Stochastic Volatility Models with Jumps
Exotic Derivatives in Financial Markets

Aleksandar Mijatović
Department of Statistics, University of Warwick

Summer School in Stochastic Finance 2010
Ulm University, September 2010

Based on joint work with Martijn Pistorius
Overview of the Course

Part I: The Models (SVJ)

Part II: Exotic Derivatives (volatility derivatives, forward-starting options, asymptotics of the implied volatility smile)

Part III: Fluctuation Theory and Barrier Options
Part I

The Models
The Models

What are models used for?

Understanding the risk of portfolios of derivative securities:
- Pricing
- Hedging
- Risk Management

Features they must possess:
- Jumps (Gamma Regime)
- Stochasticity of Volatility (Vega Regime, Volatility Clustering)
- Analytical Tractability (Calibration, Hedging and Risk Management)
Regime switching Lévy processes: the volatility chain

- State-space $E^0 := \{1, \ldots, N_0\}$, $N_0 \in \mathbb{N}$, of a continuous-time Markov chain $Z = (Z_t)_{t \geq 0}$.
- Generator of Z is $Q \in \mathbb{R}^{N_0 \times N_0}$.
- Notation: $M \in \mathbb{C}^{N_0 \times N_0}$, $m \in \mathbb{C}^{N_0}$ are identified with functions

\[
M : E^0 \times E^0 \to \mathbb{C}, \quad M(i, j) = M_{ij} = e_i^t M e_j, \\
m : E^0 \to \mathbb{C}, \quad m(j) = m_j = m^t e_j,
\]

where $i, j = 1, \ldots, N_0$, and e_i are the standard basis of \mathbb{C}^{N_0}.
Regime switching Lévy processes: the volatility chain

- Let $B : E^0 \to \mathbb{C}$.
- Let Λ_B be a diagonal matrix such that $\Lambda_B(i, i) = B(i), i = 1, \ldots, N_0$. Then it holds that
 \[
 \mathbb{P}_i [Z_t = j] = \exp(tQ)(i, j) \]
 \[
 \mathbb{E}_i \left[\exp \left(\int_0^t B(Z_s) ds \right) I_{\{Z_t = j\}} \right] = \exp(t(Q + \Lambda_B))(i, j)
 \]
 for any $i, j \in E^0$, $t \geq 0$.
- We denote $\mathbb{E}_i[\cdot] = \mathbb{E}[\cdot | Z_0 = i]$, $\mathbb{P}_i[\cdot] = \mathbb{P}[\cdot | Z_0 = i]$, and $I_{\{\cdot\}}$ is the indicator of the set $\{\cdot\}$.
- Note that the former expression is a special case of the latter.
Regime switching Lévy processes

- Let \(i \in E^0 \) and \(X^i = (X^i_t)_{t \geq 0} \) Lévy process with characteristic exponent \(\psi_i : \mathbb{R} \to \mathbb{R} \),

\[
\mathbb{E}[e^{iuX^i_t}] = e^{t\psi_i(u)},
\]

with the Lévy-Khintchine representation

\[
\psi_i(u) = i\mu_i u - \frac{\sigma^2_i}{2} u^2 + \int_{-\infty}^{\infty} [e^{iux} - 1 - iuxI_{\{|x| \leq 1\}}] \nu_i(dx),
\]

where \(\sigma_i, \mu_i \in \mathbb{R} \) are constants and \(\nu_i \) is the Lévy measure.

- Hence \(\nu_i \) satisfies the integrability condition

\[
\int_{\mathbb{R}} (1 \wedge x^2) \nu_i(dx) < \infty.
\]

- \((\mu_i, \sigma_i^2, \nu_i) \) is the characteristic triplet of \(X^i \).
Regime switching Lévy processes

- Vanilla option prices must be finite!
- Hence exponential moments must be finite: assume $\exists p_i > 1$

$$\int_1^\infty e^{p_i x} \nu_i(dx) < \infty.$$

- This is equivalent to

$$\mathbb{E}\left[e^{p_i X^i_t}\right] < \infty \quad \text{for all} \quad t \geq 0.$$

- Then identity $\mathbb{E}[e^{iuX^i_t}] = e^{t\psi_i(u)}$ remains valid for all u in strip

$$\{u \in \mathbb{C} : \Im(u) \in (-p_i, 0]\} \subset \mathbb{C}$$

where the function ψ_i is analytically extended to this strip.
Regime switching Lévy model

