Quantiltabelle: t_n -Verteilung

	0.65	0.825	0.9	0.95	0.975	0.9875	0.99	0.995	0.999	0.9995
6	0.4043	1.0133	1.4398	1.9432	2.4469	2.9687	3.1427	3.7074	5.2076	5.9588
7	0.4015	1.0014	1.4149	1.8946	2.3646	2.8412	2.9980	3.4995	4.7853	5.4079
8	0.3995	0.9925	1.3968	1.8595	2.3060	2.7515	2.8965	3.3554	4.5008	5.0413
9	0.3979	0.9858	1.3830	1.8331	2.2622	2.6850	2.8214	3.2498	4.2968	4.7809
10	0.3966	0.9804	1.3722	1.8125	2.2281	2.6338	2.7638	3.1693	4.1437	4.5869
11	0.3956	0.9761	1.3634	1.7959	2.2010	2.5931	2.7181	3.1058	4.0247	4.4370
15	0.3928	0.9647	1.3406	1.7531	2.1314	2.4899	2.6025	2.9467	3.7328	4.0728
16	0.3923	0.9627	1.3368	1.7459	2.1199	2.4729	2.5835	2.9208	3.6862	4.0150
19	0.3912	0.9582	1.3277	1.7291	2.0930	2.4334	2.5395	2.8609	3.5794	3.8834
20	0.3909	0.9570	1.3253	1.7247	2.0860	2.4231	2.5280	2.8453	3.5518	3.8495

Erklärung: Die Quantiltabelle enthält auf vier Nachkommastellen gerundete Werte von $F_n^{-1}(x)$, wobei $x \in \{0,65;0,825;\dots;0,999;0,9995\}$ gilt und F_n die Verteilungsfunktion der t-Verteilung mit n Freiheitsgraden (also der t_n -Verteilung) ist. Um den passenden Wert zu finden, sucht man in der ersten Spalte die korrekte Anzahl an Freiheitsgraden n. Dann geht man bis zur Spalte der gesuchten Wahrscheinlichkeit x nach rechts. Beispielsweise steht $F_7^{-1}(0,95)$ (also das 95%-Quantil der t_7 -Verteilung) in der zweiten Zeile und vierten Spalte: $F_7^{-1}(0,95) \approx 1,8946$. Für den Fall $x \in \{0,001;0,01;0,025;0,05;0,1;0,35\}$ verwendet man die Symmetrie der Verteilungsfunktion: Es gilt $F_n^{-1}(1-x) = -F_n^{-1}(x)$.

Quantiltabelle: χ_n^2 -Verteilung

	0.01	0.025	0.05	0.1	0.9	0.95	0.975	0.9875	0.99
6	0.8721	1.2373	1.6354	2.2041	10.6446	12.5916	14.4494	16.2445	16.8119
7	1.2390	1.6899	2.1673	2.8331	12.0170	14.0671	16.0128	17.8850	18.4753
8	1.6465	2.1797	2.7326	3.4895	13.3616	15.5073	17.5345	19.4785	20.0902
9	2.0879	2.7004	3.3251	4.1682	14.6837	16.9190	19.0228	21.0341	21.6660
10	2.5582	3.2470	3.9403	4.8652	15.9872	18.3070	20.4832	22.5582	23.2093
11	3.0535	3.8157	4.5748	5.5778	17.2750	19.6751	21.9200	24.0558	24.7250
15	5.2293	6.2621	7.2609	8.5468	22.3071	24.9958	27.4884	29.8431	30.5779
16	5.8122	6.9077	7.9616	9.3122	23.5418	26.2962	28.8454	31.2501	31.9999
19	7.6327	8.9065	10.1170	11.6509	27.2036	30.1435	32.8523	35.3986	36.1909
20	8.2604	9.5908	10.8508	12.4426	28.4120	31.4104	34.1696	36.7605	37.5662

Erklärung: Die Quantiltabelle enthält auf vier Nachkommastellen gerundete Werte von $F_n^{-1}(x)$, wobei $x \in \{0,01;0,025;\dots;0,9875;0,99\}$ gilt und F_n die Verteilungsfunktion der χ^2 -Verteilung mit n Freiheitsgraden (also der χ^2 -Verteilung) ist. Um den passenden Wert zu finden, sucht man in der ersten Spalte die korrekte Anzahl an Freiheitsgraden n. Dann geht man bis zur Spalte der gesuchten Wahrscheinlichkeit x nach rechts. Beispielsweise steht $F_7^{-1}(0,95)$ (also das 95%-Quantil der χ^2 -Verteilung) in der zweiten Zeile und vierten Spalte: $F_7^{-1}(0,95) \approx 14,0671$.