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Representation theorem

Definition 1.1. ([ADEH97]) Coherent utility function —
mapping u : L∞ → R, satisfying the following properties:

(a) (diversification) u(X + Y ) ≥ u(X ) + u(Y );
(b) (partial ordering) if X ≤ Y P-a.s., then u(X ) ≤ u(Y );
(c) (positive homogeneity) u(λX ) = λu(X ) for all λ ≥ 0;
(d) (translation invariance) u(X + m) = u(X ) + m for all m ∈ R;
(e) (Fatou property) if |Xn| ≤ c and Xn

P−→ X , then
u(X ) ≥ limn u(Xn).

The corresponding coherent risk measure is defined as
ρ(X ) = −u(X ).
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Picture 1. Example of cone K

X � Y , if X (ω)− Y (ω) ∈ K (ω) for a.a. ω, where K (ω) is a cone
of currency exchange rates.
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Definition 1.2. ([K07]) Multidimensional coherent utility
function — mapping u : (L∞)d → C \ {Rd}, satisfying the
following properties:

(a) (diversification) u(X + Y ) ⊇ u(X ) + u(Y );
(b) (partial ordering) if X � Y then u(X ) ⊆ u(Y );
(c) (positive homogeneity) u(λX ) = λu(X ) for all λ > 0;
(d) (translation invariance) u(X +m) = u(X )+m for all m ∈ Rd ;
(e) (Fatou property) if |Xn| ≤ 1; Xn

P−→ X , then
u(X ) ⊇ limn u(Xn), i.e. if x belongs to infinitely many u(Xn),
then x belongs to u(X ).

The corresponding multidimensional coherent risk measure is
defined as ρ(X ) = −u(X ).
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Remarks.

I (i) If u is a coherent utility function, then
v(X ) = (−∞, u(X )] is a multidimensional coherent utility
function with d = 1 and K (ω) = R−.

I (ii) If d = 1, K (ω) = R− and u is a multidimensional
coherent utility function, then
v(X ) = sup{x ∈ R : x ∈ u(X )} is a coherent utility function.
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Theorem 1.3. ([K07]) A function u : (L∞)d → C \ {Rd} is a
multidimensional coherent utility function if and only if there
exists a nonempty set D ⊆ (L1)d such that Z (ω) ∈ K ∗(ω) P-a.s.
and

u(X ) =

{
x ∈ Rd : ∀Z ∈ D

d∑
i=1

Ex iZ i ≤
d∑

i=1

EX iZ i
}

,

where K ∗(ω) — negative polar to K (ω), i. e.
K ∗(ω) = {x ∈ Rd : ∀z ∈ K (ω) 〈x , z〉 ≤ 0}.
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Definition 1.4. We will call the largest set, for which the
representation is true, the determining set for multidimensional
coherent utility function u.
Definition 1.5. Multidimensional coherent utility function on
(L0)d is a mapping u : (L0)d → C ∪ {∅}, defined as:

u(X ) =

{
x ∈ Rd : ∀Z ∈ D

d∑
i=1

Ex iZ i ≤
d∑

i=1

EX iZ i
}

, (1)

where D — set of d -dimensional random vectors Z ∈ (L1)d such
that Z (ω) ∈ K ∗(ω) P-a.s. and EX iZ i = E(X iZ i )+ − E(X iZ i )−

with an agreement: +∞−∞ = −∞.
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Remarks.

I (i) The definition and representation theorem given above
are the multidimensional analogues of the one-dimensional
ones.

I (ii) It is obvious, that the determining set is a convex
cone. If a multidimensional coherent utility function is
defined on (L∞)d , then its determining set is (L1)d -closed.

I (iii) If D − (L1)d -closed convex cone and a
multidimensional coherent utility function u is defined by
the representation, then D is a determining set for u.
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Definition 2.1. ([K01]) The one-dimensional utility function u
is law invariant if for all X , Y such that X Law

= Y it is true that

u(X ) = u(Y ).

Definition 2.2. The multidimensional utility function u is law
invariant if for all X , Y such that (X , K )

Law
= (Y , K ) it is true

that
u(X ) = u(Y ).
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Remarks.

I (i) It is easily seen that this definition coincides with the
definition of law invariance given in [K01] in case d = 1.

