

Übungen zur Linearen Algebra für Informatiker und Ingenieure

Prof. Dr. Helmut Maier, Dr. Hans- Peter Reck

Gesamtpunktzahl: 24 Punkte

Abgabe: Montag, 10. November 2014, vor den Übungen

1. In der Menge $M := \{(a_1, a_2) : a_1, a_2 \in \mathbb{Z}\}$ seien folgende Verknüpfungen definiert:

$$(a_1, a_2) \oplus (b_1, b_2) := (a_1 + b_1, a_2 + b_2)$$

$$(a_1, a_2) \odot (b_1, b_2) := (a_1b_2, a_2b_1).$$

- (a) Zeige, dass M mit diesen Verknüpfungen keinen Ring bildet.
- (b) Es sei $T \subset M$ mit $T := \{(a_1, a_2) \in M : a_2 = 0\}$. Stellt (T, \oplus, \odot) einen Ring dar? (5 Punkte)
- 2. Es sei $m \in \mathbb{N}$.
 - (a) Es sei $r \in \mathbb{Z}$, und wir definieren die Menge

$$\overline{r} := \{ n \in \mathbb{Z} \colon n = r + k \cdot m, \ k \in \mathbb{Z} \},$$

welche man als Restklassen modulo m bezeichnet. Die Zahl r nennt man einen Repräsentanten und die Zahl m den Modul der jeweiligen Restklasse. Zeige, dass die Mengen \overline{r} und \overline{s} mit $s \in \mathbb{Z}$ genau dann gleich sind, wenn r-s ein ganzzahliges Vielfaches von m ist.

- (b) Die Menge der Restklassen modulo m wird mit $\mathbb{Z}/m\mathbb{Z}$ bezeichnet. Zeige, dass $\mathbb{Z}/m\mathbb{Z}$ genau m Mengen enthält.
- (c) Die Addition von Restklassen sei durch $\overline{r} + \overline{s} := \overline{r+s}$ definiert. Zeige, dass die Addition wohldefiniert ist, also nicht von der Auswahl der Repräsentanten abhängt.
- (d) Zeige, dass $\mathbb{Z}/m\mathbb{Z}$ mit der oben erklärten Addition eine abelsche Gruppe bildet.
- (e) Wir definieren auf $\mathbb{Z}/m\mathbb{Z}$ in analoger Weise über $\overline{r} \cdot \overline{s} := \overline{r} \cdot \overline{s}$ eine Multiplikation, wobei wir nur die Restklasse $\overline{0}$ ausnehmen. Unter welchen Vorausetzungen liegt dann eine Gruppe vor? Ist diese im Falle der Existenz abelsch?
- (f) Ist $(\mathbb{Z}/m\mathbb{Z}, +, \cdot)$ auch ein Ring bzw. ein Körper?
- (g) Gib für m = 2 diese Struktur aus Teilaufgabe f) explizit an. (12 Punkte)
- 3. Es sei $K=(\{0,1\},+,\cdot)$ der Körper aus Beispiel 2.3.6 mit der dort definierten Addition + und Multiplikation ·. Auf $K\times K$ seien zwei Verknüpfungen \oplus und \odot über

$$(a_1, a_2) \oplus (b_1, b_2) := (a_1 + b_1, a_2 + b_2)$$

 $(a_1, a_2) \odot (b_1, b_2) := (a_1 \cdot b_1 + a_2 \cdot b_2, a_1 \cdot b_2 + a_2 \cdot b_1 + a_2 \cdot b_2)$

mit $a_i, b_i \in K$ für i = 1, 2 definiert.

- (a) Stelle die Verknüpfungstafeln für die Addition und die Multiplikation in $K \times K$ auf.
- (b) Zeige, dass $\mathbb{F}_4 := (K \times K, \oplus, \odot)$ einen Körper mit vier Elementen darstellt.
- (c) Dieser Körper lässt sich auch als $\mathbb{F}_4 = (\{0,1,t,t+1\},+,\cdot)$ schreiben. Gib t^2 an. (7 Punkte)