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Using duration to measure interest rate risk for securities such as MBS, callable bonds and 
securities backed by life insurance policies is problematic because for these securities the 
timing of cash flows is uncertain. In order to measure duration for securities with embedded 
options like callable bonds and MBS, cash flow timing must be assumed or modeled. In the 
case of senior life settlements, duration is only a useful summary of interest rate risk if the 
estimated life of the insured is accurate.  It is precisely because the life of the insured is 
uncertain that the duration of a pool of senior life settlement contracts will not offer a 
meaningful summary of interest rate risk. In this paper we illustrate how a pool of senior life 
settlement contracts can be funded with a capital structure that is composed of two classes of 
securities; one which has a duration that is insulated from variations in the life of the insured 
around the estimated life expectancy and the other with a duration which is highly sensitive 
to variations in the life of the insured around the estimated life expectancy.  We name the 
security class with a stable duration the Planned Duration Class (PDC) while the class with 
the unstable duration is called the support duration class.  

 
 

 
Securitization of Senior Life Settlements:  

Managing Interest Rate Risk with a Planned Duration Class 
 

 
Senior life settlements are life insurance contracts that have been purchased from senior 
citizens by investors interested in the value offered by the death benefit.  In return for 
assuming the stream of insurance premiums necessary to keep the policy active, the 
purchaser becomes the beneficiary of the policy.  Pools of senior life settlements have been 
funded on the capital markets with issues of fixed income securities that are backed by the 
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future death benefits of the life insurance policies1. The vehicle that funds the pool of life 
settlement contracts must issue securities to fund the purchase price of the contracts and the 
expected premiums or have access to a line of credit or other source of liquidity to fund the 
future premiums.   
 
In this paper we illustrate how a pool of senior life settlement contracts can be funded with a 
capital structure that is composed of two classes of securities whose  duration is altered from 
the duration of the underlying pool of insurance contracts. One class is constructed so that 
its duration is insulated from variations in the mortality rates of the insured.  We accomplish 
this by calculating the first derivative of the Macaulay duration with respect to a change in 
the time the pool of insurance contracts is outstanding above or below the expected life 
(LE). Fluctuations in the time the pool is outstanding is a measurement of longevity risk; the 
risk that the insured lives beyond or short of some expected value.  By fixing this derivative 
at zero, we are able to find the yield/LE combinations for which duration is a stable measure 
of interest rate risk across premium and death benefit combinations. The resulting matrix is 
the basis for our design of various classes of securities with different exposures to interest 
rate risk.   
 
By default the creation of a class of securities that has a stable duration necessitates the 
creation of an accompanying security class that has an exceptionally unstable duration. The 
key to the success of this capital structure is that sufficient interest rate risk can be leveraged 
onto the unstable class and that this levered class can be funded at a yield that does not erode 
the savings garnered by financing the portion of the pool of life settlement contracts with the 
stable duration class. 
 
The actual lifespan of the insured whose policies compose a life settlement portfolio will 
vary from what is projected because of inaccurate estimates of life expectancies and 
negative and positive shocks to the mortality tables such as epidemics, medical costs and the 
approval of new pharmaceuticals and treatments.  Variations in actual life spans around 
expected life throw off the accuracy of duration as a measurement of interest rate risk 
making it difficult for investors to manage their portfolios within chosen ranges of interest 
rate risk and immunization strategies.  Longevity risk is the chance that an insured lives 
beyond the expected mortality date.  As the market for mortgage-backed securities has 
proven, there is value in the ability to distill and securitize various dimensions of risk.  The 
most obvious case is the market for principal and interest only strips derived from mortgage 
pass-through securities.  In this case the risk that prepayments are slower than expected is 
allocated to the principal only class and the risk that prepayment rate are faster than 
expected are allocated to the interest only class. 
 