I (ii) The fact that not only X Law
= Y but (X , K )

Law
= (Y , K )

is very important. Let us introduce an example.
Let Ω = (ω1, ω2),F = 2Ω, P(ω1) = P(ω2) = 1

2 , 2 is the
dimension of the space,

X (ω1) = Y (ω2) = (−2, 1), X (ω2) = Y (ω1) = (1,−2).

Let K (ω1) be the lower half-plane, orthogonal to vector
(1, 2),
K (ω2) be the lower half-plane, orthogonal to vector (2, 1).

Consequently, X Law
= Y but (X , K )

Law
6= (Y , K ). It is easily

seen that the portfolio X ≈ (0, 0) but the portfolio Y is
unacceptable from financial point of view.
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Picture 2. Example.
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Let change the basic units along each datum line by multiplying
them on vector γ = (γ1, . . . , γd ) ∈ Rd

++. Using the obtained
determining set let us construct the multidimensional utility
function uγ in new datum lines.

Definition 2.3. The multidimensional utility function u on
(L0)d is space consistent if for all X ∈ (L0)d , γ ∈ Rd

++

uγ(X γ) · γ = u(X ),

which means that for all X ∈ (L0)d , γ ∈ Rd
++

x ∈ u(X ) iff xγ ∈ uγ(X γ).

Kulikov Alexander Multidimensional coherent risk measures



Outline
Definition of multidimensional coherent risk measures

Properties and examples
NGD pricing

Law invariance
Space consistency
Multidimensional analogues of Tail V@R

Lemma 2.4. Multidimensional coherent utility function u on
(L0)d is space consistent if and only if one of the following
properties takes place:
(i) A random vector X ∈ Au (X ∈ (L0)d ) iff X γ ∈ Auγ for all
γ ∈ Rd

++, where Au and Auγ are the acceptance sets of the
multidimensional coherent utility function u (resp., uγ).
(ii) A random vector Z ∈ D (Z ∈ (L1)d ) iff Z 1/γ ∈ Dγ for all
γ ∈ Rd

++, where D and Dγ are the determining sets of the
multidimensional coherent utility function u (resp., uγ).

Remark. One-dimensional coherent risk measure is always space
consistent due to positive homogeneity property.
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Definition 2.5. ([ADEH99]) Suppose λ ∈ (0, 1]. Consider the
set

Dλ = {Z ∈ L1
+ : Z ≤ 1/λ, EZ = 1}.

Let us construct the function

uλ(X ) = inf
Z∈Dλ

EZX , X ∈ L0.

This is a coherent utility function. The corresponding coherent
risk measure is called Tail V@R of level λ.
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Picture 3. Tail V@R.
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Definition 2.6. ([JMT04]) Suppose λ ∈ (0, 1]. Consider the set

AWCEλ
=

{
X ∈ (L∞)d : E(X |B) ∈ −K ∀B ∈ Fλ

}
,

where
Fλ =

{
B ∈ F : P(B) > λ

}
.

Then Worst Conditional Expectation of level λ (WCEλ) in
multidimensional case is defined as follows:

WCEλ(X ) =
{
x ∈ Rd : X + x ∈ AWCEλ

}
.

Remark. WCEλ is not law invariant risk measure but it is not
space consistent. It is also can not be correctly defined in the
case of random cone of currency exchange rates.
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Definition 2.7. ([Ham07]) Consider

Zλ = cone
{

Z ∈ (L1)d : E
d∑

i=1

Z i = 1, Z (ω) ∈ K ∗ P-a.s.,

∃v ∈ Rd
+ :

d∑
i=1

v i =
1
λ

, Z i ≤ v i ∀i = 1, . . . , d
}

.

Consider the corresponding multidimensional coherent risk
measure:

AV@Rλ(X ) = −uλ(X ) = −
{

x ∈ Rd : ∀Z ∈ Zλ

d∑
i=1

Ex iZ i ≤
d∑

i=1

EX iZ i
}

.

It is called Average V@R.
Remark. It is easily seen that this risk measure is law invariant
but it is not space consistent. It can be defined in the case of
random cone of currency exchange rates if λ ≤ 1/d .

