Angewandte Statistik für Biometrie

(Abgabe: Di., 17.05.2011, vor den Übungen)

- 1. In einer klinischen Studie erhalten 20 Personen ein Medikament. Anschließend wird stündlich ihre Körpertemperatur X_i gemessen, jeweils einhundertmal. Es liegen also Messwerte zu den Zeitpunkten $t_1=1,\ldots,t_{100}=100$ vor. Man geht davon aus, dass bei jeder Person ein lineares Modell der Form $X_i=\beta_1+\beta_2t_i+\varepsilon_i$ vorliegt. Es soll getestet werden ob das Medikament die Körpertemperatur ändert, die Nullhypothese ist dass keine Änderung auftritt (also $\beta_2=0$). Der Test soll zum Niveau $\alpha=5\%$ durchgeführt werden.
 - (a) Lade den Datensatz fieber.dat von der Homepage. Die Messwerte zum Zeitpunkt t_i befinden sich in der i-ten Zeile, die Werte der Person j in der j-ten Spalte. Schätze für jeden der 20 Teilnehmer die Parameter β_1 und β_2 und teste $H_0: \beta_2 = 0$ (gegen $H_1: \beta_2 \neq 0$) mit der Testgröße $\frac{Q_{R|H_0}-Q_R}{Q_R}\frac{n-r}{q}$ aus der Vorlesung und dem 5%-Quantil der entsprechenden F(q, n-r)-Verteilung. Wie ist das Ergebnis des Tests? Kommt R bei summary(lm()) zum selben Ergebnis?
 - (b) Initialisiere den Zufallszahlengenerator mit set.seed(23512) und simuliere für 20 Personen jeweils 100 Messwerte X_i unter H_0 , also $X_i = \beta_1 + \varepsilon_i$. Bei allen Personen soll $\beta_1 = 36.8$ und $\varepsilon_i \sim N(0, \sigma^2)$ mit $\sigma = 0.7$ gelten. Führe Tests wie in (a) durch. Unterscheiden sich die Ergebnisse und falls ja, wie?

Hinweis: Den Schätzer $\hat{\sigma} := \sqrt{\frac{1}{n-r}} \|X - A\hat{\beta}\|$ für die Standardabweichung im linearen Modell erhält man in R mit summary(lm())\$sigma.

(4+2 Punkte)

2. Es sei
$$\begin{pmatrix} X \\ Y \end{pmatrix} \sim \mathcal{N}(\mu, \Sigma)$$
 mit $\mu := \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}$ und $\Sigma := \begin{pmatrix} \sigma_x^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{pmatrix}$ invertierbar.

Zeige dass in diesem Fall $F_{X|Y=y}$, also die Verteilung von X gegeben Y=y, durch die (eindimensionale) Normalverteilung $N(\mu_x + \rho \frac{\sigma_X}{\sigma_Y}(y-\mu_Y), (1-\rho^2)\sigma_X^2)$ gegeben ist.

 $\mathit{Hinweis:}$ Für die bedingte Dichte $f_{X|Y=y}$ gilt $f_{X|Y=y}(x,y) = \frac{f_{(X,Y)}(x,y)}{f_{Y}(y)}.$

(6 Punkte)