

Wintersemester 2012/13 14.11.2012 Blatt 03

## Angewandte Stochastik II

(Abgabe: Mo., 26.11.2012, vor den Übungen)

## Theorem (Satz von Slutzky):

Seien  $X, X_n, Y, Y_n : \Omega \to \mathbb{R}$  Zufallsvariablen über dem selben Wahrscheinlichkeitsraum  $(\Omega, \mathcal{F}, P)$ ,  $c \in \mathbb{R}$  und sei  $\phi : \mathbb{R} \to \mathbb{R}$  eine stetige Funktion. Dann gilt:

- $X_n Y_n \xrightarrow{d} cX$ , falls  $X_n \xrightarrow{d} X$  und  $Y_n \xrightarrow{d} c$ .
- $\phi(X_n) \xrightarrow{d} \phi(X)$ , falls  $X_n \xrightarrow{d} X$ .

## Bemerkung:

Seien  $X, X_n : \Omega \to \mathbb{R}$  Zufallsvariablen. Falls  $X_n \xrightarrow{f.s.} X$  oder  $X_n \xrightarrow{P} X$ , dann gilt  $X_n \xrightarrow{d} X$ .

1. a) Zeigen Sie, dass für die k-ten Momente der  $\Gamma(r,\lambda)$ -Verteilung folgende Formel gilt

$$\mathbb{E}X^{k} = \frac{r \cdot (r+1) \cdot \ldots \cdot (r+(k-1))}{\lambda^{k}} \ \forall k \in \mathbb{N}$$

und berechnen Sie die Varianz in Abhängigkeit der Parameter r und  $\lambda$ .

b) Bestimmen Sie den Erwartungswert (für s > 2) und die Varianz (für s > 4) der  $F_{r,s}$ Verteilung in Abhängigkeit der Parameter r und s.

(5 Punkte)

2. Es seien  $X_1, \ldots, X_n \sim \operatorname{Exp}(\lambda)$  u.i.v. für ein  $\lambda > 0$ . Bestimmen Sie die Verteilung von  $\overline{X}_n$  sowie den Erwartungswert und Varianz von  $\overline{X}_n$  und  $S_n^2$ . Dabei kann die Formel  $\operatorname{Var} S_n^2 = \frac{1}{n}(\mu_4' - \frac{n-3}{n-1}\sigma^4)$  verwendet werden, wobei  $\mu_4'$  das 4. zentrierte Moment  $\mathbb{E}(X_1 - \mathbb{E}X_1)^4$  und  $\sigma$  die Standardabweichung von  $X_1$  bezeichnet.

(5 Punkte)

- 3. Es bezeichne  $F_{r,s,\alpha}$  das  $\alpha$ -Quantil der F-Verteilung mit r, s Freiheitsgraden, und  $\chi^2_{r,\alpha}$  das  $\alpha$ -Quantil der  $\chi^2_r$ -Verteilung mit r Freiheitsgraden. Zeigen Sie:
  - a) Für  $\alpha \in (0,1)$  und  $r \in \mathbb{N}$  gilt:  $F_{r,s,\alpha} \to \frac{\chi_{r,\alpha}^2}{r}$  für  $s \to \infty$ .
  - b) Für  $\alpha \in (0,1)$  und  $s \in \mathbb{N}$  gilt:  $F_{r,s,1-\alpha} \to \frac{s}{\chi_{s,\alpha}^2}$  für  $r \to \infty$ .

(5 Punkte)

4. Sei  $t_n$  eine t-verteilte Zufallsvariable mit n Freiheitsgraden und  $X \sim N(0,1)$ . Zeigen Sie, dass  $t_n \stackrel{d}{\to} X$ , die  $t_n$ -Verteilung also mit steigenden Freiheitsgrad n gegen die Standardnormalverteilung konvergiert.

(5 Punkte)

- 5. a) Plotten Sie die Dichte der  $t_n$ -Verteilung mit Parameter n=1,3,10,25 und die Dichte der Standardnormalverteilung in ein gemeinsames Schaubild.
  - b) Plotten Sie die Dichte der  $F_{r,s}$ -Verteilung mit Parametern (r,s) = (10,1), (10,3), (10,10), (10,25) in ein gemeinsames Schaubild. Fügen Sie dem Schaubild den Median der unterschiedlichen  $F_{r,s}$ -Verteilungen sowie den normierten Median der  $\chi^2_{10}$ -Verteilung aus Aufgabe 5 a) hinzu.

Achten Sie dabei jeweils darauf, dass man die Dichten unterscheiden kann und sie mit den entsprechenden Parameterwerten beschriftet sind.

(5 Punkte)