Übungen zu Extremwerttheorie

(Zu Bearbeiten bis Donnerstag, den 09.07.2015, 12:00h)

1. Es sei X_1, \ldots, X_n eine Stichprobe zur Verteilung $F \in \mathcal{A}(H_{\xi})$ mit $\xi \geq 0$. Daraus lässt sich wie in der Vorlesung $(X_i^* := \log^+(X_i)$ und $\log^+(x) := \log(e \vee x))$ die Stichprobe X_1^*, \ldots, X_n^* der Verteilung $F^* \in \mathcal{A}(\Lambda)$ erzeugen. Nun sei \hat{F}_n^* die empirische Verteilungsfunktion zur Stichprobe X_1^*, \ldots, X_n^* . Zeige folgende Behauptungen aus der Vorlesung:

(a)
$$(\hat{F}_n^*)^{-1} \left(1 - \frac{k}{n}\right) = X_{(k+1:n)}^* \text{ für } k \in \{1, \dots, n-1\}.$$

(b)
$$\frac{n}{k} \int_{X_{(k+1:n)}^*}^{\infty} \overline{\hat{F}_n^*}(u) du = \frac{1}{k} \sum_{j=1}^k X_{(j:n)}^* - X_{(k+1:n)}^*.$$

(2+2 Punkte)

- 2. Es seien $n=5\,040$, $\alpha=\frac{1}{4}$ und F eine Pareto-Verteilung, also $F(x)=(1-x^{-\alpha})\mathbb{1}(x\geq 1)$. Erzeuge gemäß F verteilte Realisierungen X_1,\ldots,X_n und damit X_1^*,\ldots,X_n^* wobei $X_i^*=\log^+X_i$ wie in Aufgabe 1 definiert ist.
 - (a) Zeige, dass die Verteilung F^* von X_1^* durch $F^*(t) = (1 e^{-\alpha t})\mathbb{1}(t \ge 1)$ gegeben ist und bestimme damit die Folgen a_i^* und b_i^* , in Abhängigkeit von j, wie in Lemma 2.2.
 - (b) Berechne für $k=100,\ldots,1$ die Schätzer $\hat{a}^*_{\frac{n}{k}}$ (siehe Teilaufgabe 1(b)) und $\hat{b}^*_{\frac{n}{k}}$ (siehe Teilaufgabe 1(a)). Erstelle einen gemeinsamen Plot der Punkte $\left(\lfloor\frac{n}{k}\rfloor,\hat{a}^*_{\frac{n}{k}}\right)$ und $\left(\lfloor\frac{n}{k}\rfloor,a^*_{\lfloor\frac{n}{k}\rfloor}\right)$ für $k=100,\ldots,1$. Erstelle einen weiteren Plot mit den Punkten $\left(\lfloor\frac{n}{k}\rfloor,\hat{b}^*_{\frac{n}{k}}\right)$ und $\left(\lfloor\frac{n}{k}\rfloor,b^*_{\lfloor\frac{n}{k}\rfloor}\right)$ für $k=100,\ldots,1$. Verbinde Punkte mit aufeinanderfolgenden Werten von k, für jede der vier Punktfolgen (Schätzer und theoretische Werte), mit Linien.

(4 Bonuspunkte + 8 Punkte)