Duality Methods in Robust Utility Maximization

Alexander Gushchin

Steklov Mathematical Institute

September 21, 23, 24

Alexander Gushchin Duality Methods in Robust Utility Maximization

Static setting : Main results Static setting : Reduction and superreplication prices Dynamic setting : Necessary and sufficient conditions Examples

Outline

2 Static setting : Main results

3 Static setting : Reduction and superreplication prices

- Oynamic setting : Necessary and sufficient conditions
- **5** Examples

Robust utility functional

 $L^0 = L^0(\Omega, \mathscr{F}, \mathsf{P})$ is the space of real-valued random variables equipped with the topology of convergence in probability (random variables that coincide P-a.s. are identified). A functional

$$\xi \rightsquigarrow \inf_{\mathsf{Q} \in \mathscr{Q}} [\mathsf{E}_{\mathsf{Q}} U(\xi) + \gamma(\mathsf{Q})], \quad \xi \in L^0.$$

is called a robust utility functional. If $\gamma \equiv 0$ on Q, we say that it is a coherent robust utility functional. If $Q = \{P\}$, then we say that it is a standard utility functional.

Static setting : Main results Static setting : Reduction and superreplication prices Dynamic setting : Necessary and sufficient conditions Examples

$\mathsf{inf}_{\mathsf{Q}\in\mathscr{Q}}\left[\mathsf{E}_{\mathsf{Q}}\boldsymbol{U}(\boldsymbol{\xi})+\boldsymbol{\gamma}(\mathsf{Q})\right]$

- a random variable ξ is interpreted as the terminal wealth of an investor;
- U: ℝ → ℝ ∪ {-∞} is an increasing concave function (utility function);
- the expectation is assumed to be equal −∞ if it is not defined;
- *Q* is a nonempty convex subset of the set of all probability measures on (Ω, *F*) that are absolutely continuous wrt P;
- a penalty function γ: 2 → ℝ₊ satisfies the following properties: γ is convex, inf_{Q∈2} γ(Q) ≥ 0, the set {dQ/dP: Q ∈ 2, γ(Q) ≤ c} is closed in L¹(P) and uniformly integrable wrt P for any c ≥ 0.

Static setting : Main results Static setting : Reduction and superreplication prices Dynamic setting : Necessary and sufficient conditions Examples

References I

Standard utility maximization: Merton (1969, 1971), Samuelson (1969), Pliska (1986), Karatzas, Lehoczky & Shreve (1987), Cox & Huang (1989, 1991), He & Pearson (1991a, 1991 b), Karatzas, Lehoczky, Shreve & Xu (1991), Karatzas & Žitković (1996), Kramkov & Schachermayer (1999, 2003), Cvitanić, Schachermayer & Wang (2001), Cvitanić & Wang (2001), Schachermayer (2001, 2003), Goll & Rüschendorf (2001), Deelstra, Pham & Touzi (2001), Bellini & Frittelli (2002), Owen (2002), Yan (2002), Karatzas & Žitković (2003), Bouchard & Pham(2004), Bouchard, Touzi & Zeghal (2004), Hugonnier & Kramkov (2004), Hugonnier, Kramkov & Schachermaver (2005), Pratelli (2095), Žitković (2005), Biagini & Frittelli (2005, 2008), Kramkov & Sîrbu (2006, 2006), Oertel & Owen (2007) Biagini (2008), Owen & Žitković (2009)....

Static setting : Main results Static setting : Reduction and superreplication prices Dynamic setting : Necessary and sufficient conditions Examples

References II

. . .

Coherent robust utility maximization: Talay & Zheng (2002), Quenez (2004), Schied (2004, 2005), Burgert & Rüschendorf (2005), Schied & Wu (2005), Gundel (2005), Müller (2005), Föllmer & Gundel (2006), Morozov (2010), ...

Robust utility maximization: Schied (2007), Wittmüss (2008),

Outline

- **2** Static setting : Main results
- 3 Static setting : Reduction and superreplication prices
- Oynamic setting : Necessary and sufficient conditions
- **5** Examples

Assumptions

Assumption (on the utility function)

 $U \colon \mathbb{R} \to \mathbb{R} \cup \{-\infty\}$ is an increasing concave function, $U(x) = -\infty$ for x < 0 and $U(x) \in \mathbb{R}$ for x > 0.

Assumption (on the set of terminal wealths)

 \mathscr{A} is a convex subset of L^0_+ containing a random variable $\xi_0 \ge \varkappa > 0$.

