

## Übungen zur Algebra

Prof. Dr. Helmut Maier, Hans- Peter Reck

Gesamtpunktzahl: 24 Punkte

Abgabe: Dienstag, 11. Dezember 2012, vor den Übungen

1. Es sei der Ring der (2,2)- Matrizen über dem Körper  $\mathbb C$  gegeben. Wir betrachten die Untermenge der Hamilton-Quaternionen

$$\mathbb{H} = \left\{ \begin{pmatrix} w & z \\ -\overline{z} & \overline{w} \end{pmatrix} : w, z \in \mathbb{C} \right\},\,$$

welche einen reellen Vektorraum der Dimension 4 darstellen. Zeige:

(a) Bezüglich der Matrizenaddition und -multiplikation ist  $\mathbb H$  ein Schiefkörper.

Hinweis:

Bei einem Schiefkörper wird die Kommutativität der Multiplikation nicht gefordert.

(b) Mit den speziellen Quaternionen

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, C = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \text{ und } D = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

ist durch die Menge  $\{A,B,C,D\}$  eine Basis des Vektorraums  $\mathbb H$  über  $\mathbb R$  gegeben.

- (c) Die Menge  $Q = \{\pm A, \pm B, \pm C, \pm D\}$  bildet bezüglich der Matrizenmultiplikation eine nichtabelsche Gruppe der Ordnung 8.
- (d) Alle nichttrivialen Untergruppen von Q sind durch  $\langle -A \rangle$ ,  $\langle B \rangle$ ,  $\langle C \rangle$  und  $\langle D \rangle$  gegeben, und alle diese Untergruppen sind auch Normalteiler.
- (e) Es sei  $\mu = (1+\sqrt{2})\cdot(\sqrt{2}+\sqrt{3})\cdot\sqrt{2}\cdot\sqrt{3}$ . Der Körper  $K = \mathbb{Q}(\sqrt{\mu})$  ist über  $\mathbb{Q}$  galoissch.

Hinweis:

Beachte  $(1 + \sqrt{2}) \cdot (1 - \sqrt{2}) = -1$  und  $(\sqrt{3} + \sqrt{2}) \cdot (\sqrt{3} - \sqrt{2}) = 1$ .

Jeder Automorphismus von  $\mathbb{Q}(\sqrt{2}, \sqrt{3})$  besitzt genau zwei Fortsetzungen auf K.

- (f) Die Galoisgruppe ist zu Q isomorph.
- (g) Bestimme alle Zwischenkörper von  $K/\mathbb{Q}$ .
- (h) Es gilt  $Q \not\cong D_4$ , wobei  $D_4$  die Symmetriegruppe des Quadrats ist. (18 Punkte)
- 2. Es sei p eine Primzahl und K ein Körper mit  $\operatorname{char}(K) = p$ . Das Polynom  $f(X) = X^p X + c$  mit  $c \in K$  habe keine Nullstelle in K, und L sei der Zerfällungskörper von f über K. Zeige, dass es keinen echten Zwischenkörper Z gibt, d.h. aus  $K \subset Z \subset L$  folgt Z = K oder Z = L. (2 Punkte)
- 3. Es sei p eine Primzahl,  $K = \mathbb{Z}/p\mathbb{Z}$  und  $f(X) = X^4 + 1 \in K[X]$ . Zeige, dass f reduzibel ist.

Hinweis:

Ist L der Zerfällungskörper von f über K, so folgte aus der Irreduzibilität von f die Aussage  $G(L/K)\cong (\mathbb{Z}/8\mathbb{Z})^*.$  (2 Punkte)

4. Es sei  $L = \mathbb{Q}(\sqrt[8]{3}, i)$ . Bestimme  $d \in \mathbb{Z}$ , so dass  $L(\sqrt{d})/\mathbb{Q}$  eine Galoiserweiterung ist. (2 Punkte)