

Ubungen zur Analysis I für Informatiker und Ingenieure

Prof. Dr. Helmut Maier, Dr. Hans- Peter Reck

Gesamtpunktzahl: 24 Punkte

Abgabe: Dienstag, 23. Juni 2015, vor den Übungen

1. Bestimme für

$$R(x) = \frac{x^6 - 6x^5 + 9x^4 - 12x^3 + 21x^2 - 18x + 25}{(x^4 + 1) \cdot (x^2 - 6x + 9)}$$

- (a) den größtmöglichen Definitionsbereich $D \subset \mathbb{R}$,
- (b) die Partialbruchzerlegung,
- (c) für $x_0 \notin D$ die Ausdrücke $\lim_{x \to x_0^+} R(x)$ und $\lim_{x \to x_0^-} R(x)$, (d) die Ausdrücke $\lim_{x \to \infty} R(x)$ und $\lim_{x \to -\infty} R(x)$.
- (8 Punkte)
- 2. Es sei $D \subset \mathbb{R}$. Eine Funktion $f: D \to \mathbb{R}$ heißt periodisch mit Periode $\omega \neq 0$, wenn für alle $x \in D$ auch $x + \omega \in D$ und $f(x) = f(x + \omega)$ gilt.

Begünde, warum eine reelle, nichtkonstante rationale Funktion nicht periodisch sein kann.

(2 Punkte)

- 3. Zeige, dass für eine stetige Funktion $f:[0,1]\to [0,1]$ mindestens ein $\xi\in[0,1]$ mit $f(\xi)=\xi$ existiert. (2 Punkte)
- 4. Es sei $I \subset \mathbb{R}$ ein Intervall und Funktionen $f, g: I \to \mathbb{R}$.

Dann heißt f Lipschitz- stetig, falls ein L > 0 existiert, so dass

$$|f(x) - f(y)| \le L \cdot |x - y|$$

für alle $x, y \in I$ gilt.

- (a) Es sei f Lipschitz- stetig. Zeige, dass f auf I gleichmäßig stetig ist.
- (b) Sind die Funktionen $f, g: [0,1] \to \mathbb{R}$ mit $f(x) = x^4 + 3x^2$ und $g(x) = x + \sqrt{x}$ Lipschitz- stetig?
- (c) Es seien f und g Lipschitz- stetig. Zeige, dass dann auch f + g Lipschitz- stetig ist.
- (d) Es sei I kompakt sowie f und g Lipschitz- stetig. Zeige, dass dann $f \cdot g$ Lipschitz- stetig ist.
- (e) Es sei I = [0, 2]. Zeige, dass $f: I \to \mathbb{R}$ mit $f(x) = \sqrt{|1 x|}$ auf I gleichmäßig stetig, aber nicht Lipschitz- stetig ist. (8 Punkte)
- 5. Es sei $f: D_f \to \mathbb{R}$ mit

$$f(x) = \begin{cases} x + 2 & \text{für } x < -2 \\ 0 & \text{für } x = 0 \\ x - 2 & \text{für } x > 2. \end{cases}$$

- (a) Zeige die Stetigkeit und die strenge Monotonie von f.
- (b) Zeige die Existenz von f^{-1} .
- (c) Zeige, dass f^{-1} nicht stetig ist.
- (d) Wieso stellt dies keinen Widerspruch zu Satz 3.6.2 dar? (4 Punkte)