Fund and asset/liability managers frequently use duration as a metric to summarize the 
interest rate risk of portfolios of fixed income securities. Portfolios can be managed to target 
duration ranges, and interest rate risk of a firm can be moderated by managing the duration 
gap between assets and liabilities.  Managers will rebalance assets and or liabilities when 
targeted durations become misaligned. The duration of a security is the weighted average 
                                                 
1 The Lifetrade Fund (2006) and the Senior Life Settlement Asset-Backed Securitization Bond (SLS ASB 2006) 
are examples of funds that purchase life settlement contracts. 
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time that the value of the security is returned to the investor.  This duration measure can be 
modified so that it is price elasticity with respect to yield.  As a price elasticity, duration 
measures how sensitive the price of the security is relative to changes in the yield of the 
security.  When duration is modified to measure interest rate risk, it is referred to as 
modified duration.  
 
Any measure of interest rate risk for a pool of senior life settlement contracts must be based 
on the expected mortality rate of the pool of insured. Deviations from the expected mortality 
rate will change the timing and magnitude of cash flows to and from the pool of contracts.  
When the actual mortality rate is slower than the expected rate, the value of the premiums 
that must be paid to keep the policies in force increases and the receipt of fixed death 
benefits are pushed further into the future.  
 
A clear difference between the complexities of measuring interest rate risk of securities with 
embedded options and senior life settlements is that people do not exercise an option to die.  
Our objective is to design a capital structure which is less costly than one in which all 
classes of securities issued to fund a pool of senior life settlements share on a pro rata basis 
all premium payments and all death benefits.  We do this by creating one class of securities 
that has a stable duration, e.g. predictable interest rate risk that is independent of fluctuations 
in mortality rates.  This class of securities is the unlevered class or Planned Duration Class 
(PDC).  The natural result of creating an unlevered class is the creation of a class of 
securities that is levered with respect to longevity risk.  We call this class the levered class 
or Support Duration Class (SDC). In this tranching process the longevity risk embedded in 
the pool of life settlement contracts is stripped out and reallocated to one class of securities 
and away from another class of securities.   The success of this type of tranching is the 
ability to place the levered class at a yield that does not offset the savings  generated by the 
unlevered class relative to a single security structure.   This tranching of risk is at the core of 
the secondary mortgage market.  It is standard for issues of collateralized mortgage 
obligations (CMOs) to have certain classes of securities that are insulated from prepayment 
risk, and the insulating classes or leveraged classes that finance the prepayment risk that has 
been shifted away from the insulated class.  In a CMO transaction the class that is insulated 
from prepayment risk is called the planned amortization class or PAC and the class that is 
leveraged with respect to prepayment risk is called the support class.  The efficiency and 
liquidity of the market for CMOs depends on the ability of investment bankers to place the 
riskier support classes at yields that make the overall CMO transaction valuable to the 
issuer.  
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An investor who buys an interest in a pool of life settlement contracts is exposed to the 
following risks: 1) credit risk 2) interest rate risk, and most significantly 3) longevity or 
mortality risk. It is the entanglement of the interest rate risk and longevity risk essentially 
makes the sorting, ranking and selection of life settlement investments based on duration 
inaccurate.  Yet there is value in being able to fit life settlement investments into specified 
duration ranges. Our solution to this problem will give investors this ability to select and 
compare life settlement contracts based on duration. 
 
In 2004 the first securities backed by a pool of senior life settlement contracts was structured 
and issued.  It was a $63 Million class A senior life settlement-securitization backed by $195 
million in face value of life insurance policies, issued by Tarrytown Second, LLC. There 
have been several other public securitizations of pools of senior life settlements, and many 
private deals. It has been estimated by Conning & Co. that in the next ten years, the life 
settlements market may grow to over $125 billion.  If the market for asset-backed securities 
collateralized by senior life settlements is to grow to its full potential, the measurements of 
risks specific to this class of securities must be developed and refined.  
 
We find the conditions for which the Macaulay duration of a life settlement contract is not      
affected by changes in the insured’s life above or below that of his life expectancy.  Once 
we calculate the combinations of discount rates and life expectancies for which duration 
remains a stable measure of interest rate risk for a life settlement contract, we use this 
information to structure a class of senior life settlement backed securities whose interest rate 
risk can be summarized using the standard measure of duration.   
 
