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Definition and motivation of
multidimensional coherent risk measures
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Definition of multidimensional coherent risk measures Definitions

Representation theorem

Definition 1.1. ([ADEH97]) Coherent utility function —
mapping u : L — R, satisfying the following properties:

(a) (diversification) u(X + Y) > u(X) + u(Y);

(b) (partial ordering) if X < Y P-a.s., then u(X) < u(Y);

(c) (positive homogeneity) u(AX) = Au(X) for all A > 0;

(d) (translation invariance) u(X 4+ m) = u(X) + m for all m € R;
(e) (Fatou property) if [X,| < ¢ and X, 2, X, then

u(X) > lim, u(Xy).

The corresponding coherent risk measure is defined as

p(X) = —u(X).
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Picture 1. Example of cone K

X <Y, if X(w) — Y(w) € K(w) for a.a. w, where K(w) is a cone
of currency exchange rates.
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Definition of multidimensional coherent risk measures Definitions

Representation theorem

Definition 1.2. ([KO7]) Multidimensional coherent utility
function — mapping u : (L) — C\ {R9}, satisfying the
following properties:

(a) (diversification) u(X 4+ Y) D u(X) + u(Y);
(b) (partial ordering) if X <Y then u(X) C u(Y);
(c) (positive homogeneity) u(AX) = Au(X) for all A > 0;

) (translation invariance) u(X 4 m) = u(X)+ m for all m € R
e) (Fatou property) if | X,| < 1; X, P, X, then
u(X) D lim, u(X,), i.e. if x belongs to infinitely many u(X,),
then x belongs to u(X).

The corresponding multidimensional coherent risk measure is
defined as p(X) = —u(X).
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Definition of multidimensional coherent risk measures Definitions

Representation theorem

Remarks.

» (i) If uis a coherent utility function, then
v(X) = (—o0, u(X)] is a multidimensional coherent utility
function with d =1 and K(w) =R_.
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Definition of multidimensional coherent risk measures Definitions

Representation theorem

Remarks.

» (i) If uis a coherent utility function, then
v(X) = (—o0, u(X)] is a multidimensional coherent utility
function with d =1 and K(w) =R_.

» (ii) If d =1, K(w) = R_ and v is a multidimensional
coherent utility function, then
v(X) =sup{x € R: x € u(X)} is a coherent utility function.
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Representation theorem
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Definition of multidimensional coherent risk measures Definitions

Representation theorem

Theorem 1.3. ([K07]) A function u: (L) — C\ {R%} is a
multidimensional coherent utility function if and only if there
exists a nonempty set D C (L')9 such that Z(w) € K*(w) P-a.s.
and

d d
u(X) = {x eRT:VZeD ) EXZ <) Ex"z"},
i=1 i=1

where K*(w) — negative polar to K(w), i. e.
K*(w) = {x € RY :Vz € K(w) (x,z) <0}.
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Definition of multidimensional coherent risk measures Definitions

Representation theorem

Definition 1.4. We will call the largest set, for which the
representation is true, the determining set for multidimensional
coherent utility function u.

Definition 1.5. Multidimensional coherent utility function on
(L) is a mapping u : (L°) — C U {@}, defined as:

d d
u(X) = {x eRT:VZeD ) EX'Z <) EX’Z’}, (1)
i=1 i=1
where D — set of d-dimensional random vectors Z € (L})? such
that Z(w) € K*(w) P-a.s. and EX'Z' = E(X'Z)* — E(X'Z")~
with an agreement: +o00 — 0o = —o0.
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Definition of multidimensional coherent risk measures Definitions

Representation theorem

Remarks.

» (i) The definition and representation theorem given above
are the multidimensional analogues of the one-dimensional
ones.
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Definition of multidimensional coherent risk measures

Remarks.

» (i) The definition and representation theorem given above
are the multidimensional analogues of the one-dimensional
ones.

» (ii) It is obvious, that the determining set is a convex
cone. If a multidimensional coherent utility function is
defined on (L>)9, then its determining set is (L*)?-closed.
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Definition of multidimensional coherent risk measures Definitions

Representation theorem

Remarks.

» (i) The definition and representation theorem given above
are the multidimensional analogues of the one-dimensional
ones.

