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Robust utility functional

L0 = L0(Ω,F ,P) is the space of real-valued random variables
equipped with the topology of convergence in probability
(random variables that coincide P-a.s. are identified).
A functional

ξ  inf
Q∈Q

[
EQU(ξ) + γ(Q)

]
, ξ ∈ L0.

is called a robust utility functional. If γ ≡ 0 on Q, we say that it
is a coherent robust utility functional. If Q = {P}, then we say
that it is a standard utility functional.

Alexander Gushchin Duality Methods in Robust Utility Maximization



Robust utility functional
Static setting : Main results

Static setting : Reduction and superreplication prices
Dynamic setting : Necessary and sufficient conditions

Examples

infQ∈Q

[
EQU(ξ) + γ(Q)

]
a random variable ξ is interpreted as the terminal wealth of
an investor;
U : R→ R ∪ {−∞} is an increasing concave function
(utility function);
the expectation is assumed to be equal −∞ if it is not
defined;
Q is a nonempty convex subset of the set of all probability
measures on (Ω,F ) that are absolutely continuous wrt P;
a penalty function γ : Q → R+ satisfies the following
properties: γ is convex, infQ∈Q γ(Q) > 0, the set
{dQ/dP : Q ∈ Q, γ(Q) 6 c} is closed in L1(P) and
uniformly integrable wrt P for any c > 0.
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Assumptions

Assumption (on the utility function)

U : R→ R ∪ {−∞} is an increasing concave function,
U(x) = −∞ for x < 0 and U(x) ∈ R for x > 0.

Assumption (on the set of terminal wealths)

A is a convex subset of L0
+ containing a random variable

ξ0 > κ > 0.

Assumptions on the penalty function γ were formulated above.
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Minimax theorem

Theorem (1)

Let the above assumptions be satisfied. Then

sup
ξ∈A

inf
Q∈Q

[
EQU(ξ) + γ(Q)

]
= min

Q∈Q
sup
ξ∈A

[
EQU(ξ) + γ(Q)

]
.
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Conjugate function

Put
V (y) = sup

x>0
[U(x)− xy ], y ∈ R.

V : R→ R ∪ {+∞} is a proper lower semicontinuous convex
function, {V < +∞} ⊆ R+, V is decreasing,

lim
y↑+∞

V (y)

y
= 0,

and

inf
y>0

[V (y) + xy ] =

{
U(x), if x 6= 0,
limx↓0 U(x), if x = 0.
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Polar set

Let C+ = (A − L0
+)∩ L∞+ , and let C + be the closure of C+ in L0.

Of course, A ⊆ C +. It is useful to note that our optimization
problem has the same value if A is replaced by C+, or by C +.
Define a ‘polar’ set D by

D =
{
η ∈ L0

+ : EPηξ 6 1 for all ξ ∈ A
}
.

Then D ⊆ L1
+. In fact,

D =
{
η ∈ L0

+ : EPηξ 6 1 for all ξ ∈ C +

}
,

C + =
{
ξ ∈ L0

+ : EPηξ 6 1 for all η ∈ D
}
.
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Value functions of primal and dual problems

For x > 0 and y > 0 put

A (x) = xA , D(y) = yD .

Define value functions by

u(x) = sup
ξ∈A (x)

inf
Q∈Q

[
EQU(ξ) + γ(Q)

]
, x > 0, (1)

v(y) = inf
η∈D(y), Q∈Q

[
EQV

( η

dQ/dP

)
+ γ(Q)

]
, y > 0. (2)
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Static case : Main theorem

Theorem (2)
Let the above assumptions be satisfied. Then
(i) The function u(x), x > 0, takes values in R ∪ {+∞}, is
increasing and concave.
(ii) The function v(y), y > 0, takes values in R ∪ {+∞}, is
convex, lower semicontinuous and decreasing. The infimum in
(2) is attained.
(iii) If v(y) = +∞ for all y > 0, then u(x) = +∞ for all x > 0. If
v(y) < +∞ for some y > 0, then u(x) ∈ R for x > 0.
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Static case : Main theorem