Of course by deleveraging one class of securities, we are left with a highly leveraged class 
of securities.  For this smaller but more volatile class with respect to deviations of the actual 
life of a pool of insured from the life expectancy, duration becomes even more unreliable as 
a measure of interest rate risk.  Just as the most volatile classes of collateralized mortgage 
obligations with respect to prepayment risk must be placed with investors who specialize in 
estimating and assuming prepayment risk, our solution to the duration problem for senior 
life settlements relies on the existence of group of investors who would be willing to take 
positions in securities that are leveraged with respect to longevity risk. It is important to 
keep in mind that an unexpected increase in longevity perhaps due to a new pharmaceutical 
that is approved will reduce the value of a pool of life settlements as the pool of insured 
lives longer and pushes out the date that death benefits are received. .   The risk cuts both 
ways, an extreme heat wave or flu epidemic would reduce the average life of a life 
settlement pool increasing the yield on the life settlement contracts.   

                                                 
3 J.M. Keynes (1936) introduced the concept of a bond’s price elasticity with respect to 
interest rates. J.R. Hicks’ (1938) research focused on that same elasticity concept. It was 
Macaulay (1938) that expanded Keynes’s and Hick’s work by developing the duration risk 
metric, which has since taken on his name, “Macaulay duration”. While the Macaulay 
duration is calculated for parallel shits in a flat yield curve, other variations of duration have 
been developed to account for non-parallel shifts and for securities with embedded options. 
Macaulay and modified duration (which is simply the Macaulay duration divided by 1+y), 
are widely used metrics by portfolio and asset/liability managers.  
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 It is not only shocks to the mortality tables that lead to changes in the value of  a life 
settlement contract, simple errors in estimating someone’s life span will also lead to 
deviations in actual value from expected value.  For the leveraged class interest rate risk 
becomes quite unpredictable as even slight differences in actual life from life expectancy 
create large changes in the value of the life settlement contract.   It should be noted however, 
that in order to achieve an investment-grade rating, a securitized pool of senior life 
settlements must have a group of settlers that is diversified across diseases. 
 
In the following section of the paper we derive the changes in the duration of  a pool of 
senior life settlement contracts with respect to changes in the average life of the insured 
whose contracts compose the life settlement pool. We show that for a set of combinations of 
discount rates and life expectancies, duration is a stable consistent measure of interest rate 
risk for life settlement contracts and securities backed by senior life settlements. When the 
life of the pool of insured people deviates from the expected life, duration still offers an 
accurate measure of interest rate risk  We demonstrate our results with numerical examples. 
 
 
Macaulay Duration and Its Sensitivity to Shifts in Life Expectancy Tables 
 
The value of an individual senior life settlement is equal to the present value of the premia p 
paid periodically during the life of the senior life settler, plus the discounted value of the 
benefit B received at death of the settler. 
 
P = -p[1/(1+y)1 + 1/(1+y)2 +…..+1/(1+y)n] + B/(1+y)n                                  (1) 
 
Where p stands for the insurance “premium” paid each year- first by the original owner of 
the policy and then by the life settlement company, B is the death benefit at the time of death 
of the life settler, y is the discount rate and P is the present value of the life settlement 
contract.  
 
The general formula for the Macaulay Duration, D, of a fixed income security is 
 
        t 
D = ∑ (i)CFi/(1+y)i/P 
       1=i 
 
Where i is the time at which the cash flow is paid, y is the discount rate,  P is the price of the 
security at the time the duration is computed, and CFi represents the cash flow at time i. t is 
the time when the settler dies, and is unknown. The Macaulay duration can be rearranged so 
that it measures the percentage change in a security’s price over the percentage change in 
yield, the price elasticity of the security. 3 
 
The cash flows to and from a life settlement contract are the yearly premia p and the death 
benefit B received at the time of the insured’s death, which we denote  t. 
 
