UNIVERSITÄT ULM

Institut für Zahlentheorie und Wahrscheinlichkeitstheorie

Übungen zu Analysis I

Prof. Dr. Helmut Maier, Hans- Peter Reck

Gesamtpunktzahl: 24 Punkte und 12 Zusatzpunkte

Ubungsblatt 13

Abgabe: Mittwoch, 21. Juli 2010, vor den Übungen

1. In einem Crashtest wird ein Auto gegen eine Wand gefahren. Der Aufprall geschieht zur Zeit $t_0 = 10$. Die Geschwindigkeit zur Zeit t werde durch verschiedene Funktionen $v_j: [0, \infty) \to \mathbb{R}, t \to v_j(t)$ mit j = 1, 2 beschrieben:

•
$$v_1(t) = \begin{cases} 100 & \text{für } 0 \le t \le 10 \\ 0 & \text{für } t > 10 \end{cases}$$

- (a) Welche der Funktionen v_j mit j=1,2 ist stetig auf $[0,\infty)$? Die Antwort ist zu begründen.
- (b) Es sei $I=[9,11],\, 0<\epsilon<1,\, {\rm und}\ \delta=\delta(\epsilon)>0$ habe die folgende Eigenschaft: Für alle $t, t_0 \in I$ mit $|t - t_0| < \delta$ gilt: $|v_j(t) - v_j(t_0)| < \epsilon$.

Entscheide in jedem der beiden Fälle j=1,2, ob ein solches δ existiert. Im Falle der Existenz gib das größte δ an.

i. Finde ein Polynom P dritten Grades, so daß die Funktion v_3 mit

$$v_3(t) = \begin{cases} 100 & \text{für } 0 \le t \le 10 \\ P(t) & \text{für } 10 < t \le 10,01 \\ 0 & \text{für } t > 10,01 \end{cases}$$

auf $[0, \infty)$ differenzierbar ist.

ii. Es sei a = 10 und b = 10,01. Finde ein $\xi \in (a,b)$, so daß

$$v_3'(\xi) = \frac{v_3(b) - v_3(a)}{b - a}$$

(8 Punkte) gilt.

- 2. Bestimme die Ableitung der Funktion $f(x) = \sqrt{x^2 + \sqrt{x^2 + 1}}$ auf ihrem Definitionsbereich. (4 Punkte)
- 3. Bestimme alle möglichen Paare (a,b) reeller Zahlen mit der Eigenschaft, daß die durch

$$f(x) = \begin{cases} ax + b, & \text{für } x > 2\\ (x+b)^2 + a, & \text{für } x \le 2 \end{cases}$$

definierte Funktion $f: \mathbb{R} \to \mathbb{R}$ auf \mathbb{R} differenzierbar ist.

(4 Punkte)

4. Es sei $f(x) = \begin{cases} 1 & \text{für } x \in \mathbb{Q} \\ 0 & \text{für } x \notin \mathbb{Q} \end{cases}$ sowie $g(x) = x \cdot f(x)$ und $h(x) = x^2 \cdot f(x)$. Entscheide für jede der Funktionen f, g und h, welche der Eigenschaften Stetigkeit oder Differen-

Entscheide für jede der Funktionen f, g und h, welche der Eigenschaften Stetigkeit oder Differenzierbarkeit in $x_0 = 0$ vorliegt. Die Antwort ist zu begründen.

(6 Punkte)

5. Es sei $f: \mathbb{R} \to \mathbb{R}$ und $x_0 \in \mathbb{R}$ ein Fixpunkt von f, d.h. $f(x_0) = x_0$. Weiter sei f in x_0 differenzierbar und es sei $|f'(x_0)| < 1$. Die Funktionenfolge $(f_n)_{n=0}^{\infty}$ sei durch $f_0(x) = f(x)$ und $f_{n+1}(x) = f(f_n(x))$ definiert.

Zeige:
$$\lim_{n \to \infty} f'_n(x_0) = 0.$$
 (6 Punkte)

- 6. Gegeben sei ein Intervall $I \subset \mathbb{R}$ und eine n- mal stetig differenzierbare Funktion $f \colon I \to \mathbb{R}$, die in I genau n+1 Nullstellen besitze, d.h. es gelte mit $x_1 < x_2 < \ldots < x_{n+1}$, daß $f(x_k) = 0$ für $k = 1, \ldots, n+1$. Zeige, daß ein $\xi \in \mathbb{R}$ mit $f^{(n)}(\xi) = 0$ existiert. (4 Punkte)
- 7. Gegeben sei ein a > 0 und eine stetige und auf (0, a) differenzierbare Funktion $f: [0, a] \to \mathbb{R}$ mit f(0) = 0.

Zeige: Wenn f'(x) monoton wachsend ist, dann ist auch $\frac{f(x)}{x}$ monoton wachsend. (4 Punkte)