UNIVERSITÄT ULM

Institut für Zahlentheorie und Wahrscheinlichkeitstheorie

Übungen zu Analysis I

Prof. Dr. Helmut Maier, Hans- Peter Reck

Gesamtpunktzahl: 24 Punkte

Übungsblatt 7

Abgabe: Mittwoch, 9. Juni 2010, vor den Übungen

1. Berechne für $n \in \mathbb{N}$ die Summe

$$\sum_{j=0}^{n} \sum_{k=0}^{n} \binom{k}{j} \frac{1}{2^{k+j}}.$$

(4 Punkte)

2. Untersuche nachstehende Folgen $(a_n)_{n=1}^{\infty}$ auf Konvergenz:

(a)
$$a_n = \frac{n^3 + 2n + 3}{n^2 + 1}$$

(b)
$$a_n = \sqrt{n} \cdot ((\sqrt{n+2} - \sqrt{n}))$$

(c)
$$a_n = \prod_{k=2}^n \left(1 - \frac{1}{k}\right)$$

(d)
$$a_n = \prod_{k=2}^n \left(1 - \frac{1}{k^2}\right)$$
 (6 Punkte)

- 3. (a) Eine Folge $(a_n)_{n=0}^{\infty}$ sei durch $a_0=1$ und $a_n=\sqrt{2+a_{n-1}}$ für alle $n\in\mathbb{N}$ definiert. Zeige, daß $(a_n)_{n=0}^{\infty}$ konvergiert und berechne den Grenzwert.
 - (b) Eine Folge $(a_n)_{n=0}^{\infty}$ sei durch $a_0=1$ und $a_n=\frac{1}{1+a_{n-1}}$ für alle $n\in\mathbb{N}$ definiert. Zeige:

$$\lim_{n \to \infty} a_n = \frac{\sqrt{5} - 1}{2}.$$

(6 Punkte)

4. Es sei
$$(z_n)_{n=1}^{\infty}$$
 eine Folge und $s_n=\frac{1}{n}\sum_{k=1}^n z_k$ für alle $n\in\mathbb{N}$.
Zeige: Wenn $\lim_{n\to\infty}z_n=z$ gilt, dann folgt auch $\lim_{n\to\infty}s_n=z$. (4 Punkte)

5. (a) Beweise oder widerlege durch ein Gegenbeispiel folgende Aussagen über reelle Folgen (a_n) bzw. (b_n) :

i.
$$\overline{\lim}_{n\to\infty}(a_n+b_n) = \overline{\lim}_{n\to\infty}a_n + \overline{\lim}_{n\to\infty}b_n$$

ii.
$$\lim_{n\to\infty} a_n$$
 existiert $\Rightarrow \overline{\lim}_{n\to\infty} a_n = \lim_{n\to\infty} a_n$

(b) Bestimme $\overline{\lim_{n \to \infty}} a_n$ (mit kurzer Begründung) für

i.
$$a_n = \frac{1 + (-1)^n n}{(-1)^n (1+n)}$$

ii.
$$a_n = n - 3\left[\frac{n}{3}\right]$$

(4 Punkte)