Equation (2) is the calculation of the Macaulay duration D for a life settlement contract. The 
present value of each cash flow is multiplied by the time at which it is paid, i, where i runs 
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from year 1 to year t, t being the time of death so the premia cease and the death benefit is 
received.  The sum of the present values, multiplied by the time at which they are received, 
is divided by the present value of the life settlement contract, P.   
 
         t 
D = [∑ p(i)/(1+y)i – tB/(1+y)t]/P                                 (2) 
        i=1 
 
Changes in Duration for shifts in life expectancy 
    
Investors in mortgage-backed securities are exposed to the risk that the prepayment rate on 
the underlying pool of mortgages will be above or below the rate they use to price the 
mortgage-backed security. Prepayments affect the timing and magnitude of cash flows 
generated by mortgage-backed securities.  For example when prepayments accelerate, 
principal is prepaid faster so that the total interest paid declines, a change in magnitude, and 
the principal is collected faster, a change in timing. For MBS the cash flows generated by a 
pool of mortgages are always positive.  Investors in pools of life settlement contracts are 
exposed to longevity risk—the risk that the pool of insured lives longer than the expectation 
upon which the pool of contracts were priced.  Unlike a pool of mortgages which generate 
positive cash flows composed of interest and principal payments, the underlying pool of life 
settlements contracts generates a stream of negative cash flows, the insurance premiums and 
a stream of positive cash flows, the death benefits.  In the case of a pool of senior life 
settlements, the timing, magnitude and direction of cash flows are affected by the longevity 
of underlying insured. The change in the direction of the cash flows from negative to 
positive for a pool of senior life settlements is the reason that under certain conditions, a 
deviation from life expectancy of the settlers does not affect the Macaulay duration of the 
pool.  
 
In  Appendix A we calculate the first derivative of the Macaulay duration with respect to the 
change in time t above or below the expected time of death, and in Appendix B we find the 
conditions for which the derivative is equal to zero. Fixing this derivative at zero is the 
constraint we use to locate the yields of the life settlement contracts at which deviations 
from life expectancy have no impact on the duration measurement.  This calculation is done 
for various yield/life expectancy combinations. As a matter of simplifying the derivative 
calculation in Appendix A, we set a = (1)/(1+y) and equation (2) then becomes: 
 
           t 
D =[( ∑ pi(a)i) – Bt(a)t]/P                                       (2) 
          i=1 
 
Conditions for a reliable Senior Life Settlement’s Macaulay Duration 
 
In Appendix B we develop the conditions for which the Macaulay duration of a  pool of 
senior life settlements is not affected by changes in the life of the insured above or below  
life expectancies computed at the time the insurance contracts were sold.  We use equation 
(13) from Appendix A, to calculate the conditions for which D’ = 0. This is expressed in 
equation (14).  
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t* = [1/ln(1+y)] + [p(1+y)/y(-p-By)]                                eq. 14 
 
Equation (14) shows the constraint between a settler’s life expectancy (we call it t* in the 
equation) the premium p, the death benefit B and the yield y of the corresponding policy, in 
order to obtain a life settlement with a duration that is not affected by deviations around LE. 
 
Carving out the Planned Duration Class and the Support Duration Class 
 
Exhibit 1 shows a typical block of senior life settlements that could be securitized. It has a 
total principal value of $82 million, a weighted average α of 4.4% (we define α as the ratio 
of premium p to death benefit B, α = p/B), and a weighted average LE of 4.538. It is 
standard for the industry of senior life settlements to quote life insurance policies in terms of 
the premium to death benefit ratio, i.e. a 4% policy may corresponds to a premium of $4000 
and a death benefit of $100,000. 
 

