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Background
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Standard testing procedures:
Ulm 2012 _ _
Introduction leed Sample + anaIyS|S

A.s. convergence

Anscombe’s theorem Two (polemic) problems:

Renewal theory

Two-dim. random walks  {  an unnecessarily large sample;

Furth licati .
uriher apprications a smaller one would have saved lives.
Perturbed random walks

Statistics applications

References <> the Samp|e too Sma”;
no significant conclusion.

How can we escape from this terrible dilemma?
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Solution

Sequential procedure

L )
[ )

Random sample size;

Sample until min{n:---}, e,

typically, some stopping time.

Problems in the i.i.d. setting:

)
)
)
)

LLN?
CLT?
LIL?

Moments ?

Allan Gut, Ulm, July 30, 2012 (3 : 45)
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Example 1

X, X1, Xo, ... i.i.d. coin-tossing r.v's, viz.,

PX=1)=P(X=-1)=1/2,  Sp=3"_, Xk,

N =min{n: S, =1}.
Obviously:
ES,=0 forall n

A natural guess:

However, Sy =1 as., =—
ESy=1+#0 s —(

“Problem”: E N = co.
But ... could (1) be true “sometimes”?

Allan Gut, Ulm, July 30, 2012 (4 : 45)



UPPSALA
UNIVERSITET

Ulm 2012

Introduction

A.s. convergence
Anscombe’s theorem
Renewal theory
Two-dim. random walks
Further applications
Perturbed random walks
Statistics applications

References

Example 2

The same, but

N(n) = the index of Sy at the nth visit to 0,

Well-known:

P(S,=0i0.)=1, N(n)%3 oo, CLT holds.

A natural guess:

Sn(n
oNm)_ 4, N(0,1) as n— oo.
N(n)

However,

Sn(n)

N(n):o forall n s —(

But ... could (2) be true “sometimes”?

Allan Gut, Ulm, July 30, 2012 (5 : 45)
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A.s. convergence

e Y1, Yo, ... random variables,
a.s.

Y, =Y as n— o0,

e {7(t), t > 0} positive, integer valued r.v's,

7(t) B 0 as t— 0.

Then
Yr(t) Y as t— oo

Proof: The union of two null sets is a null set.

Allan Gut, Ulm, July 30, 2012 (7 : 45)



In particular
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X, X1, Xo, ... iid. EX=p, Sp=3"_ Xk
Ulm 2012

Introduction

{7(t), t > 0} positive, integer valued r.v's,
A.s. convergence

Anscombe’s theorem T(t) a—s) o0 as t — oo.

Renewal theory

Two-dim. random walks

Further applications Then
Perturbed random walks

ST S0 ag  ang N@esg L4 o
7(t)

Allan Gut, Ulm, July 30, 2012 (8 : 45)
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Anscombe’s theorem

i Y17

Ya, ...

d

Y, =Y as

random variables,

n— oo,

e {7(t), t > 0} positive, integer valued r.v's,
{b(t) >0, t >0},

7(t)

b(t)

e Given e >0 and n > 0, there exist § > 0 and ng,

L]

b(t) /oo as

as

such that, for all n > ng,

Then

Allan Gut, Ulm,

P(

maxXx
{k:|k—n|<nd}

d

t — o0.

t — o0,

\Yk—Yn|>5) <.

Yr(t) =Y as

July 30, 2012

(9 : 45)

t — o0.

(3)

(4)



The Anscombe condition

UPPSALA e Given e > 0 and > 0, there exist § > 0 and ng,
UNIVERSITET
such that, for all n > nq,
Ulm 2012

|Yk—Y|>s) n.

Introduction P (

{k: \k n\<n<5}
A.s. convergence
Anscombe’s theorem . . . . -
Uniform continuity in probability

Renewal theory

Two-dim. random walks

R eppRets Convergence in distribution ...... CLT ....
Perturbed random walks Yn <« Sn/\/ﬁ el —3

Statistics applications

References 5

- )<

|5k—5|>ef)

P
({k |k— n|<n6}

P
({k |k— n|<n6}

~ Kolomgorov's inequality.

