

Probeklausur zur Algebra

Prof. Dr. Helmut Maier, Hans- Peter Reck

Gesamtpunktzahl: 130 Punkte, 100 Punkte= 100 %, keine Abgabe

- 1. Es sei L der Zerfällungskörper von $f(X) = X^3 2$ über \mathbb{Q} .
 - (a) Gib eine Basis des Vektorraums L über \mathbb{Q} an.
 - (b) Finde ein $\sigma \in G(L/\mathbb{Q})$ mit $|\langle \sigma \rangle| = 3$ und beschreibe $\sigma(\vec{b})$ für die in Teilaufgabe a) gefundenen Basiselemente \vec{b} . (8 Punkte)
- 2. Es sei $f \in \mathbb{Q}[X]$, $\deg(f) = 5$ und $G(f, \mathbb{Q}) \cong \gamma_5$. Weiter sei L ein Zerfällungskörper von f über \mathbb{Q} . Es sei mit $\alpha_j \in L$

$$f(X) = \prod_{j=1}^{5} (X - \alpha_j).$$

Die Folge der Zwischenkörper K_j sei durch $K_0=\mathbb{Q}$ und $K_j=K_{j-1}(\alpha_j)$ für $1\leq j\leq 5$ definiert.

- (a) Bestimme die Grade $[K_j: K_{j-1}]$ der Körpererweiterungen.
- (b) Ist f über \mathbb{Q} bzw. über K_2 auflösbar? (10 Punkte)
- 3. Bestimme das zehnte Kreisteilungspolynom $\Phi_{10}(X)$. (6 Punkte)
- 4. Bestimme sämtliche $d \in \mathbb{N}$, für welche der Körper $GF(3^6)$ die d- ten Einheitswurzeln enthält. (8 Punkte)
- 5. Es seien peine Primzahl, $\zeta_p=e^{\frac{2\pi i}{p}}$ und $L=\mathbb{Q}(\sqrt[p]{2},\zeta_p).$ Weiter sei

$$G(p) = \left\{ \begin{pmatrix} r & s \\ 0 & 1 \end{pmatrix} : r \in (\mathbb{Z}/p\mathbb{Z})^*, \ s \in \mathbb{Z}/p\mathbb{Z} \right\}.$$

Zeige:

- (a) G(p) ist eine Gruppe bzgl. der Matrixmultiplikation.
- (b) $G(L/\mathbb{Q}) \cong G(p)$ (11 Punkte)
- 6. Gib die Definition folgender Begriffe an:
 - (a) Kompositionsreihe
 - (b) Kommutatoruntergruppe
 - (c) Galoiserweiterung
 - (d) Diskriminante
 - (e) freier Modul (20 Punkte)
- 7. Es sei $f(X) = X^{15} + 21X^{10} 3X^5 + 2 \in \mathbb{Q}[X]$. Zeige, dass f auflösbar ist. (6 Punkte)

- 8. Es sei $R = K[X_1, X_2, X_3]$ der Ring der Polynome in drei Unbestimmten über einem Körper K. Stelle das symmetrische Polynom $f = X_1^3 + X_2^3 + X_3^3$ als Polynom in den elementarsymmetrischen Polynomen $s_0, s_1, s_2, s_3 \in R$ mit Koeffizienten aus K dar. (8 Punkte)
- 9. Es sei L/K eine Galoiserweiterung und Z ein Zwischenkörper. Formuliere und beweise eine Bedingung, unter der jeder K- Isomorphismus von Z ein Automorphismus ist.

(8 Punkte)

- 10. Bestimme in den folgenden Körpererweiterungen L/K für die angegebenen Elemente $\alpha \in L$ das Minimalpolynom.
 - (a) $L = \mathbb{C}, K = \mathbb{R} \text{ und } \alpha = \sqrt{7}$

(b)
$$L = \mathbb{C}, K = \mathbb{Q} \text{ und } \alpha = \frac{-1 + \sqrt{3}i}{2}$$
 (8 Punkte)

- 11. Es sei $L = \mathbb{Q}(\sqrt[4]{2}, i)$.
 - (a) Zeige, dass L Zerfällungskörper von $f(X) = X^4 2$ über \mathbb{Q} ist.
 - (b) Bestimme $[L:\mathbb{Q}]$.
 - (c) Zeige, dass L/\mathbb{Q} eine Galoiserweiterung ist und bestimme die Galoisgruppe $G(L/\mathbb{Q})$.
 - (d) Bestimme zu sämtlichen Untergruppen H von $G(L/\mathbb{Q})$ die Fixkörper L^H .
 - (e) Welche der in Teilaufgabe d) bestimmten Fixkörper sind über $\mathbb Q$ galoisch? (15 Punkte)
- 12. Es sei L/K eine Galoiserweiterung und $[L\colon K]=15$. Weiter sei H eine Untergruppe von G(L/K) mit |H|=5. Es sei $\sigma\in H$. Für $\alpha\in L$ sei $\eta=\sum_{j=0}^4\sigma^j(\alpha)$. Zeige, dass $[K(\eta)\colon K]\leq 3$ gilt. (8 Punkte)
- 13. Es sei \mathcal{A} ein Ideal eines Rings R. Beweise, dass \mathcal{A} genau dann ein freier R- Modul ist, wenn \mathcal{A} ein Hauptideal ist, das von einem Nichtnullteiler erzeugt wird. (8 Punkte)
- 14. Finde ein Erzeugendensystem des \mathbb{Z} Moduls \mathbb{Z}^2 , das nicht zu einer Basis verkleinert werden kann. (6 Punkte)

Viel Erfolg!