        Exhibit 1 
Principal 
Amount 

 Annual 
Premium  LE 

10,000,000 500,000.00 4 

15,000,000 700,000.00 5 

5,000,000 200,000.00 2 

2,000,000 50,000.00 7 

1,000,000 75,000.00 5 

3,000,000 150,000.00 6 

6,000,000 200,000.00 3 

8,000,000 350,000.00 4 

1,000,000 100,000.00 5 

4,000,000 200,000.00 8 

10,000,000 450,000.00 3 

7,000,000 250,000.00 2 

10,000,000 400,000.00 5 

 
 
We next find the premia and death benefits that satisfy equation (14) for different yield/LE 
combinations. We have assumed an upward yield curve so that yields do increase with life 
expectancy in eq. (14). We assume a yield of 5.25% for a LE of 2, a yield of 5.50% for a LE of 3 
and continue to increase the yield by 25bps for each LE increase by one additional year, as shown 
in Exhibit 2. 
 
When we plug a 5.25% yield, a LE of 2, and a death benefit B of $1,100,000 in eq. (14), and solve 
for premium p, we obtain $400,500 as shown in Exhibit 2.  We solve for premia, using several 
other combination of yields, LEs and death benefits, all represented in Exhibit 2. 
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  Exhibit 2 

LE 2 3 4 5 
y 5.25% 5.50% 5.75% 6% 
P* 400,500 274,000 190,000 145,000 
B* 1,100,000 1,100000 1,100000 1,100000 

 
 
 
        Exhibit 3 

 2 3 4 5 
 

∑p 
 

450,000.00 650,000.00 850,000.00 1,275,000.00 

 
∑B 

 
12,000,000 16,000,000 18,000,000 27,000,000 

 
Exhibit 3 summarizes exhibit 1 across LEs: it adds all premia generated by life settlements with a 
LE of 2 and all corresponding death benefits. There are only two life settlements with LE of 2, and 
the corresponding premia are $200,000 and $250,000, a total of $450,000, shown in exhibit 3 in 
the second column. The corresponding death benefits are $5 million and $7 million, a total of $12 
million.  In each column we add the premia and death benefits for each LEs going from 2 to 5.  
 
        Exhibit 4: Planned Duration Class 

PDC 2 3 4 5 
 ∑p/p* 1.12 2.37 4.47 8.79 
 ∑B/B* 11 15 16 25 

 
Exhibit 4 shows the ratio of the optimal premium p* (from Exhibit 2) over the total premia across 
LEs ranging from 2 to 5, computed in Exhibit 3, and the corresponding ratio of the optimal B* 
(computed in Exhibit 2) over the total death benefits computed in Exhibit 3.  If we look at the LE 
of 5, we can create 8.79 PDCs with an annual premium of $145,000 each, and a corresponding 
death benefit of $1,100,000 (from Exhibit 2). More specifically, the planned duration class, PDC, 
for the LE of 5 and a 6% yield, can be structured by stripping 8.79 times the amount of $145,000 
in premia (from a total of $1,275,000 in Exhibit 3), with a corresponding 8.79 times $1,100,000 in 
death benefits (from a total of $27,000,000 in Exhibit 3).  The support duration class, CDC, is 
then allocated the difference between the sum of the total premia under the LE of 5, minus those 
allocated to the PDC, and the sum of the death benefits under LE of 5 minus those allocated to the 
CDC.  
 
We show the total amount of premia p and corresponding death benefits B for the planned 
duration classes created under different LEs in Exhibit 5 and the corresponding premia and death 
benefits for the support duration classes in Exhibit 6. The corresponding α is shown in the last 
row of Exhibits 5 and 6. It is interesting to observe that α is high for the planned duration class, 
and goes to zero for the support duration class. We can actually generalize the relationship 
between α and LE for a planned duration class in Exhibit 7. We observe that for a PDC with a 
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high LE, a lower α is needed, whilst for a PDC with low LE, a higher α must be constructed by 
stripping different premia. 
 
The resulting support duration class, SDC, is a zero-coupon bond that pays death benefits only 
(no negative premium), at actual death of the insured, which qualifies as maturity of the zero-
coupon bond. The SDC’s Macaulay duration is then equal to the LE (the maturity) if deviation 
around LE is zero. 
 