» (ii) It is obvious, that the determining set is a convex
cone. If a multidimensional coherent utility function is
defined on (L>)9, then its determining set is (L*)?-closed.

> (iii) If D — (L')9-closed convex cone and a
multidimensional coherent utility function v is defined by
the representation, then D is a determining set for u.
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Properties and examples

Definition 2.1. ([K01]) The one-dimensional utility function u
is law invariant if for all X, Y such that X L% v it is true that

u(X) = u(Y).

Definition 2.2. The multidimensional utility function v is law
Law

invariant if for all X, Y such that (X, K) = (Y, K) it is true
that
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Properties and examples

Remarks.

» (1) It is easily seen that this definition coincides with the
definition of law invariance given in [KO01] in case d = 1.
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Remarks.

> (i) It is easily seen that this definition coincides with the
definition of law invariance given in [KO01] in case d = 1.

» (ii) The fact that not only X 2y but (X, K) taw (Y,K)
is very important. Let us introduce an example.
Let Q = (w1,w2), F = 2%, P(wy) = P(w2) = 3, 2 is the
dimension of the space,

X(wi) = Y(w2) = (=2,1), X(w2) = Y(w1) = (1,-2).

Let K(wi) be the lower half-plane, orthogonal to vector
(17 2)7

K(wy) be the lower half-plane, orthogonal to vector (2,1).
Consequently, X 2 ¥ but (X, K) = (Y, K). Tt is easily
seen that the portfolio X = (0,0) but the portfolio Y is
unacceptable from financial point of view.
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Consider example from remark

Picture 2. Example.
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Properties and examples

Let change the basic units along each datum line by multiplying
them on vector v = (71,...,79) € Rf’H_. Using the obtained
determining set let us construct the multidimensional utility
function u7 in new datum lines.

Definition 2.3. The multidimensional utility function v on
(L%) is space consistent if for all X € (L), v € RY.,

DX - = u(X),
which means that for all X € (L%)9,v € R{,

x € u(X) iff x7 € u7(X7).
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Properties and examples

Lemma 2.4. Multidimensional coherent utility function u on
(L) is space consistent if and only if one of the following
properties takes place:

(i) A random vector X € A, (X € (L)) iff X7 € A+ for all
v E Ri 4, where A, and A, are the acceptance sets of the
multidimensional coherent utility function u (resp., u?).

(i) A random vector Z € D (Z € (L1)?) iff ZY/7 € D for all
v E Ri 4, where D and D7 are the determining sets of the
multidimensional coherent utility function u (resp., u?).

Remark. One-dimensional coherent risk measure is always space
consistent due to positive homogeneity property.
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Properties and examples

Definition 2.5. ([ADEH99]) Suppose A € (0, 1]. Consider the
set
Dy={Zell:Z<1/\EZ=1}.

Let us construct the function

un(X) = ZinIf) EZX, X e l°
€Dy

This is a coherent utility function. The corresponding coherent
risk measure is called Tail V@R of level A.
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Picture 3. Tail V@R.
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Properties and examples

Definition 2.6. ([JMTO04]) Suppose A € (0, 1]. Consider the set
Awce, = {X € (L) 1 E(X|B) € ~K VB € F*},

where
:{BE}":P(B)>/\}.

Then Worst Conditional Expectation of level X\ (WCE) ) in
multidimensional case is defined as follows:

WCE) (X {x eR?: X+xe AWCEA}

Remark. WCE) is not law invariant risk measure but it is not
space consistent. It is also can not be correctly defined in the
case of random cone of currency exchange rates.
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Properties and examples

Definition 2.7. ([HamO07]) Consider

d
Zy\ = cone{Z e (LH?: EZZi =1,Z(w) € K* P-as.,
i=1

v eRY Z —Z’<VV/—1 d}.