Assumptions on the penalty function γ were formulated above.

Dynamic setting : Necessary and sufficient conditions Examples

Minimax theorem

Theorem (1)

Let the above assumptions be satisfied. Then

$$\sup_{\xi \in \mathscr{A}} \inf_{\mathsf{Q} \in \mathscr{Q}} \left[\mathsf{E}_{\mathsf{Q}} U(\xi) + \gamma(\mathsf{Q}) \right] = \min_{\mathsf{Q} \in \mathscr{Q}} \sup_{\xi \in \mathscr{A}} \left[\mathsf{E}_{\mathsf{Q}} U(\xi) + \gamma(\mathsf{Q}) \right].$$

Conjugate function

Put

$$V(y) = \sup_{x>0} [U(x) - xy], \quad y \in \mathbb{R}.$$

 $V : \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ is a proper lower semicontinuous convex function, $\{V < +\infty\} \subseteq \mathbb{R}_+$, V is decreasing,

$$\lim_{y\uparrow+\infty}\frac{V(y)}{y}=0,$$

and

$$\inf_{y \ge 0} \left[V(y) + xy \right] = \begin{cases} U(x), & \text{if } x \neq 0, \\ \lim_{x \downarrow 0} U(x), & \text{if } x = 0. \end{cases}$$

Polar set

Let $\mathscr{C}_+ = (\mathscr{A} - L^0_+) \cap L^\infty_+$, and let $\overline{\mathscr{C}}_+$ be the closure of \mathscr{C}_+ in L^0 . Of course, $\mathscr{A} \subseteq \overline{\mathscr{C}}_+$. It is useful to note that our optimization problem has the same value if \mathscr{A} is replaced by \mathscr{C}_+ , or by $\overline{\mathscr{C}}_+$. Define a 'polar' set \mathscr{D} by

$$\mathscr{D} = \{\eta \in L^0_+ \colon \mathsf{E}_\mathsf{P} \eta \xi \leqslant \mathsf{1} \text{ for all } \xi \in \mathscr{A}\}.$$

Then $\mathscr{D} \subseteq L^1_+$. In fact,

$$\mathscr{D} = \left\{ \eta \in L^{0}_{+} \colon \mathsf{E}_{\mathsf{P}} \eta \xi \leqslant 1 \text{ for all } \xi \in \overline{\mathscr{C}}_{+} \right\},\\ \overline{\mathscr{C}}_{+} = \left\{ \xi \in L^{0}_{+} \colon \mathsf{E}_{\mathsf{P}} \eta \xi \leqslant 1 \text{ for all } \eta \in \mathscr{D} \right\}.$$

Value functions of primal and dual problems

For x > 0 and $y \ge 0$ put

$$\mathscr{A}(\mathbf{x}) = \mathbf{x}\mathscr{A}, \quad \mathscr{D}(\mathbf{y}) = \mathbf{y}\mathscr{D}.$$

Define value functions by

$$u(x) = \sup_{\xi \in \mathscr{A}(x)} \inf_{\mathsf{Q} \in \mathscr{Q}} [\mathsf{E}_{\mathsf{Q}} U(\xi) + \gamma(\mathsf{Q})], \quad x > 0,$$
(1)

$$\mathbf{v}(\mathbf{y}) = \inf_{\eta \in \mathscr{D}(\mathbf{y}), \, \mathbf{Q} \in \mathscr{Q}} \left[\mathsf{E}_{\mathbf{Q}} \mathbf{V} \left(\frac{\eta}{d\mathbf{Q}/d\mathbf{P}} \right) + \gamma(\mathbf{Q}) \right], \quad \mathbf{y} \ge \mathbf{0}.$$
(2)

Dynamic setting : Necessary and sufficient conditions Examples

Static case : Main theorem

Theorem (2)

Let the above assumptions be satisfied. Then

(i) The function u(x), x > 0, takes values in $\mathbb{R} \cup \{+\infty\}$, is increasing and concave.

(ii) The function v(y), $y \ge 0$, takes values in $\mathbb{R} \cup \{+\infty\}$, is convex, lower semicontinuous and decreasing. The infimum in (2) is attained.

(iii) If $v(y) = +\infty$ for all $y \ge 0$, then $u(x) = +\infty$ for all x > 0. If $v(y) < +\infty$ for some $y \ge 0$, then $u(x) \in \mathbb{R}$ for x > 0.