 
Exhibit 5: Planned Duration Class 

LE 2 3 4 5 
y 0.0525 0.055 0.0575 0.06 
(PDC)p 450000 650000 850000 1275000 
(PDC)B 1235955.056 2609489.051 4921052.632 9672413.793 
(PDC)α 0.364090909 0.249090909 0.172727273 0.131818182 

 
 
 
Exhibit 6: Support Duration Class 

LE 2 3 4 5 
(SDC)p 0.00 0.00 0.00 0.00 
(SDC)B 10,764,045 13,390,511 13,078,947 17,327,586 
(SDC)α 0.0000000 0.0000000 0.0000000 0.0000000 

 
 
 
          Exhibit 7 

α/LE curve for PDC

 
 

 
For simplicity, we only analyzed LEs ranging from 2 to 5 in Exhibit 1, which corresponded to a 
total face value of $73 million. This means that we created a planned duration class in the amount 
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of 25% of $73 million and a support duration class in the amount of 75% of the $73 million face 
value. 

 
 
 
Conclusion 
The derivation of the yield/LE combinations for which the duration of a pool of life 
settlement contracts does not change as the age of the life settlers deviates from the life 
expectancy, opens up the possibility of structuring two classes of securities to finance a pool 
of senior life settlement contracts; one class would be designed to have a stable duration 
measure across a spectrum of pool longevity and the other class would pick up the slack by 
being designed to have a duration that is very sensitive to small changes in pool longevity. 
In fact the design of the second class is imposed by the design of the first.  When financing a 
fixed pool of assets such as senior life settlements with various classes of asset-backed 
securities, the deleveraging of one class with respect to a risk dimension, in this case 
longevity risk, must be accompanied by a leveraging of another class.  The first class would 
be structured to address the needs of those investors looking for investments with fairly 
certain durations, we call this class the  Planned Duration Class (PDC).  This is done by 
carving out cash flows from the pool of life settlement contracts that satisfy equation (14).  
Cash flows generated by the life settlement pool but not allocated to the Planned Duration 
Class would be directed to the Support Duration Class (SDC). This can be achieved by 
combining seasoned with unseasoned portfolios of senior life settlement contracts. In 
exchange for assuming the longevity risk of the pool, investors in the SDC class would be 
offered a higher yield.  
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APPENDIX A 
 

The next step is to isolate from eq. (2) the term, that we call f(t): 
 
          t 
f(t) = ∑pi(a)i   
              i=1 
 
 
In the next section we find an expression for f(t). 
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Expression of f(t) 
 
Recall that for every real number b and natural number k<n, the following formula holds: 
 
 t 
∑bi =  (bn+1 – bk)/(b-1)                                                 (3) 
i=k 
 
We can rewrite f(t) as  
 
               t                         t    
f(t) = ∑pi(a)i = p∑i(a)i =    (4) 
             i=1                     i=1 
p(a+a2+a3+…at+       (5) 
       a2+a3+…at+       (6) 
             a3+…at+      (7) 
                    … +                                                             (8) 
                        at)                                                            (9) 
 
By applying formula (3) to every single line of the previous segments (fragments (5), (6), etc.) 
we get that 
 
              t                          t 
f(t) =  ∑pi(a)i = p∑i(a)i = 
               i=1                      i=1 
 
p[(at+1-a1)/(a-1) + (at+1-a2)/(a-1) + (at+1-a3)/(a-1) + … + (at+1-at)/(a-1)] 
 
The above expression can be simplified into 
 
               t                           t 
f(t) = ∑ pi(a)i = p∑i(a)i = 
              i=1                       i=1 
 
p[tat+1 – (a + a2 + … + at)]/(a-1) 
 
Applying formula (3) again we get that 
 
              t                          t 
f(t) =  ∑pi(a)i = p∑i(a)i = p[tat+1 – (at+1-a)/(a-1)]/(a-1) 
               i=1                      i=1 
 
 
[p/(a-1)][(tat+2 –tat+1 – at+1+a]/(a-1) = [p/(a-1)2][tat+2 –(t+1)at+1 +a] 
 
