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Overview of the Course

Part I: The Models (SVJ)

Part II: Exotic Derivatives (volatility derivatives, forward-starting
options, asymptotics of the implied volatility smile)

Part III: Fluctuation Theory and Barrier Options
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Part I

The Models
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The Models

What are models used for?

Understanding the risk of portfolios of derivative securities:

• Pricing

• Hedging

• Risk Management

Features they must possess:

• Jumps (Gamma Regime)

• Stochasticity of Volatility (Vega Regime, Volatility Clustering)

• Analytical Tractability (Calibration, Hedging and Risk
Managemement)
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Regime switching Lévy processes: the volatility chain

• State-space E0 := {1, . . . , N0}, N0 ∈ N, of a continuous-time
Markov chain Z = (Zt)t≥0.

• Generator of Z is Q ∈ RN0×N0 .

• Notation: M ∈ CN0×N0 , m ∈ CN0 are identified with functions

M : E0 × E0 → C, M(i, j) =Mij = e′iMej ,

m : E0 → C, m(j) = mj = m′ej ,

where i, j = 1, . . . , N0, and ei are the standard basis of CN0 .
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Regime switching Lévy processes: the volatility chain

• Let B : E0 → C.
• Let ΛB be a diagonal matrix such that ΛB(i, i) = B(i),
i = 1, . . . , N0. Then it holds that

Pi [Zt = j] = exp (tQ) (i, j)

Ei

[
exp

(∫ t

0
B(Zs)ds

)
I{Zt=j}

]
= exp (t(Q+ ΛB)) (i, j)

for any i, j ∈ E0, t ≥ 0,.

• We denote Ei[·] = E[·|Z0 = i], Pi[·] = P[·|Z0 = i], and I{·} is the
indicator of the set {·}.

• Note that the former expression is a special case of the latter.
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Regime switching Lévy processes

• Let i ∈ E0 and Xi = (Xi
t)t≥0 Lévy process with characteristic

exponent ψi : R → R,

E

[
eiuX

i
t

]
= etψi(u),

with the Lévy-Khintchine representation

ψi(u) = iµiu− σ2i
2
u2 +

∫ ∞

−∞
[eiux − 1− iuxI{|x|≤1}]νi(dx),

where σi, µi ∈ R are constants and νi is the Lévy measure.

• Hence νi satisfies the integrability condition
∫

R

(1 ∧ x2)νi(dx) <∞.

• (µi, σ
2
i , νi) is the characteristic triplet of Xi. Stochastic Volatility Models with Jumps – p. 7



Regime switching Lévy processes

• Vanilla option prices must be finite!

• Hence exponential moments must be finite: assume ∃pi > 1

such that
∫ ∞

1
epixνi(dx) <∞.

• This is equivalent to

E

[
epiX

i
t

]
<∞ for all t ≥ 0.

• Then identity E[eiuX
i
t ] = etψi(u) remains valid for all u in strip

{u ∈ C : ℑ(u) ∈ (−pi, 0]} ⊂ C

where the function ψi is analytically extended to this strip.
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Regime switching Lévy model

• Model for the foreign exchange rate S = (St)t≥0 is given by

St := S0 exp(Xt) where S0 ∈ (0,∞) and

Xt :=
∑

i∈E0

∫ t

0
I{Zs=i}dXi

s.

• Domestic and foreign money market accounts (MMA)
BD = (BD

t )t≥0 and BF = (BF
t )t≥0:

BD
t := exp

(∫ t

0
RD(Zs)ds

)
, BF

t := exp

(∫ t

0
RF (Zs)ds

)
.

• Functions RD, RF , µ, σ : E0 → R and Lévy measures νi,
i ∈ E0, are given and RD, RF ≥ 0 and σ > 0.

• Xi are independent Lévy processes with triplets (µ(i), σ(i)2, νi)

for i ∈ E0.
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Regime switching Lévy model: basic observations

• The process X is not Markovian!

• The pair (X,Z), is Markov and task is to understand its law!

