Übungen zur Linearen Algebra I

Prof. Dr. Helmut Maier, Hans- Peter Reck

Gesamtpunktzahl: 24 Punkte

Abgabe: Donnerstag, 3. Juli 2014, vor den Übungen

1. Zeige, dass eine eindeutig bestimmte lineare Abbildung $f\colon \mathbb{R}^2 \to \mathbb{R}^2$ mit

$$f\begin{pmatrix}2\\1\end{pmatrix} = \begin{pmatrix}0\\10\end{pmatrix} \quad \text{und} \quad f\begin{pmatrix}0\\3\end{pmatrix} = \begin{pmatrix}4\\-1\end{pmatrix}$$

und gib f explizit an.

(4 Punkte)

2. (a) Für welche $\lambda \in \mathbb{R}$ existiert eine lineare Abbildung $f \colon \mathbb{R}^3 \to \mathbb{R}^3$ mit

$$f\begin{pmatrix}1\\0\\1\end{pmatrix} = \begin{pmatrix}1\\2\\1\end{pmatrix}, \quad f\begin{pmatrix}1\\1\\0\end{pmatrix} = \begin{pmatrix}1\\1\\1\end{pmatrix} \quad \text{und} \quad f\begin{pmatrix}\lambda\\1\\-1\end{pmatrix} = \begin{pmatrix}-1\\0\\3\end{pmatrix}$$
?

(b) Bestimme im Falle der Existenz

$$f \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

in Abhängigkeit von λ .

(c) Bestimme im Falle der Existenz eine Basis von Bild(f) und Kern(f) in Abhängigkeit von λ .

(6 Punkte)

3. Es seien $\mathcal{B} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ die kanonische Basis des \mathbb{R}^3 und die durch $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ über die Darstellungsmatrix

$$\mathcal{M}(\varphi, \mathcal{B}, \mathcal{B}) = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 2 & 2 \\ -3 & -6 & -6 \end{pmatrix}$$

definierte lineare Abbildung. Bestimme die Abbildungsmatrix $\mathcal{M}(\varphi, \mathcal{B}_i, \mathcal{B}_i)$ bzgl. den Basen

(a)
$$\mathcal{B}_1 = \left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 0\\0\\2 \end{pmatrix}, \begin{pmatrix} 1\\-2\\-1 \end{pmatrix} \right\}$$

(b)
$$\mathcal{B}_2 = \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}$$

(c)
$$\mathcal{B}_3 = \left\{ \begin{pmatrix} 0\\1\\-1 \end{pmatrix}, \begin{pmatrix} -2\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\}$$
 (6 Punkte)

4. Es sei $\mathcal B$ wiederum die kanonische Basis des $\mathbb R^2$, und $\varphi\in L(\mathbb R^2,\mathbb R^2)$ habe die Abbildungsmatrix

$$\mathcal{M}(\varphi, \mathcal{B}, \mathcal{B}) = \begin{pmatrix} 2 & 1 \\ -4 & -3 \end{pmatrix}.$$

- (a) Finde vom Nullvektor verschiedene Vektoren \vec{v}_1, \vec{v}_2 mit $\varphi(\vec{v}_1) = \vec{v}_1$ und $\varphi(\vec{v}_2) = -2\vec{v}_2$.
- (b) Finde eine Basis $\widetilde{\mathcal{B}}$ des \mathbb{R}^2 , so dass

$$\mathcal{M}(\varphi, \widetilde{\mathcal{B}}, \widetilde{\mathcal{B}}) = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$$

gilt. (4 Punkte)

- 5. Es sei $\mathcal{B}_1 = \{\vec{e}_1, \dots, \vec{e}_n\}$ die kanonische Basis des K^n und $\mathcal{B}_2 = \{\vec{e}_1, \dots, \vec{e}_m'\}$ die kanonische Basis des K^m .
 - (a) Es sei f_{ij} mit $1 \le i \le n$ und $1 \le j \le m$ über $f_{ij} \colon K^n \to K^m$ mit $f_{ij}(\vec{e}_k) = \delta_{jk} \cdot \vec{e}_i'$ für $1 \le k \le n$ und dem Kronecker- Symbol δ_{ik} mit

$$\delta_{jk} = \begin{cases} 1 & \text{für } j = k \\ 0 & \text{sonst} \end{cases}$$

gegeben. Bestimme die Darstellungsmatrix $\mathcal{M}(f_{ij}, \mathcal{B}_2, \mathcal{B}_1)$.

(b) Es sei nun

$$f = \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{ij} f_{ij}$$

mit $\lambda_{ij} \in K$ gegeben. Bestimme nun die Darstellungsmatrix $\mathcal{M}(f, \mathcal{B}_2, \mathcal{B}_1)$. (4 Punkte)