Model for the foreign exchange rate \(S = (S_t)_{t \geq 0} \) is given by

\[
S_t := S_0 \exp(X_t) \quad \text{where} \quad S_0 \in (0, \infty) \quad \text{and} \quad X_t := \sum_{i \in E^0} \int_0^t I\{Z_s=i\} dX^i_s.
\]

Domestic and foreign money market accounts (MMA)

\(B^D = (B^D_t)_{t \geq 0} \) and \(B^F = (B^F_t)_{t \geq 0} \):

\[
B^D_t := \exp \left(\int_0^t R_D(Z_s) ds \right), \quad B^F_t := \exp \left(\int_0^t R_F(Z_s) ds \right).
\]

Functions \(R_D, R_F, \mu, \sigma : E^0 \to \mathbb{R} \) and Lévy measures \(\nu_i, i \in E^0 \), are given and \(R_D, R_F \geq 0 \) and \(\sigma > 0 \).

\(X^i \) are independent Lévy processes with triplets \((\mu(i), \sigma(i)^2, \nu_i) \) for \(i \in E^0 \).
Regime switching Lévy model: basic observations

- The process X is not Markovian!
- The pair (X, Z), is Markov and task is to understand its law!
- Let J^i, $i \in E^0$, be independent pure jump Lévy processes (i.e. with characteristic triplets $(0, 0, \nu_i)$ and $W = (W)_{t \geq 0}$ standard Brownian motion. Then the process \tilde{X}, defined by

$$\tilde{X}_t := \int_0^t \mu(Z_s)ds + \int_0^t \sigma(Z_s)dW_s + \sum_{i \in E^0} \int_0^t I_{\{Z_s=i\}}dJ^i_s,$$

has the same law as X.
The characteristic matrix exponent

The characteristic matrix exponent \(K : \mathbb{R} \to \mathbb{C}^{N_0 \times N_0} \) of \((X, Z)\) is

\[
K(u) := Q + \Lambda(u), \quad \text{where} \quad \Lambda(u)(i, i) = \psi_i(u), \quad i \in E^0,
\]

\(\Lambda(u) \) is a diagonal matrix and \(Q \) the generator of \(Z \).

Define diagonal matrices \(\Lambda_D \) and \(\Lambda_F \) by

\[
\Lambda_D(i, i) := R_D(i), \quad \Lambda_F(i, i) := R_F(i).
\]

Theorem 1 The discounted characteristic function of Markov process \((X, Z)\):

\[
\mathbb{E}_{x,i}\left[\frac{\exp(iuX_t)}{B_t^D} I\{Z_t=j\} \right] = \exp(iux) \cdot \exp(t(K(u) - \Lambda_D))(i, j), \quad u \in \mathbb{R},
\]

where \(\mathbb{E}_{x,i}[\cdot] \) denotes the conditional expectation \(\mathbb{E}[\cdot | X_0 = x, Z_0 = i] \).
The characteristic matrix exponent

Proof. Define $\Psi(i, u) := \psi_i(u)$, $i \in E^0$, and condition on $\mathcal{F}_t^Z := \sigma(Z_s : s \in [0,t])$:

$$\mathbb{E}_{x,i} \left[\frac{\exp(i u X_t)}{B_t^D} I_{\{Z_t = j\}} \bigg| \mathcal{F}_t^Z \right] = \exp \left(iux + \int_0^t (\Psi(Z_s, u) - R_D(Z_s)) \, ds \right) (i, j)$$

Recall that

$$\mathbb{E}_i \left[\exp \left(\int_0^t B(Z_s) \, ds \right) I_{\{Z_t = j\}} \right] = \exp \left(t(Q + \Lambda_B) \right) (i, j)$$

for any function $B : E^0 \to \mathbb{C}$, with Λ_B diagonal, $\Lambda_B(i, i) = B(i)$.