• Let J i, i ∈ E0, be independent pure jump Lévy processes (i.e.
with characteristic triplets (0, 0, νi) and W = (W )t≥0 standard

Brownian motion. Then the process X̃, defined by

X̃t :=

∫ t

0
µ(Zs)ds+

∫ t

0
σ(Zs)dWs +

∑

i∈E0

∫ t

0
I{Zs=i}dJ is,

has the same law as X.
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The characteristic matrix exponent

The characteristic matrix exponent K : R → CN0×N0 of (X,Z) is

K(u) := Q+ Λ(u), where Λ(u)(i, i) = ψi(u), i ∈ E0,

Λ(u) is a diagonal matrix and Q the generator of Z.

Define diagonal matrices ΛD and ΛF by

ΛD(i, i) := RD(i), ΛF (i, i) := RF (i).

Theorem 1 The discounted characteristic function of Markov process (X,Z):

Ex,i

[
exp(iuXt)

BD
t

I{Zt=j}

]
= exp(iux)·exp(t(K(u)−ΛD))(i, j), u ∈ R,

where Ex,i[·] denotes the conditional expectation E[·|X0 = x, Z0 = i].
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The characteristic matrix exponent

Proof. Define Ψ(i, u) := ψi(u), i ∈ E0, and condition on
FZ
t := σ(Zs : s ∈ [0, t]):

Ex,i

[
exp(iuXt)

BD
t

I{Zt=j}

∣∣∣∣FZ
t

]
= exp

(
iux+

∫ t

0
(Ψ(Zs, u)−RD(Zs)) ds

)
(i, j).

Recall that

Ei

[
exp

(∫ t

0
B(Zs)ds

)
I{Zt=j}

]
= exp (t(Q+ ΛB)) (i, j)

for any function B : E0 → C, with ΛB diagonal, ΛB(i, i) = B(i). �
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Regime switching Lévy model

• A risk-neutral measure for S makes (StB
F
t /B

D
t )t≥0 into a

positive martingale.

• Pricing measure is non-unique (the market is incomplete).

• Natural choice is given by

Λ(−i) = ΛD − ΛF =⇒
Ei,x[StB

F
t /B

D
t ] = ex [exp (tQ))1] (i) = S0B

F
0 /B

D
0

for all S0 = ex ∈ (0,∞). This, together with Markov property of
(X,Z), implies that (StBF

t /B
D
t )t≥0 is a martingale.

• Here we are implicitly using the assumption pi > 1 for i ∈ E0.
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Regime switching Lévy model

• The price at time s of a zero coupon bond maturing at t ≥ s

Ei

[
1

BD
t

∣∣∣∣F (X,Z)
s

]
=

1

BD
s

· (exp((t− s)(Q− ΛD))1) (Zs),

where F (X,Z)
s = σ ((Xu, Zu) : u ∈ [0, s]).

• Infinitesimal generator L of Markov process (X,Z) is for
sufficiently smooth functions f : R× E0 → R as

Lf(x, i) =
σ2(i)

2
f ′′(x, i) + µ(i)f ′(x, i)

+

∫

R

[
f(x+ z, i)− f(x, i)− f ′(x, i)zI{|z|≤1}

]
νi(dz),

+
∑

j∈E0

Q(i, j)[f(x, j)− f(x, i)].
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Markov additive process(X,Z)

An important subclass of regime switching Lévy processes:

Xt := x+

∫ t

0
µ(Zs)ds+

∫ t

0
σ(Zs)dWs +

∑

i∈E0

∫ t

0
I{Zs=i}dJ is.

• J i = (J it )t≥0 are independent compound Poisson processes
with Lévy exponents

ψi(u) = λi (Φi(u)− 1) , u ∈ R, i ∈ E0,

where jump intensity λi ≥ 0 and Φi(u) is the characteristic
function of the jump distribution in regime i with:

Φi(−i) <∞ ⇐⇒ pi ≥ 1 ⇐⇒ jump distrib has exp moment.

• Z = (Zt)t≥0 a continuous-time MC on E0 = {1, . . . , N}.
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Phase-type distributions

Definition A cdf F : R+ → [0, 1] is phase-type if it is a cdf of the
absorption time of a continuous-time MC on m+ 1 ∈ N states, with
one state absorbing and the remaining states transient.

• F ∼ PH(α,A): vector α ∈ [0, 1]m satisfies 0 ≤ α′
1 ≤ 1 and

A ∈ R
m×m is a sub-generator matrix, i.e. a generator of the

chain restricted to the transient states.

• F is uniquely determined by vector α and matrix A ∈ Rm×m.