Theorem (2, continued)
(iv) u and v are connected by

u(x) = min
y>0

[v(y) + xy ], x > 0, (3)

and
v(y) = sup

x>0
[u(x)− xy ], y > 0.
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Static case : Main theorem

Theorem (2, continued)
(v) Fix x > 0. If the minimum in (3) is attained at y∗ and the
minimum in (2) for y = y∗ is attained at the pair
(η∗,Q∗) ∈ D(y)×Q, then

u(x) = sup
ξ∈A (x)

[
EQ∗U(ξ) + γ(Q∗)

]
.

Conversely, if the previous relation is satisfied for Q∗ ∈ Q, then
there exist y∗ ∈ R+ and η∗ ∈ D(y∗) such that the minimum in
(3) is attained at y∗, and the minimum in (2) for y = y∗ is
attained at the pair (η∗,Q∗).
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Static case : Main theorem

Theorem (2, continued)
(vi) Fix x > 0. Let u(x) <∞, the minimum in (3) attained at y∗,
and the minimum in (2) for y = y∗ attained at the pair
(η∗,Q∗) ∈ D(y)×Q. If the problem (1) has a solution, i.e. there
exists a r.v. ξ∗ ∈ A (x) such that
u(x) = infQ∈Q

[
EQU(ξ∗) + γ(Q)

]
, then

EPξ
∗η∗ = xy∗

and P-a.s.

η∗

dQ∗/dP
∈ ∂U(ξ∗) on

{dQ∗

dP
> 0

}
and ξ∗η∗ = 0 on

{dQ∗

dP
= 0

}
.
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Static case : Main theorem

Theorem (2, continued)
Conversely, if these conditions are satisfied, then
u(x) = EQ∗U(ξ∗) + γ(Q∗).

(vii) If v 6≡ +∞, then

lim
y↑+∞

v(y)

y
= 0. (4)
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Static case : Main theorem

Theorem (2, continued)
(viii) Assume that the function U satisfies the Inada condition at
0, i.e.

lim
x↓0

U ′−(x) = +∞.

Assume also that u(x) <∞ and(only if U is bounded) that
there is at least one measure Q ∈ arg min γ and a positive r.v.
ξ1 such that Q(ξ < ξ1) > 0 for any ξ ∈ C +. Then u satisfies the
Inada condition at 0 as well.
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Static case : Main theorem

Theorem (2, continued)
(ix) Assume that U is differentiable on (0,+∞) and satisfies the
Inada condition at 0, and γ is strictly convex on Q. If
v(y) < +∞ for a given y > 0, and the minimum in (2) is
attained at pairs (η1,Q1) and (η2,Q2), then Q1 = Q2 and
η1 = η2 Q1-a.s. Then if u is finite, it is differentiable on (0,+∞).
Only if U is bounded, assume additionally that, for a
Q ∈ arg min γ, there is a positive r.v. ξ1 such that Q(ξ < ξ1) > 0
for any ξ ∈ C +. Then v is strictly convex on {v <∞}.
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Setting of the problem

Assume that D0 is a convex subset of D . Recall that the value
function of the dual problem is defined by

v(y) = inf
η∈D , Q∈Q

[
EQV

( yη
dQ/dP

)
+ γ(Q)

]
, y > 0.

Here we consider the problem when the function v does not
change if D is replaced by D0.
Given a probability measure Q� P, put

vQ(y) = inf
η∈D

[
EQV

( yη
dQ/dP

)]
,

ṽQ(y) = inf
η∈D0

[
EQV

( yη
dQ/dP

)]
, y > 0.

So we consider the question when vQ and ṽQ coincide.
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Superreplication prices

Let f ∈ L0
+. If A (x) is interpreted as the set of terminal wealths

corresponding to the initial wealth x , a superreplication price of
f is usually defined by

C∗(f ) = inf{x : there exists ξ ∈ A (x) such that ξ > f}.