Dynamic setting : Necessary and sufficient conditions Examples

Static case : Main theorem

Theorem (2, continued)

(iv) u and v are connected by

$$u(x) = \min_{y \ge 0} [v(y) + xy], \quad x > 0,$$
 (3)

and

$$v(y) = \sup_{x>0} [u(x) - xy], \quad y \ge 0.$$

Static case : Main theorem

Theorem (2, continued)

(v) Fix x > 0. If the minimum in (3) is attained at y^* and the minimum in (2) for $y = y^*$ is attained at the pair $(\eta^*, Q^*) \in \mathscr{D}(y) \times \mathscr{Q}$, then

$$u(x) = \sup_{\xi \in \mathscr{A}(x)} \left[\mathsf{E}_{\mathsf{Q}^*} U(\xi) + \gamma(\mathsf{Q}^*) \right].$$

Conversely, if the previous relation is satisfied for $Q^* \in \mathcal{Q}$, then there exist $y^* \in \mathbb{R}_+$ and $\eta^* \in \mathcal{D}(y^*)$ such that the minimum in (3) is attained at y^* , and the minimum in (2) for $y = y^*$ is attained at the pair (η^*, Q^*) .

Examples

Static case : Main theorem

Theorem (2, continued)

(vi) Fix x > 0. Let $u(x) < \infty$, the minimum in (3) attained at y^* , and the minimum in (2) for $y = y^*$ attained at the pair $(\eta^*, Q^*) \in \mathscr{D}(y) \times \mathscr{Q}$. If the problem (1) has a solution, i.e. there exists a r.v. $\xi^* \in \mathscr{A}(x)$ such that $u(x) = \inf_{Q \in \mathscr{Q}} [E_Q U(\xi^*) + \gamma(Q)]$, then

$$\mathsf{E}_{\mathsf{P}}\xi^*\eta^* = xy^*$$

and P-a.s.

$$\frac{\eta^*}{d\mathsf{Q}^*/d\mathsf{P}} \in \partial U(\xi^*) \text{ on } \Big\{ \frac{d\mathsf{Q}^*}{d\mathsf{P}} > 0 \Big\} \text{ and } \xi^*\eta^* = 0 \text{ on } \Big\{ \frac{d\mathsf{Q}^*}{d\mathsf{P}} = 0 \Big\}.$$

Dynamic setting : Necessary and sufficient conditions Examples

Static case : Main theorem

Theorem (2, continued)

Conversely, if these conditions are satisfied, then $u(x) = E_{Q^*}U(\xi^*) + \gamma(Q^*).$

(vii) If $v \not\equiv +\infty$, then

$$\lim_{y\uparrow+\infty}\frac{v(y)}{y}=0. \tag{4}$$

Dynamic setting : Necessary and sufficient conditions Examples

Static case : Main theorem

Theorem (2, continued)

(viii) Assume that the function U satisfies the Inada condition at 0, *i.e.*

$$\lim_{x\downarrow 0} U'_{-}(x) = +\infty.$$

Assume also that $u(x) < \infty$ and (only if U is bounded) that there is at least one measure $Q \in \arg \min \gamma$ and a positive r.v. ξ_1 such that $Q(\xi < \xi_1) > 0$ for any $\xi \in \overline{\mathscr{C}}_+$. Then u satisfies the Inada condition at 0 as well.

Dynamic setting : Necessary and sufficient conditions Examples

Static case : Main theorem

Theorem (2, continued)

(ix) Assume that U is differentiable on $(0, +\infty)$ and satisfies the Inada condition at 0, and γ is strictly convex on \mathscr{Q} . If $v(y) < +\infty$ for a given y > 0, and the minimum in (2) is attained at pairs (η_1, Q_1) and (η_2, Q_2) , then $Q_1 = Q_2$ and $\eta_1 = \eta_2 Q_1$ -a.s. Then if u is finite, it is differentiable on $(0, +\infty)$. Only if U is bounded, assume additionally that, for a $Q \in \arg \min \gamma$, there is a positive r.v. ξ_1 such that $Q(\xi < \xi_1) > 0$ for any $\xi \in \mathscr{C}_+$. Then v is strictly convex on $\{v < \infty\}$.

Outline

2 Static setting : Main results

3 Static setting : Reduction and superreplication prices

4 Dynamic setting : Necessary and sufficient conditions

5 Examples

Setting of the problem

Assume that \mathcal{D}_0 is a convex subset of \mathcal{D} . Recall that the value function of the dual problem is defined by

$$\mathbf{v}(\mathbf{y}) = \inf_{\eta \in \mathscr{D}, \, \mathbf{Q} \in \mathscr{Q}} \left[\mathsf{E}_{\mathsf{Q}} \mathbf{V} \left(\frac{\mathbf{y} \eta}{d\mathsf{Q}/d\mathsf{P}} \right) + \gamma(\mathsf{Q}) \right], \quad \mathbf{y} \ge \mathbf{0}.$$

Here we consider the problem when the function v does not change if \mathscr{D} is replaced by \mathscr{D}_0 .