Consider the correspondlng multidimensional coherent risk
measure:

d d
AVOR)(X) = —up(X) = —{x ERT:VZe 2 EXZ <Y EX’Z’}
i=1 i=1
It is called Awverage V@R.
Remark. It is easily seen that this risk measure is law invariant
but it is not space consistent. It can be defined in the case of
random cone of currency exchange rates if A < 1/d.
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Definition 2.8. ([K07]) Suppose A € (0, 1] and determining set
Dy = cone{n¢ € (L1)? 1 n € Dy, £ € (L), £(w) € K*(w) P-aus,,
.9 =1P-as},

We can consider the corresponding multidimensional coherent
utility function

d d
(X)) = {x €ERY:VZ €D, Z Ex'Z' < Z Ex"z"}.

i=1 i=1
Let us call the corresponding multidimensional coherent risk
measure Tail VQR of level A
Remarks. (i) It is well defined if the cone K of currency
exchange rates is constructed by using a matrix (7% )i<ij<d of
currency exchange rates such that 79 € [ for all 1 < i,j < d.
(ii) It is easily seen that this risk measure is law invariant and
space consistent.
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Consider example e

Picture 4. Example.
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Measures/ Tail Average WCE
Properties V@R V@R
Law invariance + + =
Space + = +
consistency
Random cone H o —
Economical sense + + =

Table 1. Multidimensional analogues of Tail VOR and their
properties.
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Definition of NGD condition

Theorems of asset pricing

Dynamic model of currency exchange rates
Hedging

Results

NGD pricing

Let X 21 /X is a currency exchange rate.

It means that these 2 currencies have the similar behavior.
But for Tail VQR if X has a continuous distribution then for
0<A<l

1
—up(=X)’

which means that the interval of fair currency exchange rates is
not symmetric.

ux(X) >
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Results

NGD pricing

Let £ = {Z € (L. EZ,‘LI 7l = } Then let us introduce

the following space:

Lﬁ(D)_{Xe(LO)d: lim  sup ZE\ZX]I{Z\XJ\>n} }

=00 7zeDNL
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Definition of NGD condition
Theorems of asset pricing
Dynamic model of currency exchange rates

Hedging

NGD pricing Results

Let A be a convex closed subset in (L°)7.

Definition 4.1. A risk-neutral vector is a nonzero vector

Z € (L) such that EXX | Z'X7 < 0 for all X € A,

The set of risk-neutral vectors is denoted by R or R(A), if there
is a risk of ambiguity.

Definition 4.2. (J[C07]) We will call that the set A is
D-consistent, if there exists a subset A’ C AN L}(D) such that
DNR=DNRA).

Definition 4.3. ([K08]) The model satisfies NGD condition if
there exist no X € A such that u(X) N (R4 \ {0}) # .
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Theorems of asset pricing
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Theorems of asset pricing
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NGD pricing ::sdﬁltr;g

Theorem 4.4. ([K08]) The model satisfies NGD-condition iff
DNR# @.

Definition 4.5. A wutility based NGD-price of contingent claim
F is a vector x € R? such that the extended model
(Q,F,P,D,A+ {h(F — x) : h € R}) satisfies NGD-condition.
The set of NGD-prices of contingent claim F will be denoted by
Incp(F).

Corollary 4.6. For F € LL(D)

Inep(F) = {x : E(Z,x) = E(Z, F) for some Z € DNR}.
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Definition of NGD condition
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NGD pricing ::sdﬁltr;g

Consider the following model. Let

N
A= { D & én(w) € Ky, (w)(P-as.), N €N,
n=0 (2)

up < ... < uy — (Ft)-stopping times}.

Definition 4.7. (K99) An adapted Ri—valued process
Z = (Zt)o<t<T is called price-process adapted with the set of
cones of currency exchange rates (Ke(w))o<t<T, if Z is a

martingale under measure P and for each t it is valid that
Zi(w) € Ki(w)(P-a.s.).
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Theorems of asset pricing

Dynamic model of currency exchange rates
Hedging

Results

NGD pricing

Denote by

R' = {Z7r : P(Z1 # 0) > 0, Z — price process}.
R" ={Zr : P(Z1 #0) = 1, Z — price process}.

Proposition 4.8. (K99) Model satisfies NA-condition iff
R+ @.
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Theorems of asset pricing

Dynamic model of currency exchange rates
Hedging
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NGD pricing

Theorem 4.9. We have DN'R =DNR(A)=DNR', where

A ={u(w) : €u(w) € Ky(w)(P-a.5.), Eu(w) € Le(D),
u € [0, T] — simple Fi-stopping time},

Let 7J € L1(D) for each 1 < i,j < d and t € [0, T]. Then model
satisfies NGD condition iff DNR' # @.