• The initial distribution and generator of the original chain are

(
α

1− α′
1

)
and

(
A (−A)1
0 0

)
.
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Phase-type distributions: properties and examples

If F ∼ PH(α,A) then

• cdf and pdf take the following form

F (t) = 1− α′etA1 and f(t) = −α′etAA1 for any t ∈ R+.

• Characterisitc function

Φ(−iu) = E[exp(uX)] = α′(A+ uI)−1A1+ (1− α′
1),

exists and is finite if and only if ℜ(u) < −ℜ(λ0), where λ0 is the
eigenvalue of A with the largest real part.

Examples: Hyper-exponential, Erlang
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Double phase-type distributions

F ∼ DPH(p, β+, B+, β−, B−) is double phase-type if its pdf is

f(x) = pf+(x)I(0,∞)(x) + (1− p)f−(−x)I(−∞,0)(x) such that

p ∈ [0, 1], f±(x) = −(β±)′exB
±

B±
1 and 1

′β± = 1.

• Condition 1
′β± = 1 ensures that the distribution of jump sizes

has no atom at zero.
• The DPH contains double exponential,

f(x) := pα+e−xα
+

I(0,∞)(x) + (1− p)α−exα
−

I(−∞,0)(x),

where α± > 0 and p ∈ [0, 1], and double Erlang distributions.
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Markov additive process(X,Z)

Proposition 1 Let F be a probability distribution function on R. Then there
exists a sequence (Fn)n∈N of double-phase-type distributions Fn such that
Fn ⇒ F as n→ ∞.

• Class of Markov additive process (X,Z) where

Xt = x+

∫ t

0
µ(Zs)ds+

∫ t

0
σ(Zs)dWs +

∑

i∈E0

∫ t

0
I{Zs=i}dJ is,

and jumps of J i are DPH, is dense in regime-switching Lévy.

• When generalised appropriately, the lack-of-memory property
holds for phase-type distributions.

• Wiener-Hopf theory can be developed for (X,Z).

Stochastic Volatility Models with Jumps – p. 19



Regime switching Lévy models

How are regime switching Lévy models used in practice?

• As approximations to general stochastic volatility models with
jumps (the chain Z has many states).

• As parsimonious descriptions of risk-neutral probability laws
implied by the markets (the chain Z has two or three states).

Stochastic Volatility Models with Jumps – p. 20



Stochastic volatility models with jumps

• v = {vt}t≥0 a Markov process in R+ (stochastic variance).

• X be a Lévy process (possibly Brownian motion) with
characteristic exponent ψ(u), independent of v.

A class of stochastic volatility models in a time interval [0, T ]

St := S0 exp

(
(r − d)t+

∫ t

0

√
vudXu −

∫ t

0
ψ(−i√vs)ds

)
, where

∫ T

0
|ψ(−i√vs)|ds <∞ a.s.

• If X is BM and v indep. square-root process, then S Heston.

• v scales the jump-size distribution of S and does NOT affect
the jump-intensity!
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Stochastic volatility models with jumps

St := S0 exp ((r − d)t+XVt
− ψ(−i)Vt) , where

Vt :=

∫ t

0
vudu <∞ a.s.

• Stochasticity of volatility is achieved by randomly changing the
time-scale.

• If X Brownian motion with drift: the scaling propery of BM
implies both SV models are the same.

• v modulates jump-intensity not jump-size.

HOMEWORK: Prove that in both cases (e−(r−d)tSt)t∈[0,T ] is a
martingale.
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Two step approximation of SVJ

(i) Approximate variance process v by a finite-state
continuous-time Markov chain.

(ii) Approximation of the Lévy process X by a Lévy process with
double-phase-type jumps.

Basic idea: approximate the respective generators of v and X and
define a Markov additive process that approximates S.

• In (i) fix a state-space and approximate the generator of v
locally at every state by a generator matirx.

• In (ii) approximate the Lévy triplet.
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European options in regime switching Lévy model

A call option struck at K with expiry T is defined as

CT (K) := C(S0, i,K, T ) := Ex,i

[
(BD

T )−1(ST −K)+
]
.

• Fourier transform c∗T in log-strike k = logK of CT (K) is

c∗T (ξ) =
∫

R

eiξkCT (e
k)dk where ℑ(ξ) < 0.