Kulikov Alexander Multidimensional coherent risk measures



Outline
Definition of multidimensional coherent risk measures

Properties and examples
NGD pricing

Law invariance
Space consistency
Multidimensional analogues of Tail V@R

Definition 2.8. ([K07]) Suppose λ ∈ (0, 1] and determining set

D̃λ = cone{ηξ ∈ (L1)d : η ∈ Dλ, ξ ∈ (L0)d , ξ(ω) ∈ K ∗(ω) P-a.s.,

ξ1 · . . . · ξd = 1 P-a.s.},

We can consider the corresponding multidimensional coherent
utility function

ũλ(X ) =

{
x ∈ Rd : ∀Z ∈ D̃λ

d∑
i=1

Ex iZ i ≤
d∑

i=1

EX iZ i
}

.

Let us call the corresponding multidimensional coherent risk
measure Tail V@R of level λ
Remarks. (i) It is well defined if the cone K of currency
exchange rates is constructed by using a matrix (πij)1≤i ,j≤d of
currency exchange rates such that πij ∈ L1 for all 1 ≤ i , j ≤ d .
(ii) It is easily seen that this risk measure is law invariant and
space consistent.
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Picture 4. Example.

Kulikov Alexander Multidimensional coherent risk measures



Outline
Definition of multidimensional coherent risk measures

Properties and examples
NGD pricing

Law invariance
Space consistency
Multidimensional analogues of Tail V@R

Table 1. Multidimensional analogues of Tail V@R and their
properties.
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Let X Law
= 1/X is a currency exchange rate.

It means that these 2 currencies have the similar behavior.
But for Tail V@R if X has a continuous distribution then for
0 < λ < 1

uλ(X ) >
1

−uλ(−X )
,

which means that the interval of fair currency exchange rates is
not symmetric.
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Let L =

{
Z ∈ (L1)d : E

∑d
i=1 Z i = 1

}
. Then let us introduce

the following space:

L1
s (D) =

{
X ∈ (L0)d : lim

n→∞
sup

Z∈D∩L

d∑
i=1

E|Z iX i |I
{ d∑

j=1

|X j | > n
}

= 0
}

.
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Let A be a convex closed subset in (L0)d .

Definition 4.1. A risk-neutral vector is a nonzero vector
Z ∈ (L1

+)d such that E
∑d

i=1 Z iX i 6 0 for all X ∈ A.
The set of risk-neutral vectors is denoted by R or R(A), if there
is a risk of ambiguity.
Definition 4.2. ([C07]) We will call that the set A is
D-consistent, if there exists a subset A′ ⊆ A ∩ L1

s (D) such that
D ∩R = D ∩R(A′).

Definition 4.3. ([K08]) The model satisfies NGD condition if
there exist no X ∈ A such that u(X ) ∩ (Rd

+ \ {0}) 6= ∅.
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Theorems of asset pricing
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Theorem 4.4. ([K08]) The model satisfies NGD-condition iff
D ∩R 6= ∅.

Definition 4.5. A utility based NGD-price of contingent claim
F is a vector x ∈ Rd such that the extended model
(Ω,F , P,D, A + {h(F − x) : h ∈ R}) satisfies NGD-condition.
The set of NGD-prices of contingent claim F will be denoted by
INGD(F ).

Corollary 4.6. For F ∈ L1
s (D)

INGD(F ) = {x : E〈Z , x〉 = E〈Z , F 〉 for some Z ∈ D ∩R}.
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Consider the following model. Let

A =

{ N∑
n=0

ξn : ξn(ω) ∈ Kun(ω)(P-a.s.), N ∈ N,

u0 6 . . . 6 uN — (Ft)-stopping times
}

.

(2)

Definition 4.7. (K99) An adapted Rd
+-valued process

Z = (Zt)0≤t≤T is called price-process adapted with the set of
cones of currency exchange rates (Kt(ω))0≤t≤T , if Z is a
martingale under measure P and for each t it is valid that
Zt(ω) ∈ K ∗

t (ω)(P-a.s.).
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Denote by

R′ = {ZT : P(ZT 6= 0) > 0, Z − price process}.

R′′ = {ZT : P(ZT 6= 0) = 1, Z − price process}.