□
Regime switching Lévy model

- A risk-neutral measure for S makes $(S_t B_t^F / B_t^D)_{t \geq 0}$ into a positive martingale.
- Pricing measure is non-unique (the market is incomplete).
- Natural choice is given by
 \[\Lambda(-i) = \Lambda_D - \Lambda_F \implies \mathbb{E}_{i,x}[S_t B_t^F / B_t^D] = e^x [\exp(tQ)] 1(i) = S_0 B_0^F / B_0^D \]
 for all $S_0 = e^x \in (0, \infty)$. This, together with Markov property of (X, Z), implies that $(S_t B_t^F / B_t^D)_{t \geq 0}$ is a martingale.
- Here we are implicitly using the assumption $p_i > 1$ for $i \in E^0$.
Regime switching Lévy model

- The price at time \(s \) of a zero coupon bond maturing at \(t \geq s \)

\[
\mathbb{E}_i \left[\frac{1}{B_t^D} \bigg| \mathcal{F}_s^{(X,Z)} \right] = \frac{1}{B_s^D} \cdot (\exp((t-s)(Q - \Lambda_D)))1)(Z_s),
\]

where \(\mathcal{F}_s^{(X,Z)} = \sigma((X_u, Z_u) : u \in [0, s]) \).

- Infinitesimal generator \(\mathcal{L} \) of Markov process \((X, Z)\) is for sufficiently smooth functions \(f : \mathbb{R} \times E^0 \rightarrow \mathbb{R} \) as

\[
\mathcal{L} f(x, i) = \frac{\sigma^2(i)}{2} f''(x, i) + \mu(i) f'(x, i)
\]
\[
+ \int_{\mathbb{R}} \left[f(x + z, i) - f(x, i) - f'(x, i) z I_{\{|z| \leq 1\}} \right] \nu_i(dz),
\]
\[
+ \sum_{j \in E^0} Q(i, j) [f(x, j) - f(x, i)].
\]
Markov additive process \((X, Z)\)

An important subclass of regime switching Lévy processes:

\[
X_t := x + \int_0^t \mu(Z_s)ds + \int_0^t \sigma(Z_s)dW_s + \sum_{i \in E^0} \int_0^t I\{Z_s = i\}dJ^i_s.
\]

- \(J^i = (J^i_t)_{t \geq 0}\) are independent compound Poisson processes with Lévy exponents
 \[
 \psi_i(u) = \lambda_i \left(\Phi_i(u) - 1\right), \quad u \in \mathbb{R}, \ i \in E^0,
 \]
 where jump intensity \(\lambda_i \geq 0\) and \(\Phi_i(u)\) is the characteristic function of the jump distribution in regime \(i\)
 with:
 \[
 \Phi_i(-i) < \infty \iff p_i \geq 1 \iff \text{jump distrib has exp moment}.
 \]

- \(Z = (Z_t)_{t \geq 0}\) a continuous-time MC on \(E^0 = \{1, \ldots, N\}\).
Phase-type distributions

Definition A cdf \(F : \mathbb{R}_+ \to [0, 1] \) is *phase-type* if it is a cdf of the absorption time of a continuous-time MC on \(m + 1 \in \mathbb{N} \) states, with one state absorbing and the remaining states transient.

- \(F \sim PH(\alpha, A) \): vector \(\alpha \in [0, 1]^m \) satisfies \(0 \leq \alpha' \mathbf{1} \leq 1 \) and \(A \in \mathbb{R}^{m \times m} \) is a sub-generator matrix, i.e. a generator of the chain restricted to the transient states.
- \(F \) is uniquely determined by vector \(\alpha \) and matrix \(A \in \mathbb{R}^{m \times m} \).
- The initial distribution and generator of the original chain are

\[
\begin{pmatrix}
\alpha \\
1 - \alpha' \mathbf{1}
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
A & (-A) \mathbf{1} \\
0 & 0
\end{pmatrix}.
\]
Phase-type distributions: properties and examples

If $F \sim PH(\alpha, A)$ then

- cdf and pdf take the following form

$$F(t) = 1 - \alpha' e^{tA} \mathbf{1} \quad \text{and} \quad f(t) = -\alpha' e^{tA} A \mathbf{1} \quad \text{for any} \quad t \in \mathbb{R}_+.$$

- Characteristic function

$$\Phi(-iu) = \mathbb{E}[\exp(uX)] = \alpha'(A + uI)^{-1} A \mathbf{1} + (1 - \alpha' \mathbf{1}),$$

exists and is finite if and only if $\Re(u) < -\Re(\lambda_0)$, where λ_0 is the eigenvalue of A with the largest real part.

