Prof. Dr. U. Stadtmüller C. Hering Winter 2008/2009 18.11.2008 Sheet 5

Time Series

(Due: Tu., 25.11.2008, 1:15 pm, in the exercise classes)

1. So called feedback processes are sometimes used in econometrics. Assume $(\varepsilon_t)_{t \in \mathbb{Z}}$ and $(\tilde{\varepsilon}_t)_{t \in \mathbb{Z}}$ to be two independent white noise processes with variance σ^2 and $\tilde{\sigma}^2$, respectively. Moreover, let the two stochastic processes $(X_t)_{t \in \mathbb{Z}}$ and $(Y_t)_{t \in \mathbb{Z}}$ be defined via

$$\begin{aligned} X_t &= \alpha_1 Y_{t-1} + \varepsilon_t \\ Y_t &= \alpha_2 X_{t-1} + \widetilde{\varepsilon}_t \end{aligned}$$

where α_1 and α_2 are some constants. Formulate conditions for α_1 and α_2 so that $(X_t)_{t \in \mathbb{Z}}$ is a causal ARMA-process.

(4 Credits)

- 2. Consider the data sets sarima1.dat, sarima2.dat and sarima3.dat on the lecture's homepage.
 - (a) Plot the corresponding time series and comment on its shape. Also plot the corresponding acf and pacf and comment on their shapes.
 - (b) Assuming the data comes from an SARIMA process (X_t)_{t∈Z}. Try to get stationary processes using differencing methods. *Hint:* The following steps might be useful.
 - Consider the differences $Y_t = (1 B)X_t$ for $t \in \mathbb{Z}$. Plot $(Y_t)_{t \in \mathbb{Z}}$, its acf and its pacf.
 - Also consider the differences $\widetilde{Y}_t = (1 B^{12})Y_t$ for $t \in \mathbb{Z}$. Plot $(\widetilde{Y}_t)_{t \in \mathbb{Z}}$, its acf and its pacf.

(6 Credits)

3.* Let $(X_t)_{t\in\mathbb{Z}}$ be a stationary process with mean 0, $\gamma_X(h) = 0$, if |h| > q and $\gamma(q) \neq 0$, where $q \in \mathbb{N}$. Show that $(X_t)_{t\in\mathbb{Z}}$ is an MA(q) process.

(5 Credits)

http://www.uni-ulm.de/mawi/zawa/lehre/winter2008/ts20082009.html