Proposition 4.8. (K99) Model satisfies NA-condition iff
R′′ 6= ∅.
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Theorem 4.9. We have D ∩R = D ∩R(A′) = D ∩R′, where

A′ ={ξu(ω) : ξu(ω) ∈ Ku(ω)(P-a.s.), ξu(ω) ∈ L1
s (D),

u ∈ [0, T ]− simple Ft-stopping time},

Let πij
t ∈ L1

s (D) for each 1 ≤ i , j ≤ d and t ∈ [0, T ]. Then model
satisfies NGD condition iff D ∩R′ 6= ∅.

Corollary 4.10. For F ∈ L1
s (D) it is valid that

INGD(F ) = {x : E〈Z , x〉 = E〈Z , F 〉 for some Z ∈ D ∩R′}.
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Definition 4.11. The upper and lower NGD price in the
direction z ∈ Rd

+ \ {0} of a contingent claim F can be defined in
the following form:

V z(F ) = inf{x : ∃X ∈ A : u(X − F + xz) ∩ Rd
+ 6= ∅},

V z(F ) = sup{x : ∃X ∈ A : u(X + F − xz) ∩ Rd
+ 6= ∅}.
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Theorem 4.12. If A is a cone and F ∈ L1
s (D), then

V z(F ) = sup
{∑d

i=1 EZ iF i∑d
i=1 EZ iz i

: Z ∈ D ∩R
}

,

V z(F ) = inf
{∑d

i=1 EZ iF i∑d
i=1 EZ iz i

: Z ∈ D ∩R
}

.
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Example 4.13. Let d = 2,
√

π12
1 ,

√
π21

1 ∈ L1. Let

z = (1, 0), F = (0, 1). If we use Tail V@R and D̃λ ∩R 6= ∅, then

V z(F ) =
ρλ(−(π12

1 )1/2)

−ρλ((π12
1 )−1/2)

∧ π12
0 ,

V z(F ) =
−ρλ((π21

1 )−1/2)

ρλ(−(π21
1 )1/2)

∨ 1
π21

0
.
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Example 4.14. Let Law(π12
1 ) has the following density

ρ12(x) =


(1/2+α)x−1/2+α

2c1/2+α
1

, x ∈ (0, c1];

(1/2+α)c1/2+α
1

2x3/2+α , x ∈ [c1,∞),

and π21
1 = c1c2

π12
1

. Then Law(π21
1 ) has the following density

ρ21(x) =


(1/2+α)x−1/2+α

2c1/2+α
2

, x ∈ (0, c2];

(1/2+α)c1/2+α
2

2x3/2+α , x ∈ [c2,∞),

where c1c2 ≥ 1 and α > 0.
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Let λ ≤ 1/2. Then

V z(F ) =
b1(α + 1)

α
∧ π12

0 , V z(F ) =
α

b2(α + 1)
∨ 1

π21
0

,

where b1/2+α
i =

c1/2+α
i
2λ , i = 1, 2.

Let λ ≥ 1/2. Then

V z(F ) =

c1/2
1
α +

c1/2
1

α+1 −
c−1/2−α
1 bα+1

1
α+1

c−1/2
1
α +

c−1/2
1
α+1 − c−1/2−α

1 bα
1

α

∧ π12
0 ,

V z(F ) =

c−1/2
2
α +

c−1/2
2
α+1 − c−1/2−α

2 bα
2

α

c1/2
2
α +

c1/2
2

α+1 −
c−1/2−α
2 bα+1

2
α+1

∨ 1
π21

0
,

where b1/2+α
i = 2c1/2+α

i (1− λ).
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Remarks. (i) Let α = 1/2. Consider 2 situations.
Let λ ≤ 1/2. Then b1 = c1

2λ . Then

V z(F ) =
3c1

2λ
∧ π12

0 , V z(F ) =
2λ
3c2

∨ 1
π21

0
.

Let λ ≥ 1/2. Then b1 = 2c1(1− λ). Then

V z(F ) = c1
4− (1− λ)3/223/2

4− 3(1− λ)1/221/2 ∧ π12
0 ,

V z(F ) = c−1
2

4− 3(1− λ)1/221/2

4− (1− λ)3/223/2 ∨ 1
π21

0
.

(ii) If α →∞ or λ → 1 then V z(F ) → 1
c2
∨ 1

π21
0

and

V z(F ) → c1 ∧ π12
0 . If we use NA condition then V z(F ) = 1

π21
0

,

V z(F ) = π12
0 .
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Thank you for your attention
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