Übungen zur Elemente der Algebra

Prof. Dr. Helmut Maier, Hans- Peter Reck

Gesamtpunktzahl: 24 Punkte

Abgabe: Dienstag, 22. November 2011, vor den Übungen

1. Zeige:

- (a) Die Gruppe $(\mathbb{Z}, +)$ ist zu einer echten Untergruppe von sich selbst isomorph.
- (b) Die Gruppe $(\mathbb{Q}, +)$ ist nicht zu einer echten Untergruppe von sich selbst isomorph. (5 Punkte)
- 2. Es sei (G,\cdot) eine (nicht notwendigerweise abelsche) Gruppe. Das Zentrum der Gruppe G ist durch

$$Z(G) := \{ a \in G \colon a \cdot b = b \cdot a \text{ für alle } b \in G \}$$

definiert.

- (a) Zeige: $(Z(G), \cdot)$ ist eine abelsche Gruppe.
- (b) Gib konkrete Beispiele für nichtttriviale Gruppen G mit

i.
$$Z(G) = G$$
,

ii.
$$Z(G) = \{1_G\}$$
 und

iii.
$$Z(G) \neq \{1_G\}, G$$

an. (6 Punkte)

- 3. Es seien (G, \circ) und (H, \star) Gruppen. Unter dem direkten Produkt $G \times H$ versteht man das Paar $(G \times H, \cdot)$, wobei $G \times H = \{(g, h) : g \in G, h \in H\}$ das Kartesische Produkt der Mengen G und H ist und die Verknüpfung \cdot durch $(g_1, h_1) \cdot (g_2, h_2) := (g_1 \circ g_2, h_1 \star h_2)$ definiert ist. Zeige: $(G \times H, \cdot)$ ist eine Gruppe. (4 Punkte)
- 4. Der Graph $\mathcal{G} = (E, K)$ sei wie folgt definiert:

Es sei E die Menge aller zweielementigen Teilmengen von $\mathbb{N}_5 = \{1, 2, 3, 4, 5\}$. Zwei Ecken $e_1, e_2 \in E$ sind genau dann verbunden, wenn $e_1 \cap e_2 = \emptyset$ ist.

- (a) Zeige: Die Automorphismengruppe $\operatorname{Aut}(\mathcal{G})$ ist zu (S_5, \circ) isomorph.
- (b) Zeige: $\operatorname{Stab}_{\operatorname{Aut}(\mathcal{G})}(\{1,2\})$ ist zum direkten Produkt $S_m \times S_n$ isomorph. Bestimme m und n und beweise die Aussage.
- (c) Bestimme die Bahnen der Gruppenwirkung von $\operatorname{Stab}_{\operatorname{Aut}(\mathcal{G})}(\{1,2\})$ auf E. (9 Punkte)