• Let ξ ∈ C\{0, i}, x ∈ R, j ∈ E0. Define

D(ξ, x, j) :=
e(1+iξ)x

iξ − ξ2
·
[
exp

{
T (K(1 + iξ)− ΛD)

}
1
]
(j).

• If ℑ(ξ) < 0, then for x = logS0 and Z0 = j, it holds

c∗T (ξ) = D(ξ, x, j) since ...
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European options in regime switching Lévy model

c∗T (ξ) =

∫

R

exp((iv + α)k)Ex,j
[
(BD

T )−1(ST − exp(k))+
]

dk

= Ex,j

[
(BD

T )−1

∫

R

exp((iv + α)k)(ST − exp(k))+dk

]

= Ex,j

[
(BD

T )−1 exp((1 + α+ iv)XT )
]
/(α2 + α− v2 + i(2α+ 1)v)

=
ex(1+α+iv)

α2 + α− v2 + i(2α+ 1)v
[exp(T (K(1 + α+ iv)− ΛD))1] (j).

Then for k = log(K) and α > 0 we have

CT (K) =
exp(−αk)

2π

∫ ∞

−∞
e−iskc∗T (s− iα)ds

=
exp(−αk)

π

∫ ∞

0
ℜ
[
e−iskD(s− iα, logS0, Z0)

]
ds.
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The implied volatility surface

IVol surface is a graph of a function (K,T ) 7→ σ(K,T ) defined
implicitly by the equation

CBS(S0,K, T, σ(K,T )) = C(K,T ),

where C(K,T ) are the market/model specified call option prices
and CBS(S0,K, T, ·) is the Black-Scholes formula.

• C(Kij , Ti), i = 1, . . . , n, j = 1, 2, 3, are the most liquid
derivative instruments in the financial markets.

• Knowing σ is equivalent to knowing the one-dimensional
marginals in a risk-neutral measure of the underlying process.

• To calibrate to the observed IVol surface the model needs to
have stochastic volatility AND jumps.

• If n = 2 (i.e. two maturities) typically time-dependence of
parameters is needed for calibration.
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Simple Markov additive model – Calibration

• N0 = 2 (two states only!)

• Λ(u) a 2× 2 diagonal matrix with the i-th diagonal element

ψi(u) := uµi+σ
2
i u

2/2+λipi

(
α+
i

α+
i − u

− 1

)
+λi(1−pi)

(
α−
i

α−
i + u

− 1

)
.

• Recall ΛD := diag(RD), ΛF := diag(RF ) and

E0,i

[
exp(uXt)

BD
t

I{Zt=j}

]
= [exp(t(Q+ Λ(u)− ΛD))] (i, j).

• A risk-neutral drift µ : E0 → R is given by the formula

Λ(1) = ΛD − ΛF .
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Markov additive model – calibration of stochastic rates

• For maturities T1 < T2 market implies two pairs PD0,Tk
, PF0,Tk

,
k = 1, 2, of domestic and foreign zero coupon bond prices.

• In our model we have

PF0,Tk
= Ex,i[(B

D
Tk
)−1STk

]/S0 and PD0,Tk
= Ex,i[(B

D
Tk
)−1].

• To calibrate RD, RF solve the system:

PD0,Tk
= e′i exp ((Q− ΛD)Tk)1,

PF0,Tk
= e′i exp ((Q− ΛF )Tk)1,

where k = 1, 2 and ΛD = diag(RD),ΛF = diag(RF ).

• Since N0 = 2, this system determines the risk-neutral drift of S,
is independent of the calibration to option prices and can be
solved accurately very fast.
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USDJPY – one maturity
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0.14
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Strike

IV
ol

Implied Volatility − USDJPY

 

 

Model IVol 1m

Market IVol 1m

Market data: S0 = 98.05, domestic rate rd = −0.00036, foreign rate
rf = 0.0045, maturity T = 1/12.
Model parameters: N = 2, q1 = 12, q2 = 6, Bm(1) = diag(−45,−300),

Bp(1) = −100,bm(1) = (0.12, 0.88), λ2 = 0 (chosen),
σ = (0.0423, 0.0628), λ1 = 276.5196, p1 = 0.1610 (calibrated).
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USDJPY – two maturities
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Model IVol 1m