Corollary 4.10. For F € L1(D) it is valid that

Inp(F) = {x : E(Z,x) = E(Z, F) for some Z € DNR'}.
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Definition of NGD condition
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NGD pricing E:iﬁ't’;g

Definition 4.11. The upper and lower NGD price in the

direction z € R\ {0} of a contingent claim F can be defined in
the following form:

Vz(F) =inf{x:3IX € A:u(X — F+XZ)ﬁRf{_ + o},
V,(F)=sup{x:3X € A: “(X+F—Xz)ﬂRf{_ £ o).

Kulikov Alexander
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Theorems of asset pricing
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Hedging
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Theorem 4.12. If Ais a cone and F € L}(D), then

J .

— 4 EZIF

VAH:ww{Z;I_,:ZeDﬂR}
2.im BZ'Z

p o
I EZIF
2:1;z€DmR}

V_(F) =inf
V.(F) {27_1 =
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Hedging

Results

NGD pricing

Example 4.13. Let d = 2, /712, (/721 € [, Let
= (1,0), F = (0,1). If we use Tail VAR and Dy N R # @, then

o 121/2
v.() - 2L 12)) )
(G

pa((mH)H3) 1
PA(*( h/2) " omgt

A 71'82,

\

V,(F) =

Yz
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Example 4.14. Let Law(712) has the following density
—1/2+a
G, xe(0al

(1/2+a)cl/2+a
2x3/2+a , X E [Cla OO),

and 73l = qcz. Then Law(7?!) has the following density

1/2+4a)x—1/2ta .
1/ 1)/2+a , XE€ (0 C2]

(1/2+(X) 1/24a
X3/2+a , X € [C27 00)7

where c1co > 1 and o > 0.
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Let A < 1/2. Then

Definition of NGD condition
Theorems of asset pricing
Dynamic model of currency exchange rates

Hedging
Results

— bl(Od + 1) « 1
V,(F = AP V(F)= ———V
z( ) a 0 ,72( ) b2(04+ 1) 817
1/2+o¢
where b1/2+a =i =12
Let A > 1/2. Then
S L
1/ o« a4+ o+ 12
VZ(F) - 12 L2 cl/2—apa /\7TO ’
1 1 1 1
e + a+1 e
—1/2 71 2 —1/2—a ;o
S / ) /1 o) / b3 1
_ [e] a+ [e3
MZ(F) - C§/2 C;./2 C271/27ab3+1 v 7.‘_817
[ + o+l a+1
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NGD pricing E:iﬁ't’;g

Remarks. (i) Let a = 1/2. Consider 2 situations.
Let A <1/2. Then by = 5. Then

2\ 1
3C2 7T81 '

B 3C1

VZ(F)_X

N 7162,12(/:) =

Let A > 1/2. Then b; = 2¢1(1 — A). Then

4 — (1 — X\)3/223/2
431 = N)212

Mz(F) ) 4 _ (1 — )\)3/223/2 \ 7_‘_781

(ii) If @« — oo or A — 1 then V,(F) — ?12\/% and

V.(F) — c1 A g2 If we use NA condition then V,(F) = %,
] 0
V. (F) = 2.
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» Motivation, axioms and representation theorems of
multidimensional coherent risk measures.
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» Motivation of using multidimensional coherent risk measures
for pricing.
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» Motivation of using multidimensional coherent risk measures
for pricing.

» Definition of NGD condition in multidimensional case using
multidimensional coherent risk measures and theorems of asset

pricing.
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» Motivation of using multidimensional coherent risk measures
for pricing.

» Definition of NGD condition in multidimensional case using
multidimensional coherent risk measures and theorems of asset
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for pricing.

» Definition of NGD condition in multidimensional case using
multidimensional coherent risk measures and theorems of asset
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» Motivation of using multidimensional coherent risk measures
for pricing.

» Definition of NGD condition in multidimensional case using
multidimensional coherent risk measures and theorems of asset

pricing.
» Dynamic model of currency exchange rates.
» Hedging in fixed direction.

» Application to the model with 2 currencies and calculation of
fair currency exchange rate in this model.
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Thank you for your attention
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