However, here A does not satisfy any closedness assumption.
Instead, we shall call the superreplication price of f the
following amount:

C∗(f ) = inf{x : there exists ξ ∈ C + such that xξ > f}.

From now on, E stands for expectation wrt P.
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Connection to superreplication prices

Theorem (3)
Let the above assumptions be satisfied and D0 ⊆ D a convex
nonempty set. Introduce the following conditions:
(i) for any η ∈ D there is η̃ ∈ D0 such that η 6 η̃;
(ii) vQ(y) = ṽQ(y) for all Q� P and y > 0 for any u.f. U;
(iii) vQ(y) = ṽQ(y) for all Q� P and y > 0 for some strictly
increasing utility function U;
(iv) for any f ∈ L0

+,

C∗(f ) = sup
g∈D0

Efg.

Then (i)⇒(ii)⇒(iii)⇒(iv). If the closure D0 of D0 in L0 satisfies
D0 ⊆ D0 − L0

+, then all the conditions are equivalent.

Alexander Gushchin Duality Methods in Robust Utility Maximization



Robust utility functional
Static setting : Main results

Static setting : Reduction and superreplication prices
Dynamic setting : Necessary and sufficient conditions

Examples

Connection to superreplication prices

Corollary

Let a convex nonempty set D0 ⊆ D satisfy (iv). Then D0
satisfies (i)–(iv).
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Assumptions

Let a filtered probability space (Ω,F , (Ft )t>0,P) be given,
F = σ

(⋃
t>0 Ft

)
and F0 contains only sets of P-measure 0 or

1. We denote by D the family of adapted real-valued càdlàg
processes X = (Xt )t>0, D+ = {X ∈ D : X > 0},
D++ = {X ∈ D : P(inft Xt > 0) = 1}. If X ∈ D and P-a.s. a finite
limit limt→∞ Xt exists, it will be denoted by X∞.
Now we introduce assumptions on a set X of stochastic
processes, whose elements are interpreted as wealth
processes corresponding to all possible strategies of an
investor with the unit initial wealth.If the investor has the initial
wealth x > 0, then the family of wealth processes
corresponding to all his strategies is X (x) = xX .
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Assumptions

Assumption (on a family of wealth processes)
A set X ⊆ D+ is convex, X0 = 1 for any X ∈X , 1 ∈X and
P-a.s. a finite limit limt→∞ Xt exists for any X ∈X .

Now let us consider the robust utility maximization problem with
A =

{
X∞ : X ∈X

}
. We are interested in the question: What

are the conditions under which one can take the set
D0 =

{
Y∞ : Y ∈ Y

}
instead of D in the definition of the

function v? Here Y is the class of supermartingale densities
defined on the next slide.
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Supermartingale densities

Definition
A nonnegative process Y with Y0 = 1 is called a
supermartingale density for X if, for any X ∈X , the product
XY = (XtYt )t>0 is a P-supermartingale. The class of all
supermartingale densities is denoted by Y .

Since 1 ∈X , any Y ∈ Y is a P-supermartingale. If R is a
probability measure, R� P, and any X ∈X is a
supermartingale (in particular, a local martingale) under R, then
the density process

(
dR|Ft/dP|Ft

)
t>0

is a supermartingale

density. Let us call such a measure R a supermartingale
measure.
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Forked families

Definition

A family X ⊆ D+ is called forked if for any X i ∈X ∩ D++,
i = 1,2, any s > 0 and any A ∈ Fs the process

Xt = X 1
t 1{t<s} + X 1

s

(
1A

X 1
t

X 1
s

+ 1Ω\A
X 2

t

X 2
s

)
1{t>s}

belongs to X .

There is a similar notion of fork-convexity introduced by Žitković
(2002). A fork-convex family is forked and convex, the
converse, in general, is not true.
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Supermartingale densities : Necessary and sufficient conditions

The smallest forked family containing a family X ⊆ D+ is called
a forked hull of X and is denoted by fork(X ).

