

(6 Punkte)

Übungen zur Linearen Algebra II

Prof. Dr. Helmut Maier, Hans- Peter Reck

Gesamtpunktzahl: 24 Punkte

Abgabe: Freitag, 1. Juni 2012, vor den Übungen

1. (a) Bestimme für jede Matrix die Eigenwerte mit ihrer geometrischen Ordnung sowie die Eigenvektoren und überprüfe auf Diagonalisierbarkeit:

$$\mathcal{A} = \begin{pmatrix} -1 & 2 & 2 \\ 2 & 2 & 2 \\ -3 & -6 & -6 \end{pmatrix} \quad \text{und} \quad \mathcal{B} = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & -1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

(b) Es sei die Abbildung $\varphi \in L(\mathbb{R}^3, \mathbb{R}^3)$ mit bzgl. der Standardbasis $\mathcal{B}_1 = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ zugeordneter Matrix

$$\mathcal{M}(\varphi; \mathcal{B}_1, \mathcal{B}_1) = \begin{pmatrix} 1 & 42 & -6 \\ 0 & -10 & 1 \\ -2 & 0 & -3 \end{pmatrix}$$

gegeben. Bestimme eine Basis \mathcal{B}_2 , so dass die zugehörige Darstellungsmatrix Diagonalgestalt besitzt. (11 Punkte)

- 2. Es sei V ein Vektorraum über dem Körper K und $\varphi \in L(V, V)$. Zeige: Besitzt $\varphi^2 + \varphi$ den Eigenwert -1, so hat φ^3 den Eigenwert 1. (3 Punkte)
- 3. Zeige:
 - (a) Ist $A \in \mathbb{R}^{(n,n)}$ singulär, so ist 0 ein Eigenwert von A.
 - (b) Ist $A \in \mathbb{R}^{3\times 3}$, so besitzt A mindestens einen reellen Eigenwert.
 - (c) Es seien $\mathcal{A}, \mathcal{B} \in \mathbb{R}^{(n,n)}$ und $\mathcal{B} \in GL(n,\mathbb{R})$. Zeige, dass die Matrizen \mathcal{AB} und \mathcal{BA} dieselben Eigenwerte besitzen. (4 Punkte)
- 4. Es sei $b: \mathbb{R}^{2n} \times \mathbb{R}^{2n} \to \mathbb{R}$ eine Bilinearform mit $b(\vec{x}, \vec{x}) = 0$ für alle $\vec{x} \in \mathbb{R}^{2n}$. Es existiere kein $\vec{x} \in \mathbb{R}^{2n} \{\vec{0}\}$, so dass $b(\vec{x}, \vec{y}) = 0$ für alle $\vec{y} \in \mathbb{R}^{2n}$ gelte. Zeige, dass es eine Basis \mathcal{B} gibt, so dass die Matrix $\mathcal{M}_{\mathcal{B}}(b)$ folgende Form besitzt, wobei \mathcal{E}_n die n- te Einheitsmatrix und 0 die Nullmatrix darstellt:

$$\mathcal{M}_{\mathcal{B}}(b) = \begin{pmatrix} 0 & \mathcal{E}_n \\ -\mathcal{E}_n & 0 \end{pmatrix}$$

Hinweis:

Wie beim Orthogonalisierungsverfahren von Gram- Schmidt ist die Basis rekursiv zu bestimmen. Es ist jedoch keine Formel nötig. Beginne mit einem Paar \vec{w}_1, \vec{w}_{n+1} mit $b(\vec{w}_1, \vec{w}_{n+1}) > 0$ und konstruiere hieraus das erste Paar von Basiselementen \vec{v}_1, \vec{v}_{n+1} mit $b(\vec{v}_1, \vec{v}_{n+1}) = 1$ und $b(\vec{v}_{n+1}, \vec{v}_1) = -1$.

Wenn dann die Paare $(\vec{v}_1, \vec{v}_{n+1}), \dots, (\vec{v}_{k-1}, \vec{v}_{n+k-1})$ bereits konstruiert sind, so betrachte den zu $\langle \vec{v}_1, \dots, \vec{v}_{k-1}, \vec{v}_{n+1}, \dots, \vec{v}_{n+k-1} \rangle$ "senkrechten" Vektorraum

$$W_k = \{ \vec{x} \in \mathbb{R}^{2n} \colon b(\vec{v}_j, \vec{x}) = 0, b(\vec{v}_{n+j}, \vec{x}) = 0, \ \forall 1 \le j \le k-1 \}.$$

Das Paar $(\vec{v}_k, \vec{v}_{n+k})$ kann dann aus W_k gewählt werden.