Angewandte Stochastik I

(Abgabe: Fr., 15.05.2009, 11:15 Uhr, vor den Übungen in H22)

- 1. Gegeben sei ein Wahrscheinlichkeitsraum (Ω, Σ, P) und zwei Ereignisse $A, B \in \Sigma$.
 - (a) Es sei P(B) > 0. Berechne $P(A \mid B) + P(A^c \mid B)$.
 - (b) Zeige: Falls A und B unabhängig sind, dann sind auch A^c und B unabhängig.
 - (c*) Zeige: $P(A \cup B)P(A \cap B) \le P(A)P(B)$.

(2+3+2 Punkte)

- 2. Das sogenannte Apert-Syndrom ist ein sehr selten auftretender Gen-Defekt. In Deutschland sind ca. 400 Personen davon betroffen. Schätzungen gehen davon aus, dass die Wahrscheinlichkeit, dass eine Person diesen Gendefekt aufweist bei $\frac{1}{130000}$ liegt. Ein neuer Schnelltest schlägt mit einer Wahrscheinlichkeit von 99 % bei einer kranken und mit einer Wahrscheinlichkeit von 0.1 % bei einer gesunden Person an.
 - (a) Berechne die Wahrscheinlichkeit, dass eine Person mit positivem Testergebnis tatsächlich an dem Gen-Defekt leidet.
 - (b) Berechne die Wahrscheinlichkeit, dass eine Person mit negativem Testergebnis nicht am Apert-Syndrom leidet. *Hinweis:* Verwende (1a)
 - (c) Berechne außerdem die Wahrscheinlichkeit, dass der Test ein falsches Ergebnis zeigt.

(3+3+3) Punkte)

- 3. Seien (Ω, Σ_1) und (Ω, Σ_2) zwei Messräume mit $\Omega = \{a, b, c\}$ und $\Sigma_1 = \{\emptyset, \{a\}, \{b, c\}, \Omega\}$ und $\Sigma_2 = \{\emptyset, \{a, b\}, \{c\}, \Omega\}$. Gegeben sei außerdem eine Abbildung $X : \Omega \to \mathbb{R}$ mit 2X(a) = X(b) = X(c) = 2.
 - (a) Zeige, dass es sich bei Σ_1 und Σ_2 tatsächlich um σ -Algebren handelt.
 - (b) Untersuche, ob die Abbildung $X : \Omega \to \mathbb{R}$ bezüglich (Ω, Σ_1) oder (Ω, Σ_2) eine Zufallsvariable ist.
 - (c) Wir erweitern den Raum (Ω, Σ_1) nun zu einem Wahrscheinlichkeitsraum (Ω, Σ_1, P) . Dabei soll gelten: $P(\{a\}) = P(\{b\}) = P(\{c\}) = \frac{1}{3}$. Berechne damit die Verteilung und die Verteilungsfunktion von X und skizziere die Verteilungsfunktion von X.

(2+2+2 Punkte)

http://www.uni-ulm.de/mawi/zawa/lehre/sommer2009/as2009.html