Theorem (4)
Let the above assumptions be satisfied and D 6= {0}. Then the
set D0 =

{
Y∞ : Y ∈ Y

}
is nonempty and satisfies conditions

(i)–(iv) of Theorem (3) if and only if{
X∞ : X ∈ fork(X )

}
⊆ C +.
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Rokhlin (2010)

Corollary
Let W ⊆ D+ be a forked and convex family of stochastic
processes, 1 ∈ W and X0 = 1 for any X ∈ W . The following
statements are equivalent :
(i) the set

{Xt : X ∈ W , t ∈ R+}

is bounded in probability ;
(ii) there exists a supermartingale density Y for the family W
such that P(Y∞ > 0) = 1.
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Supermartingale measures : Necessary and sufficient conditions

Theorem (5)
Let the above assumptions be satisfied and D 6= {0}. Then the
set D0 =

{
dR/dP : R is a supermartingale measure} is

nonempty and satisfies condition (iv) of Theorem (3) if and only
if the following two conditions are satisfied :{

X∞ : X ∈ fork(X )
}
⊆ C +;

(λn) ⊆ R+, (ξn) ⊆ C +, fn = λnξn − (λn − 1)
P−→ f > 0,

(fn) is uniformly bounded from below =⇒ f ∈ C +.
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A model with arbitrage

Let B = (Bt )06t<∞ be a standard Brownian motion. For
α ∈ (0,1) put

Zt = α exp(Bt − t/2) + 1− α, St = 1/Zt ,

X =

{
X = (Xt )t>0 ∈ D+ : Xt = 1 +

t∫
0

Hu dSu, H ∈ L(S)

}
.

This model admits arbitrage: put H∗t ≡ 1, then the wealth
process satisfies

X ∗t = 1 +

∫ t

0
H∗u dSu = 1 + (St − 1) = St → 1/(1− α) a.s.,

i.e. X ∗ ∈X and X ∗∞ = 1/(1− α) > 1 a.s.
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Utility maximization makes sense and H∗ is the optimal strategy

Take an arbitrary X ∈X . It is easy to check using Itô’s formula
that XZ is a local martingale and, hence, a supermartingale (in
particular, Z is a supermartingale density). Therefore, by
Jensen’s inequality,

E[U(X∞)] = E
[
U
(

X∞Z∞
1− α

)]
6 U

(
E(X∞Z∞)

1− α

)
6 U

( 1
1− α

)
= E[U(X ∗∞)].
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A model with an arbitrary number of assets

Let (Fn)n=0,1,...,N be an increasing family of sub-σ-algebras on
a probability space (Ω,F ,P), F0 = {∅,Ω}, Fn = F .
Let S = (Si)i∈I be an arbitrary family of adapted processes
Si = (Si

n)n=0,1,...,N on this space. Si
n is interpreted as a

discounted price of asset i at time n.
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All possible strategies

All possible strategies of an investor is the set L with elements
H = (H i)i∈I , where, for every i , H i = (H i

n)n=1,...,N is a
predictable (H i

n is Fn−1-measurable for n = 1, . . . ,N) random
sequence; moreover, there exists a finite subset J = J(H) ⊆ I
such that H i ≡ 0 if i /∈ J. A r.v. H i

n is interpreted as the amount
of the i th asset in an investor’s portfolio at time n.
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Wealth processes

Given H ∈ L , define the process H ◦ S = (H ◦ Sn)n=0,1,...,N by

H ◦ Sn =
n∑

k=1

∑
i∈J(H)

H i
k ∆Si

k , ∆Si
k = Si

k − Si
k−1.

Then 1 + H ◦ S is the wealth process of an investor with an
initial wealth 1 and a strategy H.
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Admissible strategies

Let now H be a subset of L satisfying the following properties:

H is convex.
0 ∈H .
H + K ∈H if H,K ∈H and HK = 0.
if H ∈H , n = 1, . . . ,N − 1 and ξ is an Fn-measurable
nonnegative r.v., then H1[0,n] ∈H and Hξ1[n+1,N] ∈H .

Put
X := {1 + H ◦ S : H ∈H } ∩ D+.

Then X is a forked family.
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