Examples: Hyper-exponential, Erlang
Double phase-type distributions

\(F \sim \text{DPH}(p, \beta^+, B^+, \beta^-, B^-) \) is double phase-type if its pdf is

\[
f(x) = pf^+(x)I_{(0,\infty)}(x) + (1 - p)f^-(x)I_{(-\infty,0)}(x) \quad \text{such that}
\]

\[
p \in [0, 1], \quad f^\pm(x) = -\left(\beta^\pm\right)'e^{xB^\pm}B^\pm 1 \quad \text{and} \quad 1'\beta^\pm = 1.
\]

- Condition \(1'\beta^\pm = 1 \) ensures that the distribution of jump sizes has no atom at zero.
- The DPH contains double exponential,

\[
f(x) := p\alpha^+ e^{-x\alpha^+}I_{(0,\infty)}(x) + (1 - p)\alpha^- e^{x\alpha^-}I_{(-\infty,0)}(x),
\]

where \(\alpha^\pm > 0 \) and \(p \in [0, 1] \), and double Erlang distributions.
Markov additive process \((X, Z)\)

Proposition 1 Let \(F\) be a probability distribution function on \(\mathbb{R}\). Then there exists a sequence \((F_n)_{n \in \mathbb{N}}\) of double-phase-type distributions \(F_n\) such that \(F_n \Rightarrow F\) as \(n \to \infty\).

- Class of Markov additive process \((X, Z)\) where

\[
X_t = x + \int_0^t \mu(Z_s)ds + \int_0^t \sigma(Z_s)dW_s + \sum_{i \in E_0} \int_0^t I\{Z_s = i\}dJ_s^i,
\]

and jumps of \(J^i\) are DPH, is dense in regime-switching Lévy.

- When generalised appropriately, the lack-of-memory property holds for phase-type distributions.

- Wiener-Hopf theory can be developed for \((X, Z)\).
Regime switching Lévy models

How are regime switching Lévy models used in practice?

• As approximations to general stochastic volatility models with jumps (the chain Z has many states).
• As parsimonious descriptions of risk-neutral probability laws implied by the markets (the chain Z has two or three states).
• $v = \{v_t\}_{t \geq 0}$ a Markov process in \mathbb{R}_+ (stochastic variance).

• X be a Lévy process (possibly Brownian motion) with characteristic exponent $\psi(u)$, independent of v.

A class of stochastic volatility models in a time interval $[0, T]$

$$S_t := S_0 \exp \left((r - d)t + \int_0^t \sqrt{v_u}dX_u - \int_0^t \psi(-i\sqrt{v_s})ds \right),$$

where

$$\int_0^T |\psi(-i\sqrt{v_s})|ds < \infty \quad \text{a.s.}$$

• If X is BM and v indep. square-root process, then S Heston.

• v scales the jump-size distribution of S and does NOT affect the jump-intensity!
Stochastic volatility models with jumps

\[S_t := S_0 \exp((r - d)t + X_{V_t} - \psi(-i)V_t), \quad \text{where} \]

\[V_t := \int_0^t v_u du < \infty \quad \text{a.s.} \]

- Stochasticity of volatility is achieved by randomly changing the time-scale.
- If \(X \) Brownian motion with drift: the scaling property of BM implies both SV models are the same.
- \(v \) modulates jump-intensity not jump-size.

HOMEWORK: Prove that in both cases \((e^{-(r-d)t} S_t)_{t \in [0,T]} \) is a martingale.
Two step approximation of SVJ

(i) Approximate variance process v by a finite-state continuous-time Markov chain.

(ii) Approximation of the Lévy process X by a Lévy process with double-phase-type jumps.

Basic idea: approximate the respective generators of v and X and define a Markov additive process that approximates S.

- In (i) fix a state-space and approximate the generator of v locally at every state by a generator matrix.
- In (ii) approximate the Lévy triplet.
European options in regime switching Lévy model

A call option struck at K with expiry T is defined as

$$C_T(K) := C(S_0, i, K, T) := \mathbb{E}_{x,i} \left[(B_T^D)^{-1}(S_T - K)^+ \right].$$

- Fourier transform c_T^* in log-strike $k = \log K$ of $C_T(K)$ is

$$c_T^*(\xi) = \int_{\mathbb{R}} e^{i \xi k} C_T(e^k) dk \quad \text{where} \quad \Im(\xi) < 0.$$

- Let $\xi \in \mathbb{C}\backslash\{0, i\}$, $x \in \mathbb{R}$, $j \in E^0$. Define

$$D(\xi, x, j) := \frac{e^{(1+i\xi)x}}{i\xi - \xi^2} \cdot \left[\exp \left\{ T(K(1+i\xi) - \Lambda_D) \right\} 1 \right](j).$$