Model IVol 3m

Market IVol 1m

Market IVol 3m

Market data: S0 = 98.05, domestic interest rate rd = (−0.00036, 0.005),
foreign interest rate rf = (0.0045, 0.0111), maturity T = (1/12, 3/12).
Model parameters: N = 2, q1 = 12, q2 = 6, Bm(1) = diag(−45,−300),

bm(1) = (0.12, 0.88), Bm(2) = −50, Bp(1) = −130, p2 = 0 (chosen),
σ = (0.1312, 0), λ1 = 137.4337, λ2 = 0.9484, p1 = 0.0386 (calibrated)
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EURUSD – one maturity
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Model IVol 1m

Market IVol 1m

Market data: spot S0 = 1.3009, domestic interest rate rd = 0.0045, foreign
interest rate rf = 0.0084, maturity T = 1/12.
Model parameters: N = 2, q1 = 12, q2 = 6, Bm(1) = diag(−45,−300),
bm(1) = (0.1, 0.9), Bp(1) = −130, λ2 = 0 (chosen)
σ = (0.1352, 0.0490), λ1 = 90.6456, p1 = 0.5231 (calibrated)
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EURUSD – two maturities
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Model IVol 1m
Model IVol 3m
Market IVol 1m
Market IVol 3m

Market data: S0 = 1.3009, domestic rate rd = (0.0045, 0.0111), foreign rate
rf = (0.0084, 0.0139), maturity T = (1/12, 3/12).
Model parameters: N = 2, q1 = 12, q2 = 6, Bm(1) = −70, Bp(1) = −70,
Bm(2) = −30, Bp(2) = −30, p2 = 0.5 (chosen)
σ = (0.1281, 0.0001), λ1 = 10.7141, λ2 = 10.2962, p1 = 0.1084 (calibrated)
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Part II

Exotic Derivatives
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Implied volatility at extreme strikes

The implied volatility σx,i(K,T ) in (X,Z) satisfies

CBS(ex,K, T, σx,i(K,T )) = Ex,i

[
(BD

T )−1(ST −K)+
]
.

For fixed maturity T define the quantities FT := Ex,i[ST ] and

q+ := sup
{
u : Ex,i

[
e(1+u)XT

]
<∞ for all i ∈ E0

}
,

q− := sup
{
u : Ex,i

[
e−uXT

]
<∞ for all i ∈ E0

}
.

Lee formula (under some assumptions):

lim
K→∞

Tσx,i(K,T )
2

log(K/FT )
= 2− 4

(√
q2+ + q+ − q+

)
,

lim
K→0

Tσx,i(K,T )
2

|log(K/FT )|
= 2− 4

(√
q2− + q− − q−

)
.
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Ivol at extreme strikes in (X,Z) with phase-type jumps

If X has double-phase type jumps then, for i ∈ E0, ψi(u) is:

iuµi−σ2i u2/2+λi
[
pi(β

+
i )

′(B+
i +iuI)−1B+

i 1+(1−pi)(β−i )′(B−
i −iuI)−1B−

i 1
]
.

Define α±
i := min{−ℜ(λ) : λ eigenvalue ofB±

i } for any state i ∈ E0.

• Note ψi has analytic extension to {u ∈ C : ℑ(u) ∈ (−α+
i , α

−
i )}.

• If the chain Z is irreducible, the quantities q± are:

q+ = min{α+
i −1 : i ∈ E0, piλi > 0}, q− = min{α−

i : i ∈ E0, (1−pi)λi > 0}.

lim
K→∞

Tσx,i(K,T )
2

log(K/FT )
= 2− 4

(√
q2+ + q+ − q+

)
,

lim
K→0

Tσx,i(K,T )
2

|log(K/FT )|
= 2− 4

(√
q2− + q− − q−

)
.
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Forward starting options

A payoff of T1-forward starting call option with maturity T2 > T1 is

(ST2
− κST1

)+, κ ∈ R+.

• The Fourier transform in the forward log-strike of
FT1,T2

(κ) = Ex,i

[
(BD

T2
)−1(ST2

− κST1
)+
]

is defined by

F ∗
T1,T2

(ξ) =

∫

R

eiξkFT1,T2
(ek)dk, where ℑ(ξ) < 0.