Given a probability measure $Q \ll P$, put

$$\begin{split} v_{\mathsf{Q}}(y) &= \inf_{\eta \in \mathscr{D}} \bigg[\mathsf{E}_{\mathsf{Q}} V \Big(\frac{y\eta}{d\mathsf{Q}/d\mathsf{P}} \Big) \bigg], \\ \widetilde{v}_{\mathsf{Q}}(y) &= \inf_{\eta \in \mathscr{D}_{\mathsf{0}}} \bigg[\mathsf{E}_{\mathsf{Q}} V \Big(\frac{y\eta}{d\mathsf{Q}/d\mathsf{P}} \Big) \bigg], \quad y \geqslant \mathsf{0}. \end{split}$$

So we consider the question when v_Q and \tilde{v}_Q coincide.

Superreplication prices

Let $f \in L^0_+$. If $\mathscr{A}(x)$ is interpreted as the set of terminal wealths corresponding to the initial wealth *x*, a superreplication price of *f* is usually defined by

 $\mathbb{C}^*(f) = \inf\{x \colon \text{there exists } \xi \in \mathscr{A}(x) \text{ such that } \xi \ge f\}.$

However, here \mathscr{A} does not satisfy any closedness assumption. Instead, we shall call the superreplication price of *f* the following amount:

$$\overline{\mathbb{C}}^*(f) = \inf\{x \colon \text{there exists } \xi \in \overline{\mathscr{C}}_+ \text{ such that } x\xi \ge f\}.$$

From now on, E stands for expectation wrt P.

Connection to superreplication prices

Theorem (3)

Let the above assumptions be satisfied and $\mathscr{D}_0 \subseteq \mathscr{D}$ a convex nonempty set. Introduce the following conditions: (i) for any $\eta \in \mathscr{D}$ there is $\tilde{\eta} \in \mathscr{D}_0$ such that $\eta \leqslant \tilde{\eta}$; (ii) $v_Q(y) = \tilde{v}_Q(y)$ for all $Q \ll P$ and $y \ge 0$ for any u.f. U; (iii) $v_Q(y) = \tilde{v}_Q(y)$ for all $Q \ll P$ and $y \ge 0$ for some strictly increasing utility function U; (iv) for any $f \in L^0_+$, $\overline{\mathbb{C}}^*(f) = \sup Efg.$

Then (i)
$$\Rightarrow$$
(ii) \Rightarrow (iii) \Rightarrow (iv). If the closure $\overline{\mathscr{D}}_0$ of \mathscr{D}_0 in L^0 satisfies $\overline{\mathscr{D}}_0 \subseteq \mathscr{D}_0 - L^0_+$, then all the conditions are equivalent.

 $a \in \mathcal{D}_{0}$

Connection to superreplication prices

Corollary

Let a convex nonempty set $\mathscr{D}_0 \subseteq \mathscr{D}$ satisfy (iv). Then $\overline{\mathscr{D}}_0$ satisfies (i)–(iv).

Outline

2 Static setting : Main results

3 Static setting : Reduction and superreplication prices

Oynamic setting : Necessary and sufficient conditions

5 Examples

Assumptions

Let a filtered probability space $(\Omega, \mathscr{F}, (\mathscr{F}_t)_{t \geq 0}, \mathsf{P})$ be given, $\mathscr{F} = \sigma(\bigcup_{t \ge 0} \mathscr{F}_t)$ and \mathscr{F}_0 contains only sets of P-measure 0 or 1. We denote by \mathbb{D} the family of adapted real-valued càdlàg processes $X = (X_t)_{t \ge 0}$, $\mathbb{D}_+ = \{X \in \mathbb{D} \colon X \ge 0\}$, $\mathbb{D}_{++} = \{X \in \mathbb{D} : \mathsf{P}(\inf_t X_t > 0) = 1\}$. If $X \in \mathbb{D}$ and P-a.s. a finite limit $\lim_{t\to\infty} X_t$ exists, it will be denoted by X_{∞} . Now we introduce assumptions on a set \mathscr{X} of stochastic processes, whose elements are interpreted as wealth processes corresponding to all possible strategies of an investor with the unit initial wealth. If the investor has the initial wealth x > 0, then the family of wealth processes corresponding to all his strategies is $\mathscr{X}(x) = x \mathscr{X}$.

