Time Series

(Due: Tu., 18.11.2008, 1:15 pm, in the exercise classes)

1. (a) Show that in order for an AR(2) process with $\Psi(z) = 1 - \alpha_1 z - \alpha_2 z^2$ to have a casual solution the parameters α_1, α_2 have to lie in a triangular array determined by

$$\begin{array}{rcl} \alpha_2 + \alpha_1 & < & 1 \\ \alpha_2 - \alpha_1 & < & 1 \\ & |\alpha_2| & < & 1. \end{array}$$

(b) Let $X_t = 0.7X_{t-1} - 0.1X_{t-2} + \varepsilon_t, t \in \mathbb{Z}$, be a stochastic process, where (ε_t) is white noise. Compute the coefficients $(c_k)_{k=0}^{\infty}$ so that $X_t = \sum_{k=0}^{\infty} c_k \varepsilon_{t-k}$.

$$(3 + 2 \text{ Credits})$$

2. Let $(X_t, t \in \mathbb{Z})$ be an MA(1) process with parameter $\theta \in \mathbb{R}$ (assume $\sigma^2 = 1$ for the corresponding $((\varepsilon_t), t \in \mathbb{Z})$). Consider the linear filter $\alpha = (\alpha_t)_{t \in \mathbb{Z}}$

$$\alpha_t = \begin{cases} \frac{1}{2} & t = 0\\ \frac{1}{4} & |t| = 1\\ 0 & \text{else} \end{cases}$$

- (a) Compute the transfer function A_{α} and the power transfer function T_{α} of the linear filter α . Sketch the power transfer function for $\lambda \in [-\pi, \pi]$.
- (b) Compute the spectral density f_X of (X_t) and the spectral density f_Y of the linear filtered process (Y_t) with $Y_t = \sum_{k \in \mathbb{Z}} \alpha_k X_{t-k}$.
- (c) Sketch the spectral densities f_X and f_Y in the same diagram. Use $\theta = \pm 1$ as parameters.

$$(2+2+1 \text{ Credits})$$

3. Simulate and plot the following processes and compute pacf and acf (choose n=500).

$$X_t^{(1)} - 0.3X_{t-1}^{(1)} - 0.4X_{t-2}^{(1)} = \varepsilon_t$$

$$X_t^{(2)} = \varepsilon_t - 0.3\varepsilon_{t-1} - 0.4\varepsilon_{t-2}$$

$$X_t^{(3)} - 0.3X_{t-1}^{(3)} - 0.4X_{t-2}^{(3)} = \varepsilon_t - 0.3\varepsilon_{t-1} - 0.4\varepsilon_{t-2}$$

Hint: A useful R command is arima.sim(.).

(5 Credits)