• For x = logS0, Z0 = j and ξ with ℑ(ξ) < 0 it holds that

F ∗
T1,T2

(ξ) =
e(1+iξ)x

iξ − ξ2
·
[
exp(T1(Q− ΛF )) exp

{
(T2−T1)(K(1 + iξ)− ΛD)

}
1
]
(j).
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Forward starting options

Proof.

FT1,T2
(κ) = Ex,i

[
(BD

T2
)−1(ST2

− κST1
)+
]

= Ex,i

[
ST1

BD
T1

E0,ZT1

[
(BD

T2−T1
)−1(ST2−T1

− κ)+
]
]

=
∑

j∈E0

Ex,i

[
ST1

BD
T1

I{ZT1
=j}

]
E0,j [(B

D
T2−T1

)−1(ST2−T1
− κ)+]

= S0
∑

j∈E0

e′i exp(T (K(−i)−ΛD))ejE0,j [(B
D
T2−T1

)−1(ST2−T1
− κ)+]

= S0e
′
i exp(T (K(−i)− ΛD))CT2−T1

(κ; 1),

j-th entry of vector CT2−T1
(κ; 1) is E0,j [(B

D
T2−T1

)−1(ST2−T1
− κ)+].
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The forward smile

The forward implied volatility σfwx,i (ST , κ, T ) at a future time T :

CBS(ST1
, κST1

, T2−T1, σfwx,i (ST1
, κ, T1)) = Ex,i

[
BD
T1

BD
T2

(ST2
− κST1

)+
∣∣∣∣ST1

]
,

where CBS the Black-Scholes formula with strike κST1
and spot ST1

.

Ex,i

[
BD
T1

BD
T2

(ST2
− κST1

)+
∣∣∣∣ST1

]
= ST1

fx,i(XT1
, T1)

′CT2−T1
(κ, 1), where

fx,ij (y, T ) := Px,i

[
ZT = j

∣∣∣XT = y
]
=
qx,iT (y, j)

qx,iT (y)
and ...
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The forward smile

... the joint distribution qx,iT (y, j) = d
dyPx,i[XT ≤ y, ZT = j] at time T

of (XT , ZT ) is given by

qx,iT (y, j) =
1

2π

∫

R

eiξ(x−y) exp (K (ξ)T ) (i, j) dξ, y ∈ R, i, j ∈ E0.

XT is a continuous random variable with probability density

function qx,iT (y) = Px,i[XT∈dy]
dy given by

qx,iT (y) =
1

2π

∫

R

eiξ(x−y) [exp (K (ξ)T )1] (i) dξ, y ∈ R, i ∈ E0.

Proof. The characteristic function is in L1(R).
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Volatility derivatives

Refining sequence of partitions (Πn)n∈N of [0, T ]: Πn ⊂ Πn+1,
Πn = {tn0 ≤ . . . ≤ tnn} s.t. limn→∞max{|tni − tni−1| : 1 ≤ i ≤ n} = 0.

• Quadratic variation ΣT of X = logS:

ΣT := lim
n→∞

∑

tni ∈Πn,i≥1

log

(
Stni
Stni−1

)2

.

• The sequence converges in probability, uniformly on [0, T ].

• The limit is given by

ΣT =

∫ T

0
σ(Zt)

2dt+
∑

i∈E0

∑

t≤T
I{Zt=i}(∆X

i
t)

2,

where ∆Xi
t := Xi

t −Xi
t−.
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Volatility derivatives

(Σt)t≥0 is the quadratic variation (realized variance) process of X.

• A buyer of a swap on the realized variance pays a premium
(the swap rate) to receive at maturity T a pay-off φ(ΣT ), where
φ : R+ → R+ is a measurable payoff function.

• Most common examples of φ are
(i) variance swap: φ(x) = x/T .

(ii) volatility swap: φ(x) =
√
x/T .

(iii) option on variance: φ(x) = (x− κ)+, where κ ∈ R+.

• The swap rate for the payoff φ is Ei

[
φ(ΣT )/B

D
T

]
.
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Volatility derivatives

(Σt)t≥0 is a regime-switching Lévy process with

Σt =

∫ t

0
σ(Zs)

2ds+
∑

i∈E0

∫ t

0
I{Zs=i}dX̃

i
s,

where X̃i, i ∈ E0, is a pure-jump subordinator with

νΣ(dx) = I(0,∞)(x)[−dν(
√
x) + dν(−√

x)] (Lévy measure)

ψΣ
i (u) = uσ2i +

∫

R+

(1− e−ux)νΣi (dx)

= uσ2i +

∫

R

(1− e−uy
2

)νi(dy) (characteristic exponent of X̃i).