Assumptions

Assumption (on a family of wealth processes)

A set $\mathscr{X} \subseteq \mathbb{D}_+$ is convex, $X_0 = 1$ for any $X \in \mathscr{X}$, $1 \in \mathscr{X}$ and P-a.s. a finite limit $\lim_{t\to\infty} X_t$ exists for any $X \in \mathscr{X}$.

Now let us consider the robust utility maximization problem with $\mathscr{A} = \{X_{\infty} \colon X \in \mathscr{X}\}$. We are interested in the question: What are the conditions under which one can take the set $\mathscr{D}_0 = \{Y_{\infty} \colon Y \in \mathscr{Y}\}$ instead of \mathscr{D} in the definition of the function v? Here \mathscr{Y} is the class of supermartingale densities defined on the next slide.

Supermartingale densities

Definition

A nonnegative process Y with $Y_0 = 1$ is called a supermartingale density for \mathscr{X} if, for any $X \in \mathscr{X}$, the product $XY = (X_tY_t)_{t \ge 0}$ is a P-supermartingale. The class of all supermartingale densities is denoted by \mathscr{Y} .

Since $1 \in \mathscr{X}$, any $Y \in \mathscr{Y}$ is a P-supermartingale. If R is a probability measure, $R \ll P$, and any $X \in \mathscr{X}$ is a supermartingale (in particular, a local martingale) under R, then the density process $\left(dR|_{\mathscr{F}_t}/dP|_{\mathscr{F}_t}\right)_{t \ge 0}$ is a supermartingale density. Let us call such a measure R a supermartingale measure.

Forked families

Definition

A family $\mathscr{X} \subseteq \mathbb{D}_+$ is called forked if for any $X^i \in \mathscr{X} \cap \mathbb{D}_{++}$, i = 1, 2, any $s \ge 0$ and any $A \in \mathscr{F}_s$ the process

$$X_{t} = X_{t}^{1} \mathbf{1}_{\{t < s\}} + X_{s}^{1} \left(\mathbf{1}_{A} \frac{X_{t}^{1}}{X_{s}^{1}} + \mathbf{1}_{\Omega \setminus A} \frac{X_{t}^{2}}{X_{s}^{2}} \right) \mathbf{1}_{\{t \ge s\}}$$

belongs to \mathscr{X} .

There is a similar notion of fork-convexity introduced by Žitković (2002). A fork-convex family is forked and convex, the converse, in general, is not true.

Supermartingale densities : Necessary and sufficient conditions

The smallest forked family containing a family $\mathscr{X} \subseteq \mathbb{D}_+$ is called a forked hull of \mathscr{X} and is denoted by fork(\mathscr{X}).

Theorem (4)

Let the above assumptions be satisfied and $\mathscr{D} \neq \{0\}$. Then the set $\mathscr{D}_0 = \{Y_\infty \colon Y \in \mathscr{Y}\}$ is nonempty and satisfies conditions (i)–(iv) of Theorem (3) if and only if

$$\{X_\infty \colon X \in \mathsf{fork}(\mathscr{X})\} \subseteq \overline{\mathscr{C}}_+.$$

Rokhlin (2010)

Corollary

Let $\mathscr{W} \subseteq \mathbb{D}_+$ be a forked and convex family of stochastic processes, $1 \in \mathscr{W}$ and $X_0 = 1$ for any $X \in \mathscr{W}$. The following statements are equivalent:

(i) the set

$$\{X_t\colon X\in\mathscr{W},\ t\in\mathbb{R}_+\}$$

is bounded in probability;

(ii) there exists a supermartingale density Y for the family \mathscr{W} such that $P(Y_{\infty} > 0) = 1$.

