UNIVERSITÄT ULM

Institut für Zahlentheorie und Wahrscheinlichkeitstheorie

Übungen zu Grundlagen und Einzelfragen der Mathematik

Prof. Dr. Helmut Maier, Hans- Peter Reck

Gesamtpunktzahl: 24 Punkte

Übungsblatt 2

Abgabe: Montag, 2. November 2009, vor den Übungen

- 1. Konstruiere ein System (K, 0, S), das aus fünf Elementen besteht und die Axiome (P1) bis (P5) alle mit Ausnahme von (P3) erfüllt. (8 Punkte)
- 2. Es sei $m \in \mathbb{N}$ und n = m'. Auf A_n sei eine Nachfolgerabbildung $T: A_n \to A_n$ wie folgt definiert:

$$T(k) := \begin{cases} k' & \text{falls} \quad k \in A_m \\ 0, & \text{falls} \quad k = n. \end{cases}$$

Zeige:

- (a) Es existiert genau eine (zweistellige und mit + bezeichnete) Operation + : $A_n \times A_n \to A_n$ mit k+0=k für alle $k \in A_n$ und T(k+l)=k+T(l) für alle $k,l \in A_n$. Bezüglich diese Operation ist A_n eine Gruppe.
- (b) Es existiert genau eine (zweistellige und mit · bezeichnete) Operation · : $A_n \times A_n \to A_n$ mit $k \cdot 0 = 0$ für alle $k \in A_n$ und $k \cdot T(l) = k \cdot l + k$ für alle $k, l \in A_n$.

 Diese Operation ist kommutativ, assoziativ, und es gilt das Distributivgesetz:

$$h \cdot (l+k) = (h \cdot l) + (h \cdot k)$$

für alle $h, k, l \in A_n$.

(c) Für $k \in A_n - \{0\}$ gilt die Kürzungsregel

$$l \cdot k = h \cdot k \Rightarrow l = h$$

genau dann, wenn k kein Nullteiler ist, d.h. wenn es kein $g \in A_n - \{0\}$ mit $g \cdot k = 0$ gibt.

- (d) Es bildet $A_n \{0\}$ genau dann eine Gruppe bezüglich der Multiplikation, wenn $A_n \{0\}$ keine Nullteiler besitzt.
 - Gib zusätzlich Beispiele für solche n an, so daß $A_n \{0\}$ nullteilerfrei ist und für solche n, so daß $A_n \{0\}$ Nullteiler besitzt. (16 Punkte)