Allan Gut, Ulm, July 30, 2012 (10 : 45)
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Rényi's theorem with a direct proof
X, X1, Xo, ... iid. EX=0, VarX =o0?< 00,
Sn = ZZ:I Xk, n Z 1.

{7(t), t > 0} positive, integer valued r.v's, such that

7(t)

; (0<fh <o) as t— oo (5)
Then
S,
© 2 no,1)
oy/7(t)
as t— oo.
Sk
N(0,1),

Allan Gut, Ulm, July 30, 2012 (11 : 45)
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A weighted Rényi

X1, Xo, ... i.i.d. mean 0 02 < o0,
v>0,  Sp="_ KX n>1.
{7(t), t > 0} positive, integer valued r.v's, such that

(0<f<o0) as t— o0, (6)

for some 8 > 0. Then
Se(t) d o?
(7(t))+(1/2) - N(O’ 2y + 1) ’

Sr(t) J 52027+1

B2 — 0, 727 1 as t — oo.

Proof: The same, although a bit more elaborate.

Allan Gut, Ulm, July 30, 2012 (12 : 45)



Renewal theory

UPPSALA
NIVERSITET .
v Xl,XQ, ... did. Snzzzzlxk, nZ 1, 50:0.
Ulm 2012 {Sn, n >0} is a random walk
Introduction
A's. convergence If X17 X27 s a” Z 01 then
Anscombe's theorem .
Renenl theory {Sn, n >0} s a renewal process.
Two-dim. random walks
Further applications Set N(t) — maX{n : SI‘I S t}, t 2 O
Perturbed random walks
Sz el feifois {N(t), t > 0} is the (renewal) counting process.
References

Limit theorems via inversion:

{S, <t} ={N(t) > n}

Examples: Light bulbs, queueing, insurance risk ...

Allan Gut, Ulm, July 30, 2012 (13 : 45)
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Renewal theory for random walks

N(t) =max{n:S,<t}, t>0.

Inversion no longer true

Better: 7(t) =min{n:S,>t}, t>0;
The first passage time process.
Sn
A
° L]
? .
Coe T
. 5 §
0 1 2 3 4 5 6 7 8 9 10 11
7(t) N(t)

Allan Gut, Ulm, July 30, 2012 (14 : 45)



Remarks

UPPSALA )
UNIVERSITET Q  For practical purposes, more reasonable
to “take action”
Ulm 2012 at first occurrence of some strange event

Introduction

N rather than
.S. convergence
Anscombe’s theorem at last occurrence.

Renewal theory

Two-dim. random walks Besides ... how do we now that “this’ was the last
Further applications 2
occurrence’

Perturbed random walks

Statistics applications ) ]
References @ Mathemat'(:ally.

» First passage times are stopping times;

» Counting variables are not.

{Sr), t >0} isa Stopped Random Walk.

Allan Gut, Ulm, July 30, 2012 (15 : 45)
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A.s. convergence
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neval theory Srt)-1 <t < S,
Two-dim. random walks
Further applications and
Perturbed random walks
Statistics applications XT(t) > 0

References
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The strong law

Theorem
T(t) as 1
—_— = — as t — oo.
t 1Y
Proof:
7(t) B oo as t— o0
S7'(1.‘) a.s X’T(t) a.s

+ sandwich lemma.

Allan Gut, Ulm, July 30, 2012 (17 : 45)



Central limit theorem

UPPSALA Theorem If, in addition, Var X = 02 < oo, then
UNIVERSITET

—t
/Md N(0,1) as t— oo.

Ulm 2012

Introduction

ﬁ

A.s. convergence

Anscombe’s theorem

Renewal theory Proof: CLT + Anscombe (Rényi's version) —

Two-dim. random walks

Further applications 5
Perturbed random walks T(t) - /J'T(t) d

Statistics applications

N(0,1) as t— oc.