Supermartingale measures : Necessary and sufficient conditions

Theorem (5)

Let the above assumptions be satisfied and $\mathscr{D} \neq \{0\}$. Then the set $\mathscr{D}_0 = \{dR/dP : R \text{ is a supermartingale measure}\}$ is nonempty and satisfies condition (iv) of Theorem (3) if and only if the following two conditions are satisfied:

$$ig\{ X_\infty \colon X \in \mathsf{fork}(\mathscr{X}) ig\} \subseteq \overline{\mathscr{C}}_+;$$

$$egin{aligned} & (\lambda_n)\subseteq \mathbb{R}_+,\; (\xi_n)\subseteq \overline{\mathscr{C}}_+,\; f_n=\lambda_n\xi_n-(\lambda_n-1)\stackrel{P}{\longrightarrow} f\geqslant 0,\ & (f_n) \; is \; uniformly \; bounded \; from \; below \;\; \Longrightarrow \;\; f\in \overline{\mathscr{C}}_+. \end{aligned}$$

Outline

2 Static setting : Main results

3 Static setting : Reduction and superreplication prices

Oynamic setting : Necessary and sufficient conditions

A model with arbitrage

Let $B = (B_t)_{0 \leq t < \infty}$ be a standard Brownian motion. For $\alpha \in (0, 1)$ put

$$Z_t = \alpha \exp(B_t - t/2) + 1 - \alpha, \quad S_t = 1/Z_t,$$
$$\mathscr{X} = \bigg\{ X = (X_t)_{t \ge 0} \in \mathbb{D}_+ \colon X_t = 1 + \int_0^t H_u \, dS_u, \ H \in L(S) \bigg\}.$$

This model admits arbitrage: put $H_t^* \equiv 1$, then the wealth process satisfies

$$X_t^* = 1 + \int_0^t H_u^* \, dS_u = 1 + (S_t - 1) = S_t \to 1/(1 - \alpha)$$
 a.s.,

i.e.
$$X^* \in \mathscr{X}$$
 and $X^*_{\infty} = 1/(1-\alpha) > 1$ a.s.

Utility maximization makes sense and H^* is the optimal strategy

Take an arbitrary $X \in \mathscr{X}$. It is easy to check using Itô's formula that XZ is a local martingale and, hence, a supermartingale (in particular, Z is a supermartingale density). Therefore, by Jensen's inequality,

$$\mathsf{E}[U(X_{\infty})] = \mathsf{E}\left[U\left(\frac{X_{\infty}Z_{\infty}}{1-\alpha}\right)\right] \leq U\left(\frac{\mathsf{E}(X_{\infty}Z_{\infty})}{1-\alpha}\right) \leq U\left(\frac{1}{1-\alpha}\right)$$
$$= \mathsf{E}[U(X_{\infty}^*)].$$

A model with an arbitrary number of assets

Let $(\mathscr{F}_n)_{n=0,1,...,N}$ be an increasing family of sub- σ -algebras on a probability space $(\Omega, \mathscr{F}, \mathsf{P}), \mathscr{F}_0 = \{\emptyset, \Omega\}, \mathscr{F}_n = \mathscr{F}.$ Let $\mathscr{S} = (S^i)_{i \in I}$ be an arbitrary family of adapted processes $S^i = (S^i_n)_{n=0,1,...,N}$ on this space. S^i_n is interpreted as a discounted price of asset *i* at time *n*.

All possible strategies

All possible strategies of an investor is the set \mathscr{L} with elements $H = (H^i)_{i \in I}$, where, for every i, $H^i = (H^i_n)_{n=1,...,N}$ is a predictable $(H^i_n \text{ is } \mathscr{F}_{n-1}\text{-measurable for } n = 1, ..., N)$ random sequence; moreover, there exists a finite subset $J = J(H) \subseteq I$ such that $H^i \equiv 0$ if $i \notin J$. A r.v. H^i_n is interpreted as the amount of the *i*th asset in an investor's portfolio at time *n*.

Wealth processes

Given $H \in \mathscr{L}$, define the process $H \circ S = (H \circ S_n)_{n=0,1,...,N}$ by

$$H \circ S_n = \sum_{k=1}^n \sum_{i \in J(H)} H_k^i \Delta S_k^i, \quad \Delta S_k^i = S_k^i - S_{k-1}^i.$$

Then $1 + H \circ S$ is the wealth process of an investor with an initial wealth 1 and a strategy *H*.

Admissible strategies

Let now \mathscr{H} be a subset of \mathscr{L} satisfying the following properties:

- \mathscr{H} is convex.
- $0 \in \mathscr{H}$.
- $H + K \in \mathscr{H}$ if $H, K \in \mathscr{H}$ and HK = 0.
- if H ∈ ℋ, n = 1,..., N − 1 and ξ is an ℱ_n-measurable nonnegative r.v., then H1_[0,n] ∈ ℋ and Hξ1_[n+1,N] ∈ ℋ.

Put

$$\mathscr{X} := \{\mathbf{1} + H \circ S \colon H \in \mathscr{H}\} \cap \mathbb{D}_+.$$

Then \mathscr{X} is a forked family.

