

Wintersemester 2012/13 29.11.2012 Blatt 04

Angewandte Stochastik II

(Abgabe: Mo., 10.12.2012, vor den Übungen)

1. Eine Qualitätskontrolle eines Sportartikelherstellers ergab folgende Messungen bei produzierten Fußbällen:

Messungen	1	2	3	4	5	6	7	8	9	10
Gewicht(in g)	445.4	472.0	442.8	425.8	444.2	443.1	462.9	450.5	453.0	422.9

Man geht davon aus, dass das Gewicht der Fußbälle in Gramm $N(\mu, \sigma^2)$ -verteilt ist.

- a) Bestimmen Sie je ein konkretes Konfidenzintervall zum Niveau $1-\alpha=0.95$ für
 - i. μ unter der Bedingung $\sigma^2 = 225$, sowie bei unbekannter Varianz σ^2 .
 - ii. σ^2 bei unbekanntem Erwartungswert μ .
- b) Testen Sie die Hypothesen $H_0: \mu = 450$ gegen $H_1: \mu \neq 450$ zum Niveau 0.05.
- c) Testen Sie die Hypothesen $H_0: \sigma^2 = 225$ gegen $H_1: \sigma^2 \neq 225$ zum Niveau 0.05.

(5 Punkte)

2. Es sei (X_1, \ldots, X_n) eine Zufallsstichprobe, wobei $X_i \sim \text{Exp}(\lambda)$ u.i.v. sind mit $\lambda > 0$. Gegeben sei die Statistik

$$T(X_1, \dots, X_n) = 2n\lambda \overline{X}$$

- a) Bestimmen Sie die Verteilung von T.
- b) Konstruieren Sie mithilfe von \overline{X} ein Konfidenzintervall für λ zum Niveau $1-\alpha$.

(5 Punkte)

3. Sei (X_1, \ldots, X_n) eine u.i.v Stichprobe mit $X_i \stackrel{d}{=} X \sim P(\lambda)$. Bestimmen Sie unter Verwendung des Zentralen Grenzwertsatzes sowie des Lemmas von Slutzky (vgl. Blatt 03) ein asymptotisches Konfidenzintervall für den Parameter λ zum Niveau $1 - \alpha$.

(3 Punkte)

- 4. Es seien (X_1, \ldots, X_n) unabhängig mit $X_i \sim \mathrm{B}(1,p)$ für $i=1,\ldots,n$. Getestet werden soll , ob $p=p_0$ für ein $p_0 \leq 0.25$. Beobachtbar sei allerdings nur, ob $\overline{X} \geq 0.3$ gilt. Deshalb wird die Hypothese abgelehnt, falls $\overline{X} \geq 0.3$ gilt. Im Folgenden sei n=10.
 - a) Welches Signifikanzniveau hat der Test, falls $p_0 = 0.2$?
 - b) Für welches $p_0 \leq 0.25$ ist die Wahrscheinlichkeit am höchsten, dass die Nullhypothese abgelehnt wird, obwohl sie stimmt?

(6 Punkte)