References

+ sandwich lemma 4+ SLLN =

() 4 nio1) as t ool

g2 =
1

Allan Gut, Ulm, July 30, 2012 (18 : 45)
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Summary so far

We need:

» SLLN, CLT, etc;
» Transition; Random SLLN, Anscombe,etc;

» Sandwich inequality .

This constitutes

The SRW —method.

Allan Gut, Ulm, July 30, 2012 (19 : 45)
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Additional results

B e S — == = = = e e —

Finiteness of moments;

Marcinkiewicz—Zygmund type moment inequalities;
Marcinkiewicz—Zygmund laws;

LIL results;

Stable analogs;

Weak invariance principles, viz., Anscombe—Donsker;
Strong invariance principles;

Analogs for curved barriers, typically
7(t) = min{n: S, > tn“}, 0<a<l;

Results for random processes with i.i.d. increments.

Allan Gut, Ulm, July 30, 2012 (20 : 45)
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Renewal theory with a trend

Now instead,
Xe=Ye+kn, k>1,veR, p>0,
where Y1, Y5, ... arei.i.d. with mean 0.

Also, Tpo=>70_1Y  Sa= 11Xk, n>1,
7(t) =min{n: S, > t}, t>0.

Note: v =0 — “Renewal theory for random walks”.

Note: Only v € (0,1] is of interest.

Allan Gut, Ulm, July 30, 2012 (21 : 45)
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Results
LLN

as t — oo.

T(t) as /y+1\/(O+D)
t1/(v+1) ( U )

Proof: “The same”.

CLT
Now v € (0,1/2), VarY =02 < co. Then

(t) — ((VJ;l)t) 1/(v+1)
t(1-27)/(2(v+1))

d 2 (v + 1)(1=27)/(v+1)
S n(0.0 30D )

Proof: “The same” + delta method.

Allan Gut, Ulm, July 30, 2012 (22 : 45)



Stopped two-dimensional random walks

UPPSALA {(U,(,l)7 U,(,2)), n>1}, a two-dimensional random walk
UNIVERSITET L . (1) 2)
i.i.d. increments (X7, X,”), k > 1,

Ulm 2012 po=EX® >0 and p;=EXY R

Introduction

A.s. convergence T(t) g min{n . U,gz) > t}’ t 2 0 .

Anscombe’s theorem
Renewal theory

Two-dim. random walks T he process of interest:

Further applications

Perturbed random walks {Uf_%) t 2 0}

gnq R q Y
Statistics applications t)

References

Note 1  No assumption about independence
between components!

Note 2 “Everything” so far applies to
{r(t), t>0} and {U%), t>0}.

Allan Gut, Ulm, July 30, 2012 (23 : 45)



Chromatography
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This is how it started...
Ulm 2012

Introduction

» A sample of molecules is injected onto a column;

A.s. convergence

Anscombe’s theorem

R — » The molecules oscillate between a
Two-dim. random walks
Further applications mobile phase and a stationary phase;

Perturbed random walks

» This separates the compounds;

Statistics applications

References

Problem: Determine the elution time.

v

Allan Gut, Ulm, July 30, 2012 (24 : 45)



Multiple paths

UPPSALA
UNIVERSITET » Velocity v in the mobile phase;
Ulm 2012 » L = the length of the column;
Introduction (2 . .
A.s. convergence > {(X X ) k Z 1} are times In the
Anscombe’s theorem . . .
S mobile and stationary phases, respectively;
Two-dim. random walks (2)
Further applications > Zk 1( —|— X ) — tlme ’
Perturbed random walks (1) .
Statistics applications > Zk 1 X — dISta nce.
References
» Finally: With  7(L) = min{n: U > L},
- = Ui(z) L (renewal theory);
» and Uf(lz) = the desired information.

Allan Gut, Ulm, July 30, 2012 (25 : 45)
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The alternating renewal process

More generally — mobile times/stationary times ....

> Light bulbs, etcetera, allowing for repair times:
{(X X(2 ), k > 1} are active/repair times.
Uitl) = the “good” time in (0, t].
; : (1) 5 ()
> Queueing theory: {(X. 7, X.”), k > 1} are
busy/idle times.
U(})) = the busy time in (0, t].

