantitative Finance, 3, 1–14.

bwGRiD, http://www.bw-grid.de/ (2009-03-25).
Cherubini, U., Luciano, E., and Vecchiato, W. (2004), “Copula Methods in Finance”,
Wiley.

Devroye, L. (1986), “Non-Uniform Random Variate Generation”, Springer.
Dobrić, J. and Schmid, F. (2007), “A goodness of fit test for copulas based on Rosenblatt’s
transformation”, Computational Statistics & Data Analysis, 51, 4633–4642.

Embrechts, P., Lindskog, F., and McNeil, A. J. (2001), “Modelling Dependence with
Copulas and Applications to Risk Management”, http://www.risklab.ch/ftp/
papers/DependenceWithCopulas.pdf (2008-11-01).

Fermanian, J.-D. (2005), “Goodness of fit tests for copulas”, Journal of Multivariate
Analysis, 95, 1, 119–152.

Genest, C. and Boies, J.-C. (2003), “Detecting dependence with Kendall plots”, The
American Statistician, 57, 275–284.

20

http://www.informaworld.com/10.1080/13518470802697428
http://www.informaworld.com/10.1080/13518470802697428
http://www.danielberg.no/publications/CopulaGOF.pdf
http://www.danielberg.no/publications/Btest.pdf
http://www.danielberg.no/publications/Btest.pdf
http://www.bw-grid.de/
http://www.risklab.ch/ftp/papers/DependenceWithCopulas.pdf
http://www.risklab.ch/ftp/papers/DependenceWithCopulas.pdf


References

Genest, C. and Rivest, L.-P. (1993), “Statistical Inference Procedures for Bivariate
Archimedean Copulas”, Journal of the American Statistical Association, 88, 423,
1034–1043.

Genest, C., Quessy, J. F., and Rémillard, B. (2006), “Goodness-of-fit procedures for
copula models based on the probability integral transformation”, Scandinavian Journal
of Statistics, 33, 337–366.

Genest, C., Rémillard, B., and Beaudoin, D. (2009), “Goodness-of-fit tests for copulas: A
review and a power study”, Insurance: Mathematics and Economics, 44.

GSL, http://www.gnu.org/software/gsl/ (2008-11-16).
Maplesoft, http://www.maplesoft.com/ (2009-03-28).
Marsaglia, G. and Marsaglia, J. C. W. (2004), “Evaluating the Anderson Darling Distri-
bution”, Journal of Statistical Software, 9, 2, 1–5, http://www.jstatsoft.org/v09/
i02/paper (2009-03-25).

McNeil, A. J. and Nešlehová, J. (2009), “Multivariate Archimedean copulas, d-monotone
functions and l1-norm symmetric distributions”, The Annals of Statistics, in press.

McNeil, A. J., Frey, R., and Embrechts, P. (2005), “Quantitative Risk Management:
Concepts, Techniques, and Tools”, Princeton University Press.

NAG, http://www.nag.co.uk/ (2008-11-16).
Nelsen, R. B. (2007), “An Introduction to Copulas”, Springer.
Rao, C. R. (2001), “Linear Statistical Inference and its Applications”, Wiley-Interscience.
Rosenblatt, M. (1952), “Remarks on a Multivariate Transformation”, The Annals of
Mathematical Statistics, 23, 3, 470–472.

Savu, C. and Trede, M. (2008), “Goodness-of-fit tests for parametric families of
Archimedean copulas”, Quantitative Finance, 8, 2, 109–116.

Schmitz, V. (2003), “Copulas and Stochastic Processes”, Rheinisch-Westfälische Technis-
che Hochschule Aachen, http://darwin.bth.rwth-aachen.de/opus3/volltexte/
2004/935/pdf/Schmitz_Volker.pdf (2009-02-25).

Sklar, A. (1996), “Random variables, distribution functions, and copulas—a personal
look backward and forward”, Distributions with Fixed Marginals and Related Topics,
28, 1–14.

Wagner, R. (2003), “Mersenne Twister Random number Generator”, http://www-
personal.umich.edu/~wagnerr/MersenneTwister.html (2008-08-10).

Wu, F., Valdez, E. A., and Sherris, M. (2006), “Simulating Exchangeable Multivariate
Archimedean Copulas and its Applications”, Communications in Statistics - Simulation
and Computation, 36, 5, 1019–1034.

21

http://www.gnu.org/software/gsl/
http://www.maplesoft.com/
http://www.jstatsoft.org/v09/i02/paper
http://www.jstatsoft.org/v09/i02/paper
http://www.nag.co.uk/
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2004/935/pdf/Schmitz_Volker.pdf
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2004/935/pdf/Schmitz_Volker.pdf
http://www-personal.umich.edu/~wagnerr/MersenneTwister.html
http://www-personal.umich.edu/~wagnerr/MersenneTwister.html

	Introduction
	Goodness-of-fit tests for copulas
	Rosenblatt's transformation
	Reducing the dimension

	A goodness-of-fit test for Archimedean copulas
	A large-scale simulation study
	A word concerning the implementation
	The experimental design

	Results
	Conclusion
	References

