Blatt 5

Übungen zu Angewandte Statistik

(Abgabe am Montag, den 23.05.2016, 12:15h)

- 1. Es sei $\overrightarrow{Z} \sim N_{\mu,K}$ ein *n*-dimensionaler Zufallsvektor und $A \in \mathbb{R}^{r_1 \times n}$, $B \in \mathbb{R}^{r_2 \times n}$ seien beliebige Matrizen mit $r_1 \leq r_2$. Weiter Sei C eine symmetrische, nicht negativ-definite $n \times n$ Matrix.
 - (a) Beweise die folgenden Aussagen:
 - Falls $AKB^T = 0$, dann sind $A\overrightarrow{Z}$ und $B\overrightarrow{Z}$ unabhängig.
 - Falls AKC = 0, dann sind \overrightarrow{AZ} und $\overrightarrow{Z}^T \overrightarrow{CZ}$ unabhängig.
 - (b) Betrachte das lineare Modell $\overrightarrow{X} = A\overrightarrow{\beta} + \overrightarrow{\varepsilon}$, $\overrightarrow{\varepsilon} \sim N_{0,\sigma^2I}$. Zeige, dass sich der ML-Schätzer

$$\hat{\sigma}^2 = \frac{1}{n-r} \parallel \overrightarrow{X} - A \widehat{\overrightarrow{\beta}} \parallel^2$$

als Bilinearform

$$\hat{\sigma}^2 = \frac{1}{n-r} \varepsilon^T \tilde{P} \varepsilon, \ \tilde{P} = I - A(A^T A)^{-1} A^T$$

schreiben lässt.

(c) Zeige, dass die ML-Schätzer $\hat{\sigma}$, $\hat{\beta}$ unabhängig sind.

(6 Punkte)

- 2. Wir betrachten die Daten über Weltrekorde von Laufstrecken aus der Vorlesung. Lade ihn von der Vorlesungshomepage herunter.
 - (a) Erzeuge einen data.frame weltrek.ma, welcher nur die Ergebnisse von Männern enthält. Entferne zudem die Einträge, welche NA-Einträge aufweisen. (Hinweis: der Befehl is.na() ist hier nützlich).
 - (b) Erzeuge ein Streudiagramm (X_i, Y_i) , wobei X_i die Laufzeit in Sekunden und Y_i der Strecke in Metern entspricht.
 - (c) Mache dich mit den R-Befehlen lm(), lm()\$coeff, sowie summary(lm()) vertraut. Passe folgende linaren Modelle an den Datensatz an:
 - $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$.
 - $Y_i = \beta_0 + \beta_1 \log X_i + \varepsilon_i$.
 - $\log Y_i = \beta_0 + \beta_1 \log X_i + \varepsilon_i$,

wobei $\varepsilon_i \sim N_{0.1}$.

(d) Füge dem Streudiagramm aus a) die drei Regressionskurven hinzu (**Hinweis:** Es ist möglicherweise nötig die Ergebnisse der Regression aus c) zu sortieren, damit der lines-Befehl nur die direkt benachbarten Punkte miteinander verbindet). Welches Modell sollte verwendet werden und warum? Argumentiere über die Informationen, die über summary(lm()) erhalten werden.

Hinweis: Der nötige Stoff zu dieser Aufgabe wird in der Vorlesung vom 18.05 behandelt.

(6 Punkte)