

Probeklausur zur Elemente der Algebra

Prof. Dr. Helmut Maier, Hans- Peter Reck

Gesamtpunktzahl: 130 Punkte, 100 Punkte= 100 %

1. Es sei S_9 die symmetrische Gruppe der Ordnung 9 und

$$\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 4 & 6 & 2 & 9 & 8 & 5 & 3 & 1 \end{pmatrix}.$$

Bestimme $|\langle \gamma \rangle|$, die Bahnen der Gruppenwirkung von $\langle \gamma \rangle$ auf $M = \{1, \dots, 9\}$ mit $(\gamma, m) = \gamma(m)$, die Stabilisatoren sämtlicher Elemente von M sowie die Bahnen der Gruppenwirkung dieser Stabilisatoren auf M.

(12 Punkte)

- 2. Gib die Definition folgender Begriffe an:
 - (a) Normalteiler
 - (b) Euklidischer Ring
 - (c) Integritätsring

(d) Nullteiler (16 Punkte)

- 3. (a) Wie heißt der Homomorphiesatz für Gruppen?
 - (b) Es sei $n \in \mathbb{N}$, desweiteren S_n die symmetrische Gruppe der Ordnung n und (H, \cdot) die Gruppe mit $H = \{-1, 1\}$ und der Multiplikation ".".

Gib einen Epimorphismus von S_n auf H an. (10 Punkte)

4. Es sei K ein Körper, $n \in \mathbb{N}$, $A \in GL(n, K)$ und $\vec{b} \in K^n$.

Weiter sei $\Phi(\cdot, \mathcal{A}, \vec{b})$ die <u>affine Abbildung</u>, die durch $\Phi(\vec{x}, \mathcal{A}, \vec{b}) = \mathcal{A}\vec{x} + \vec{b}$ mit $\vec{x} \in K^n$ gegeben ist. Es sei zudem $G = \{\Phi(\cdot, \overline{\mathcal{A}}, \vec{b}) : \mathcal{A} \in GL(n, K), \vec{b} \in K^n\}.$

Die <u>Translation</u> $t(\cdot, \vec{b})$ sei durch $t(\vec{x}, \vec{b}) = \vec{x} + \vec{b}$ gegeben, und es sei $\mathcal{T} = \{t(\cdot, \vec{b}: \vec{b} \in K^n\}.$

Es sei \circ die Komposition von Abbildungen, womit (G, \circ) eine Gruppe ist.

- (a) Weise von den Gruppenaxiomen für (G, \circ) folgende nach:
 - i. Existenz des neutralen Elements
 - ii. Existenz der Inversen
- (b) Es sei $\vec{u} \in K^n$. Bestimme den Stabilisator $\operatorname{Stab}(\vec{u})$ der Gruppenwirkung von G auf K^n . Für $\vec{u}, \vec{v} \in K^n$ ist ein $\psi \in G$ mit $\operatorname{Stab}(\vec{v}) = \psi \operatorname{Stab}(\vec{u}) \psi^{-1}$ zu bestimmen
- (c) Zeige, dass \mathcal{T} ein Normalteiler von G ist. (15 Punkte)
- 5. Es sei K ein Körper, $n \in \mathbb{N}$ und $SL(n, K) = \{A \in GL(n, K) : \det(A) = 1\}$. Zeige: $SL(n, K) \leq GL(n, K)$. (10 Punkte)
- 6. Zeige, dass in einem Integritätsring R die Kürzungseigenschaft gilt, d.h. dass für alle $a, x, y \in R$ mit $a \neq 0$ genau dann ax = ay gilt, wenn x = y gilt. (10 Punkte)

7. Es sei $R = \mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}.$

Für jede der folgenden Wahlen des Hauptideals I sind folgende Fragen zu beantworten: Ist R/I ein Integritätsring? Was ist |R/I|?

(a) I = (3)

(b)
$$I = (5)$$

- 8. Es sei R ein kommutativer Ring und $N = \{a \in R : \exists n \in \mathbb{N} \text{ mit } a^n = 0_R\}.$
 - (a) Zeige: N ist ein Ideal von R.
 - (b) Bestimme N für den Fall, dass R ein Integritätsring ist. (10 Punkte)
- 9. Es sei $m \in \mathbb{N}$ und m
 keine Primzahl. Zeige, dass $(\mathbb{Z}/m\mathbb{Z}, +, \cdot)$ kein Integritätsring ist. (10 Punkte)
- 10. Es sei $f(X) = X^6 + X^5 + X^4 + X^3 + X^2 + X + 1$.
 - (a) Zeige, dass f in $\mathbb{Q}[X]$ irreduzibel ist.

Hinweis:

Betrachte f(X+1).

- (b) Es sei α eine Nullstelle von f in \mathbb{C} . Gib eine Basis des Vektorraums $\mathbb{Q}(\alpha)$ über \mathbb{Q} an.
- (c) Es sei $\gamma = 1 + \alpha$. Bestimme γ^{-1} in der Form $\gamma^{-1} = a_0 + a_1\alpha + a_2\alpha^2 + a_3\alpha^3 + a_4\alpha^4 + a_5\alpha^5$. (15 Punkte)
- 11. Es sei $f(X) = X^4 2$ und $\sqrt[4]{2}$ die eindeutig bestimmte positive reelle Nullstelle von f. Weiter sei $i^2 = -1$ mit $i \in \mathbb{C}$ sowie $L = \mathbb{Q}(\sqrt[4]{2})$ und $M = \mathbb{Q}(\sqrt[4]{2}, i)$.
 - (a) Gib eine Basis des Vektorraums M über $\mathbb Q$ an.
 - (b) Faktorisiere f in irreduzible Elemente von L[X] bzw. von M[X]. (12 Punkte)

Viel Erfolg!