Übungen zur Algebra

Prof. Dr. Helmut Maier, Dr. Hans- Peter Reck

Gesamtpunktzahl: 24 Punkte

Abgabe: Donnerstag, 17. November 2016, vor den Übungen

1. Wir betrachten den Integritätsring $R = I(\sqrt[3]{2}) := \{a_0 + a_1\sqrt[3]{2} + a_2(\sqrt[3]{2})^2 \colon a_0, a_1, a_2 \in \mathbb{Z}\}.$ Weiter sei $\zeta = -\frac{1}{2} + \frac{1}{2}\sqrt{3}i$ mit $i^2 = -1$. Für $\alpha = a_0 + a_1\sqrt[3]{2} + a_2(\sqrt[3]{2})^2 \in I(\sqrt[3]{2})$ seien

$$\alpha^{(0)} := \alpha.$$

$$\alpha^{(1)} := a_0 + a_1 \sqrt[3]{2}\zeta + a_2 \sqrt[3]{2}^2\zeta^2$$
 sowie

$$\alpha^{(2)} := a_0 + a_1 \sqrt[3]{2} \zeta^2 + a_2 \sqrt[3]{2}^2 \zeta.$$

Weiter definieren wir $N(\alpha):=\prod_{k=0}^2\alpha^{(k)}.$ Zeige:

- (a) Für $\alpha \in R$ gilt $\alpha^{(1)}\alpha^{(2)} \in R$ und $N(\alpha) \in \mathbb{Z}$.
- (b) Für $\alpha, \beta \in R$ ist $N(\alpha \cdot \beta) = N(\alpha) \cdot N(\beta)$.
- (c) Es gilt genau dann $\alpha \in \mathbb{R}^*$, wenn $N(\alpha) \in \{-1, 1\}$ ist.
- (d) Für $\alpha \in R^*$ und $\alpha > 1$ gilt $|\alpha^{(1)}| = |\alpha^{(2)}| < 1$.
- (e) Es sei $\alpha = a_0 + a_1 \sqrt[3]{2} + a_2 (\sqrt[3]{2})^2 \in \mathbb{R}^*$ und $\alpha > 1$. Dann gilt $a_i \ge 0$ für $i \in \{0, 1, 2\}$.

Hinweis:

Betrachte die Ausdrücke $\alpha^{(0)} + \zeta^k \alpha^{(1)} + \zeta^{2k} \alpha^{(2)}$ für $k \in \{0, 1, 2\}$.

- (f) Es gilt $R^* = \{(-1)^m \cdot \eta^k : m \in \{0,1\}, k \in \mathbb{Z}\}$ mit der Grundeinheit $\eta = 1 + \sqrt[3]{2} + \sqrt[3]{2}^2$.
- (g) Gib alle Lösungen der Diophantischen Gleichung $x^3 + 2y^3 + 4z^3 6xyz = 1$ an. (12 Punkte)
- 2. Es sei K ein Körper mit $\operatorname{char}(K) = p$ mit einer Primzahl p. Weiter sei \mathbb{P} der Primkörper von K. Es sei L/K eine Körpererweiterung von K und $f_c(X) = X^p X + c$ mit $c \in L$. Zeige:
 - (a) Die Abbildung $\varphi \colon L \to L, x \to x^p$ ist ein Körperisomorphismus.
 - (b) Ist $f_c(\alpha) = 0$ für ein $\alpha \in L$, so ist auch $f_c(\alpha + r) = 0$ für $r \in \mathbb{P}$. (6 Punkte)
- 3. Es sei K ein Körper. Unter dem Körper K((X)) der <u>formalen Laurentreihen</u> über K versteht man

$$K((X)) := \{ f \colon \mathbb{Z} \to K \}.$$

Für f schreibt man auch

$$\sum_{n=-\infty}^{\infty} f(n)X^n.$$

Addition und Multiplikation sind nach den bekannten Rechenregeln für Potenzreihen definiert. Konvergenzüberlegungen spielen keine Rolle. Es sei $K_0 := \{ f \in K : f(n) = 0 \text{ für } n \neq 0 \}.$

- (a) Zeige: K((X)) ist ein Körper.
- (b) Bestimme $[K((X)): K_0]$.
- (c) Vergleiche die Charakteristiken $\operatorname{char}(K((X)))$ und $\operatorname{char}(K_0)$. (6 Punkte)