Übungen zu Höhere Mathematik I

(Besprechung der Aufgaben am Mittwoch, den 10.02.2016)

1. Es sei $I \subset \mathbb{R}$ ein offenes Intervall. Eine Abbildung $f: I \to \mathbb{R}$ heißt Lipschitz-stetig, wenn ein $L \in \mathbb{R}$ existiert, so dass

$$\forall x_1, x_2 \in I : |f(x_1) - f(x_2)| \le L|x_1 - x_2|$$

gilt.

- (a) Zeige, dass jede Lipschitz-stetige Funktion $f: I \to \mathbb{R}$ auch gleichmäßig stetig ist.
- (b) Zeige, dass eine differenzierbare Funktion $f:I\to\mathbb{R}$, deren Ableitung beschränkt ist, auch Lipschitz-stetig ist.
- (c) Zeige, dass die Ableitung einer differenzierbaren, Lipschitz-stetigen Funktion $f: I \to \mathbb{R}$ beschränkt ist.
- (d) Zeige, dass aus Lipschitz-Stetigkeit nicht Differenzierbarkeit folgt. Zeige also, dass eine Funktion $f: I \to \mathbb{R}$ existiert, die Lipschitz-stetig, aber nicht differenzierbar ist.
- 2. Es seien $f, g: \mathbb{R} \to \mathbb{R}$ differenzierbare Funktionen.
 - (a) Es sei $c \in \mathbb{R}$ und es gelte f'(x) = c für alle $x \in \mathbb{R}$. Zeige, dass dann f(x) = cx + f(0) für alle $x \in \mathbb{R}$ gilt.
 - (b) Es gelte f'(x) = g'(x) für alle $x \in \mathbb{R}$. Zeige, dass dann ein $c \in \mathbb{R}$ existiert, so dass f(x) = g(x) + c für alle $x \in \mathbb{R}$ gilt.
- 3. Es sei $f \colon (-1,1) \to \mathbb{R}$ mit $f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{ für } x \neq 0, \\ 0 & \text{ für } x = 0. \end{cases}$
 - (a) Zeige, dass f differenzierbar ist.
 - (b) Zeige, dass f' nicht stetig ist.
- 4. Bestimme folgende Grenzwerte, sofern sie existieren. Begründe andernfalls, weshalb sie nicht existieren.
 - (a) $\lim_{x \to 0} \frac{\sin x}{x}$.
 - (b) $\lim_{n\to\infty} a_n$, wobei $a_n := n \sin(\frac{1}{n})$ für alle $n \in \mathbb{N}$ gilt.
 - (c) $\lim_{x \to \infty} \frac{\exp\left(\frac{1}{x}\right)}{\log x}$.
 - $(\mathrm{d}) \ \lim_{x \to 0} \frac{\sin(x^{-\alpha})}{x^{\alpha}} \ \mathrm{für} \ \alpha \in \mathbb{R}.$