- If $\Im(\xi) < 0$, then for $x = \log S_0$ and $Z_0 = j$, it holds

$$c_T^*(\xi) = D(\xi, x, j) \quad \text{since} \ldots$$
European options in regime switching Lévy model

\[c^*_T(\xi) = \int_{\mathbb{R}} \exp((iv + \alpha)k) \mathbb{E}_{x,j} \left[(B^D_T)^{-1} (S_T - \exp(k))^+ \right] \, dk \]

\[= \mathbb{E}_{x,j} \left[(B^D_T)^{-1} \int_{\mathbb{R}} \exp((iv + \alpha)k)(S_T - \exp(k))^+ \, dk \right] \]

\[= \mathbb{E}_{x,j} \left[(B^D_T)^{-1} \exp((1 + \alpha + iv)X_T) \right] / (\alpha^2 + \alpha - v^2 + i(2\alpha + 1)v) \]

\[= \frac{e^{x(1+\alpha+iv)}}{\alpha^2 + \alpha - v^2 + i(2\alpha + 1)v} [\exp(T(K(1 + \alpha + iv) - \Lambda_D))1](j). \]

Then for \(k = \log(K) \) and \(\alpha > 0 \) we have

\[C_T(K) = \frac{\exp(-\alpha k)}{2\pi} \int_{-\infty}^{\infty} e^{-isk} c^*_T(s - i\alpha) \, ds \]

\[= \frac{\exp(-\alpha k)}{\pi} \int_{0}^{\infty} \Re \left[e^{-isk} D(s - i\alpha, \log S_0, Z_0) \right] \, ds. \]
The implied volatility surface

IVol surface is a graph of a function \((K, T) \mapsto \sigma(K, T)\) defined implicitly by the equation

\[
C^{BS}(S_0, K, T, \sigma(K, T)) = C(K, T),
\]

where \(C(K, T)\) are the market/model specified call option prices and \(C^{BS}(S_0, K, T, \cdot)\) is the Black-Scholes formula.

- \(C(K_{ij}, T_i), i = 1, \ldots, n, j = 1, 2, 3,\) are the most liquid derivative instruments in the financial markets.
- Knowing \(\sigma\) is equivalent to knowing the one-dimensional marginals in a risk-neutral measure of the underlying process.
- To calibrate to the observed IVol surface the model needs to have stochastic volatility AND jumps.
- If \(n = 2\) (i.e. two maturities) typically time-dependence of parameters is needed for calibration.
Simple Markov additive model – Calibration

- \(N_0 = 2 \) (two states only!)
- \(\Lambda(u) \) a \(2 \times 2 \) diagonal matrix with the \(i \)-th diagonal element

\[
\psi_i(u) := u\mu_i + \sigma_i^2 u^2 / 2 + \lambda_i p_i \left(\frac{\alpha_i^+}{\alpha_i^- - u} - 1 \right) + \lambda_i (1 - p_i) \left(\frac{\alpha_i^-}{\alpha_i^- + u} - 1 \right).
\]

- Recall \(\Lambda_D := \text{diag}(R_D) \), \(\Lambda_F := \text{diag}(R_F) \) and

\[
\mathbb{E}_{0,i} \left[\frac{\exp(uX_t)}{B_t^D} I\{Z_t=j\} \right] = \left[\exp(t(Q + \Lambda(u) - \Lambda_D)) \right] (i,j).
\]

- A risk-neutral drift \(\mu : \mathbb{E}^0 \to \mathbb{R} \) is given by the formula

\[
\Lambda(1) = \Lambda_D - \Lambda_F.
\]
Markov additive model – calibration of stochastic rates

- For maturities $T_1 < T_2$ market implies two pairs P_{0,T_k}^D, P_{0,T_k}^F, $k = 1, 2$, of domestic and foreign zero coupon bond prices.
- In our model we have

$$P_{0,T_k}^F = \mathbb{E}_{x,i}[(B_{T_k}^D)^{-1}S_{T_k}]/S_0 \quad \text{and} \quad P_{0,T_k}^D = \mathbb{E}_{x,i}[(B_{T_k}^D)^{-1}].$$

- To calibrate R_D, R_F solve the system:

$$P_{0,T_k}^D = e_i' \exp((Q - \Lambda_D)T_k) 1,$$

$$P_{0,T_k}^F = e_i' \exp((Q - \Lambda_F)T_k) 1,$$

where $k = 1, 2$ and $\Lambda_D = \text{diag}(R_D), \Lambda_F = \text{diag}(R_F)$.