Recall: ψΣ
i (u) = − logE[e−uX̃

i
1 ], ν(x) = ν([x,∞)), ν(x) = ν(−∞, x]).
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Volatility derivatives

The Laplace transform of Σt is given by

Ei [exp(−uΣt)] = [exp(tKΣ(u))1] (i), u > 0,

where
• the characteristic matrix KΣ(u) is given by

KΣ(u) := Q+ ΛΣ(u) and

• ΛΣ(u) is an N0 ×N0 diagonal matrix with

ΛΣ(u)(i, i) = ψΣ
i (u) = − logE[e−uX̃

i
1 ], i ∈ E0.
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Volatility derivatives

Xi jump-diffusion with double phase-type jumps. Then

• X̃i is a compound Poisson process with intensity λi
• with positive jump sizes Ki with probability density

gi(x) =
1

2
√
x

[
piβ

+
i e

√
xB+

i (−B+
i )1+ (1−pi)β−i e

√
xB−

i (−B−
i )1

]
I(0,∞)(x).

• Φ(x) := exp(x2/2)N (x), N normal cdf. Then E [exp(−uKi)] is
√
π

u

[
piβ

+
i Φ

(
1√
2u
B+
i

)
(−B+

i ) + (1− pi)β
−
i Φ

(
1√
2u
B−
i

)
(−B−

i )

]
1

• and the characteristic exponent of X̃i equals

ψΣ
i (u) := uσ2i + λi (1− E [exp(−uKi)]) .

Stochastic Volatility Models with Jumps – p. 44



Volatility derivatives - the pricing formulae

Assume RD ≡ const (to simplify the formulae) and Z0 = i.

• ςvar(T, j) = Ei [ΣT /T ] and ςvol(T, j) = Ei

[√
ΣT /T

]
are

ςvar(T, j) =
1

T

[∫ T

0
eQtV dt

]
(j),

ςvol(T, j) =
1

2
√
πT

∫ ∞

0

{
[I − exp(TKΣ(u))]1

}
(j)

du

u3/2
,

where V ∈ RN0 with V (i) = (ψΣ
i )

′(0) = σ2i +
∫
R
y2νi(dy).

• φ : R+ → R+ and ∃a > 0 s.t the Fourier transform φ∗a of
φa(x) = eaxφ(x) is in L1(R). Then the φ-swap rate is

ςφ(T, j) =
1√
2π

∫

R

φ∗a(ξ) [exp(T (KΣ(a− iξ)− ΛD))1] (j)dξ.
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Volatility derivatives - remarks

• Xi phase-type Lévy model:

V (i) = σ2i + 2λi
(
pi(β

+
i )

′(B+
i )

−2 + (1− pi)(β
−
i )

′(B−
i )

−2
)
1.

• Since Q = U−1∆U for diagonal ∆ with ∆(i, i) = λi and λ1 = 0,
ςvar(T, j) is given by

ςvar(T, j) =
1

T


U

−1




T
λ−1
2 (eλ2T−1)

. . .
λ−1
N (eλNT−1)


UV


(j).

• The integral in ςvol(T, j) converges at the rate proportional to
1/
√
M for upper bound M (follows from definition of KΣ(u)).

Stochastic Volatility Models with Jumps – p. 46



Variance swap formula – proof

Condition on the sigma algebra FZ
T = σ(Zt : t ∈ [0, T ]):

Ex,i



∫ t

0
σ(Zs)

2ds+
∑

j∈E0

∫ t

0
I{Zs=j}dX̃j

s


=

∑

j∈E0

Ex,i

[∫ T

0
I{Zs=j}ds

]
w(j),

where w(j) := σ2(j) + E[X̃j
1 ] = (ψΣ)′j(0), j ∈ E0, and note that

Ex,i

[∫ T

0
I{Zs=j}ds

]
=

[∫ T

0
exp(sQ)ds

]
(i, j)

by Fubini’s theorem.
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Volatility derivatives - proofs

Elementary integral

√
x =

1

2
√
π

∫ ∞

0
[1− exp(−ux)] du

u3/2
, for any x ≥ 0,

and Fubini’s theorem yield

Ei

[√
ΣT
T

]
=

1

2
√
πT

∫ ∞

0
[(exp(TQ)− exp(T (KΣ(u)))1] (i)

du

u3/2
.