We stop one component ...
and check the other one

Allan Gut, Ulm, July 30, 2012 (26 : 45)
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Theorem (LLN)

1)
U’r(t ag H1
t 2
Proof:
(1) (1)
Uity _ Yry 7(1) a
t T(t) t
Allan Gut, Ulm, July 30, 2012 (27 : 45)

as

t — o0.
1
— as
H2

t — oo.
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Theorem (CLT)

If a% = Var X < o, a% = Var X < o,
v2 = Var (upX® — 53 X@)) > 0,

then @
Uity ~ 1t
V,IL2_3/2\/E
Proof: Rényi's device:
Sn=pU — U, n>1

is a random walk, with mean 0 and variance nv

Anscombe -+ sandwich for U2, + LLN for 7(t).

(1)

Allan Gut, Ulm, July 30, 2012 (28 : 45)

— N(0,1) as t— .

2

and
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Additional, more sophisticated, examples

Queueing theory
> {X,£2), k > 1} are the interarrival times,

X,Sl) = 1 if customer k makes a purchase, 0

otherwise.
Ugg) = # purchasing customers in (0, t].

> {Xlgl), k > 1} = amounts of the purchases.

Uﬁz) = the amount of cash at time t.

Allan Gut, Ulm, July 30, 2012 (29 : 45)
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Replacement based on age

{lez), k > 1} interreplacement times,

X,Sl) =1 if replacement due to failure, 0 due to age.

(1)
Ui

# replacements due to failure in (0, t].

Cumulative shock models

XM k=1 =

X2

(1)
Ui

Allan Gut,

Ulm,

the magnitude of the kth shock.

intershock times,

the failure time.

July 30, 2012

(30 : 45)
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Stopped two-dim. random walks with a trend

Fori=1,2, {Y" k>1} iid. with mean 0,
X =y 4 ki, with g € R, iy >0, and ; €
{(U,gl), U,(,Z)), n>1} as expected.

7(t) = min{n: U > t}, t>0.

Object of interest:

{U%, t>0}.

Allan Gut, Ulm, July 30, 2012 (31 : 45)

[0,1]



UPPSALA
UNIVERSITET

Ulm 2012

Introduction

A.s. convergence
Anscombe’s theorem
Renewal theory
Two-dim. random walks
Further applications
Perturbed random walks
Statistics applications

References

Renewal theory for perturbed random walks

& Xy, Xo,...0id., EX= w >0, S, = ZZ:l Xk.
& In addition: {&,, n > 1}, arbitrary r.v's, such that

21220 as n—oo. (7)
n

& Object in focus: Z,=5,+¢&,, n>1, and

3

7(t) =min{n: Z, > t}, t>0.

Remark
More general than  nonlinear renewal theory.

Results
“As before” + taking care of noise.

Allan Gut, Ulm, July 30, 2012 (32 : 45)
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Thecase Z,=n-g(Y,)

& Y1, Yo, ... iid., positive mean ¢, variance V2

& g >0, twice continuously differentiable around 6;

* ?n = %Zzzl Yk;
& Zn:n-g(\_/,,), n>1;
& 7(t) =min{n: Z, > t}, t>0.

This is a special case of a perturbed random walk.

Namely...

Allan Gut, Ulm, July 30, 2012 (33 : 45)
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Taylor expansion

Z, =

n-g(0)+n-g(0)(Yn—0)+n ===

random walk -+ noise.

Allan Gut, Ulm, July 30, 2012 (34 : 45)
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Further results

Q Perturbed random walks with a trend;
¢ Stopped two-dim. perturbed random walks;
Q  The same with a trend.

In particular:  The case

(2, 2) = (n- ga(Vi). n - ga(V2V, V2.

Proofs

The same basic pattern, additional technicalites.

Allan Gut, Ulm, July 30, 2012 (35 : 45)

(8)



Repeated significance tests
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One-parameter exponential families
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Introduction

Gy(dx) = exp{Ox — ¢¥(0)}\(dx), 0 €O,

A.s. convergence

Anscombe's theorem e )\ is a non-degenerate, o-finite measure on R;
Renewal theory © is a non-degenerate interval on R;

Two-dim. random walks .