In summary, we proved that 
 
f(t) = [p/(a-1)2][tat+2 – (t+1)at+1 +a] 
 
where a=1/(1+y) and p, y, are constant with respect to t. 
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Expression for D 
 
We can add now the new expression of f(t) to get the final expression for D: 
 
           t 
D =[( ∑ pi(a)i) – Bt(a)t]/P =  
          i=1 
 
[f(t) – Bt(a)t]/P = {(p/(a-1)2[tat+2 – (t+1)at+1 + a]) – Bt(a)t}/P =  
 
(1/P){tat[a2p/(a-1)2 – ap/(a-1)2 – B] – at[ap/(a-1)2] + ap/(a-1)2 }= 
 
(1/P){tat[ap/(a-1) – B] –at[ap/(a-1)2]  + ap/(a-1)2}     
 
In summary, we get that 
 
D = (1/P){tat[ap/(a-1) - B] – at[ap/(a-1)2] + ap/(a-1)2}                  (10) 
 
For the purpose of having an expression of D using the original parameters, we can now 
replace a by 1/(1+y) in eq. (10) to obtain that 
 
 
D = (1/P){tat[ap/(a-1) - B] – at[ap/(a-1)2] + ap/(a-1)2} = 
 
 
(1/P){t[1/(1+y)t][[p/(1+y)]/[(1/(1+y)-1]–B]–(1/(1+y))t[p/(1+y)]/[(1/(1+y))–1]2+ 
[(p/(1+y)]/[(1/(1+y)) – 1]2 

 
 
To conclude, we have the following close expression for the function D: 
 
 
D = {t[p(-y)-1 – B]/(1+y)t -  p/[y2(1+y)t-1] + p(1+y)/y2}/P                (11) 
 

           
 
The Derivative of Duration With Respect to Time 
 
Note that the expression of D in eq.(10) is of the form 
 
D = {tat[C(a-1) – B] –atC + C}/P = 
 
        (1/P){tat[C(a-1) – B] – atC + C}                                                 (12) 
 
Where a, B, P are constants and C is a constant defined as 
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C = ap/(a-1)2 
 

Now we take the derivative of duration as expressed in equation (12) with respect to t. The 
solution is given is equation 13.  
 
D’ = (1/P){at[C(a-1) – B] + tat[C(a-1) – B] [ln(a)] – atC[ln(a)]} 
 
Where C and a are the constants previously specified. 
 
We simplify the last expression to arrive at equation (13). 
 
D’ = (at/P){[C(a-1) – B] + t[C(a-1) – B] [ln(a)] – C[ln(a)]} = 
 
 
D’ = (at/P){[t[C(a-1) – B] ln(a)] + [C(a-1) – B – C[ln(a)]]}            (13) 
 

 
APPENDIX B 
 

Note that (at/P) can never be equal to 0 because a is always positive (1/1+y). This means that 
the derivative of duration with respect to time (t) equals zero (D’ = 0) when 
 
 
t(C(a-1) – B)(ln(a)) + C(a-1) – B – C(ln(a)) = 0 
 
This is a simple linear equation that we solve for t. 
 
t = [(-(C(a-1) – B) + C(ln(a))]/[(C(a-1) – B)(ln(a))] =  
 
      [-1/ln(a)] + C/[C(a-1) – B] 
 
Now we replace C with (ap)/(a-1)2 to arrive at D’ = 0 when 
 
t = [-1/ln(a)] + [ap/(a-1)2]/{[ap/(a-1) ]– B]} 
 
 
This previous equation can be simplified to : 
 
t = [-1/ln(a)] +  [ap/(a-1)2]/{[ap(a-1)– B(a-1)2]/(a-1)2} = 
   
     
       [-1/ln(a)] + ap/[ap(a-1) – B(a-1)2] 
 
 

Finally, we replace a by its value of 1/(1+y) to show that D’=0 when 
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t* = [1/ln(1+y)] + [p(1+y)/y(-p-By)]                                eq. 14 

 
 
 
 