Similarely for φ-swap the Fourier inversion formula yields

φ(S) =
1√
2π

∫

R

φ∗a(ξ)e
−(a+iξ)Sdξ and hence

Ej [φ(ΣT )] =
1√
2π

∫

R

φ∗a(ξ) [exp(TKΣ(a+ iξ)1] (j)dξ, a > 0.
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Part III

Fluctuation Theory and Barrier Options
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Barrier contracts

A barrier contract with expiry T > 0 pays the random cash flow

g(ST )I{τA>T} + h(SτA)I{τA≤T}, where τA = inf{t ≥ 0 : St ∈ A},

• knock-out set A = (0, ℓ] ∪ [u,∞), 0 ≤ ℓ < u ≤ ∞;

• g, h : (0,∞) → R+ payoff and rebate functions respectively.

Examples:

• knock-out double barrier (0 < ℓ, u <∞, h ≡ 0);

• down-and-out (u = ∞, h ≡ 0), up-and-out (ℓ = 0, h ≡ 0);

• rebate (g ≡ 0), European (0 = ℓ, u = ∞).
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Double-no-touch options

Doub le-no-touch (or range bet) pays one unit of domestic
currency at T if FX rate S stays in (ℓ, u) during [0, T ] and zero else.

• DNTs are the most liquid exotic options in financial markets.

• Hence DNTs should be used for calibration of the model S.
• The arbitrage-free price in a model S of a double-no-touch:

DS0
(T ) = ES0

[
I{τℓu>T}
BD
T

]
, where

τℓu := inf{t : St /∈ (ℓ, u)}.

Warning: price of DNT involves joint law of max and min of S.
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Wiener-Hopf factorisation for Brownian motion X

Let eq be exponential rv, E[eq] = 1/q, independent of X.

q

q − u2/2
=

ρ+(q)

ρ+(q) + u
· ρ−(q)
ρ−(q)− u

, where ρ±(q) = ±
√

2q

are the largest and smallest root of the characteristic equation

q − u2

2
= 0.

Define Xt = max{Xs : s ∈ [0, t]}, Xt = min{Xs : s ∈ [0, t]}.
Moment generating function of Xeq , Xeq are

E
[
exp(−uXeq)

]
=

ρ+(q)

ρ+(q)− u
, E

[
exp(uXeq)

]
=

ρ−(q)
u+ ρ−(q)

, u ≥ 0.
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Wiener-Hopf factorisation for Brownian motion X

Therefore Xeq , −Xeq are geometric rvs with params ρ+(q), −ρ−(q).
Let τu := min{t ≥ 0 : Xt ≥ u} and τℓ := min{t ≥ 0 : Xt ≤ ℓ}.

{τu < t} = {Xt > u}, {τℓ < t} = {Xt < ℓ} ∀t ∈ R+.

Hence

E[e−qτu ] = E

[∫ ∞

0
I{τu<t}qe

−qtdt

]
= P(τu < eq) = e−uρ+(q)

E[e−qτℓ ] = eℓρ−(q).

An application of Doob’s optional stopping theorem yields a closed
form for the Laplace transform for the two-sided first passage time

τℓu := inf{t : Xt /∈ (ℓ, u)}.
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Matrix Wiener-Hopf factorisation

In the general case of the Markov additive process the steps are
similar (but the details are very different):

• Fluid-embedding: embed the jumps to get a continuous
Markov additive process (phase-type distribution of jumps is
used in this step).

• The characteristic equation becomes a quadratic matrix
equation.

• The Wiener-Hopf factors can be inverted analytically.

• Closed-form formula for Laplace transform of the one-sided
first passage time can be obtained.

• Doob’s optional stopping theorem gives a closed-form formula
for the Laplace transform of the two-sided first passage time.
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Thank you for your attention!!

Corse notes and problem sheets available at
http://www.warwick.ac.uk/go/amijatovic
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