Further applications ’11[) IS CONVeEXx;

Perturbed random walks ° 0 unknown.

Statistics applications

References

Y1, Yo, ... ii.d. random variables ~ Gy.

H029:90 VS H1:97é00.

Allan Gut, Ulm, July 30, 2012 (36 : 45)



The log-likelihood ratio is

UPPSALA n
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Ulm 2012 = n-sup{8Y, —v(H)} = ”'g(?”)’
Introduction 0cO

A.s. convergence

Anscombe’s theorem

Renewal theory Where g(X) = Sup9 (HX - 77[)(0)), X € Rv
Twodim. random walks i the convex (Fenchel) conjugate of ).

Further applications

Py bed d Ik -
erubedndomwalie LT, n> 1} is a perturbed random walk =)

Statistics applications

References

Sequential test procedure:
Reject Hy as soon as T, large —

7(t)=min{n: T, >1t}, t>0,
which has well-known properties ...

Allan Gut, Ulm, July 30, 2012 (37 : 45)



Repeated significance tests

UPPSALA . .
UNIVERSITET Two-parameter exponential families
Ulm 2012 More than just an extension from the previous setup,
Introduction in that two-parameter models may provide relations
Ass. convergence between marginal one-parameter tests and joint tests.

Anscombe’s theorem
Renewal theory

Two-dim. random walks Special ScenariO:
EnceD licati . . .. . .
T EL A The two-dimensional test statistic falls into its

Perturbed random walks

Statistics applications (two-dimensional) critical region, whereas none of the
e (one-dimensional) marginal test statistics fall into theirs.
Thus ...... Something is wrong somewhere ...

but ... where or what?

Allan Gut, Ulm, July 30, 2012 (38 : 45)
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Formally — analogously

UPPSALA
NI RETINETT Go, 0,(dy1, dyz) = exp{b1y1+02y0—1)(61,602) }A(dy1, dy»),
Ulm 2012
Introduction HO : 91 = 001’ 92 = 902
A.s. convergence
Anscombe's theorem Hl : 91 ?é 001 or 02 ?é 9027

Renewal theory
Two-dim. random walks . . .
Further applications where ... normalization.... convex conjugate ...
Perturbed random walks

Statistics applications g(yljyz) g Sup (91_}/1 + 92_)/2 — ¢(01, 92)) .

References 91,92
The log-likelihood ratio: T, =n- g(\_/,gl), \_/,52)).

{Th, n>1} isa perturbed random walk.

Allan Gut, Ulm, July 30, 2012 (40 : 45)



Marginals

UPPSALA .
UNIVERSITET We may interpret T,, as the second component of a
two-dimensional perturbed random walk.
Ulm 2012
. Example

Introduction
A's. convergence (1) (2) / i /
e (Yk. ,Y.7), k>1, iid. normal, mean (61,6>),
Renewal theory variances 1. Then ...
Two-dim. random walks n
Further applications Tn — o ((Vrgl))2 + (V,$2))2>
Perturbed random walks 2
Statistics applications 1
References — 7((29—))2 _|_ (2572))2) .

2n

With “obvious notation”
7(t) = min{n: | X,]| > V2tn}, t>0,

generalizes the square root boundary problem.

Allan Gut, Ulm, July 30, 2012 (41 : 45)
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One conclusion

gi(x)=1 and g(y1.y2) = g(y1,2)
7(t) a5 2
- ; 92 n 92 as t — oo.
Strong laws for the marginal tests:
i(t 2
T’()ai7 as t—so0, =12
t 0:

Note 3 > L
02 = 62 + 62

Thus, under the alternative, we would, at stopping,
encounter a two-dimensional rejection, but, possibly not
(yet?) a one-dimensional rejection ...

i.e., something is wrong but no further information.

Allan Gut, Ulm, July 30, 2012 (42 : 45)
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