- Since $N_0 = 2$, this system determines the risk-neutral drift of S, is independent of the calibration to option prices and can be solved accurately very fast.
Market data: $S_0 = 98.05$, domestic rate $r_d = -0.00036$, foreign rate $r_f = 0.0045$, maturity $T = 1/12$.

Model parameters: $N = 2$, $q_1 = 12$, $q_2 = 6$, $B_m(1) = \text{diag}(-45, -300)$, $B_p(1) = -100, b_m(1) = (0.12, 0.88)$, $\lambda_2 = 0$ (chosen), $\sigma = (0.0423, 0.0628)$, $\lambda_1 = 276.5196$, $p_1 = 0.1610$ (calibrated).
Market data: $S_0 = 98.05$, domestic interest rate $r_d = (-0.00036, 0.005)$, foreign interest rate $r_f = (0.0045, 0.0111)$, maturity $T = (1/12, 3/12)$.

Model parameters: $N = 2$, $q_1 = 12$, $q_2 = 6$, $B_m(1) = \text{diag}(-45, -300)$, $b_m(1) = (0.12, 0.88)$, $B_m(2) = -50$, $B_p(1) = -130$, $p_2 = 0$ (chosen), $\sigma = (0.1312, 0)$, $\lambda_1 = 137.4337$, $\lambda_2 = 0.9484$, $p_1 = 0.0386$ (calibrated).
Market data: spot $S_0 = 1.3009$, domestic interest rate $r_d = 0.0045$, foreign interest rate $r_f = 0.0084$, maturity $T = 1/12$.

Model parameters: $N = 2$, $q_1 = 12$, $q_2 = 6$, $B_m(1) = \text{diag}(-45, -300)$, $b_m(1) = (0.1, 0.9)$, $B_p(1) = -130$, $\lambda_2 = 0$ (chosen)

$\sigma = (0.1352, 0.0490)$, $\lambda_1 = 90.6456$, $p_1 = 0.5231$ (calibrated)
Market data: $S_0 = 1.3009$, domestic rate $r_d = (0.0045, 0.0111)$, foreign rate $r_f = (0.0084, 0.0139)$, maturity $T = (1/12, 3/12)$.

Model parameters: $N = 2$, $q_1 = 12$, $q_2 = 6$, $B_m(1) = -70$, $B_p(1) = -70$, $B_m(2) = -30$, $B_p(2) = -30$, $p_2 = 0.5$ (chosen)
$\sigma = (0.1281, 0.0001)$, $\lambda_1 = 10.7141$, $\lambda_2 = 10.2962$, $p_1 = 0.1084$ (calibrated)
Part II

Exotic Derivatives
Implied volatility at extreme strikes

The implied volatility $\sigma_{x,i}(K, T)$ in (X, Z) satisfies

$$C^{\text{BS}}(e^x, K, T, \sigma_{x,i}(K, T)) = \mathbb{E}_{x,i} \left[(B_T^D)^{-1}(S_T - K)^+ \right].$$

For fixed maturity T define the quantities $F_T := \mathbb{E}_{x,i}[S_T]$ and

$$q_+ := \sup \left\{ u : \mathbb{E}_{x,i} \left[e^{(1+u)X_T} \right] < \infty \text{ for all } i \in E^0 \right\},$$
$$q_- := \sup \left\{ u : \mathbb{E}_{x,i} \left[e^{-uX_T} \right] < \infty \text{ for all } i \in E^0 \right\}.$$

Lee formula (under some assumptions):

$$\lim_{K \to \infty} \frac{T \sigma_{x,i}(K, T)^2}{\log(K/F_T)} = 2 - 4 \left(\sqrt{q_+^2 + q_+} - q_+ \right),$$
$$\lim_{K \to 0} \frac{T \sigma_{x,i}(K, T)^2}{|\log(K/F_T)|} = 2 - 4 \left(\sqrt{q_-^2 + q_-} - q_- \right).$$
Ivol at extreme strikes in \((X, Z)\) with phase-type jumps

If \(X\) has double-phase type jumps then, for \(i \in E^0\), \(\psi_i(u)\) is:

\[
i u \mu_i - \sigma_i^2 u^2 / 2 + \lambda_i [p_i (\beta_i^+)' (B_i^+ + iuI)^{-1} B_i^+ 1 + (1-p_i) (\beta_i^-)' (B_i^- - iuI)^{-1} B_i^- 1].
\]

Define \(\alpha_i^\pm := \min \{-\Re(\lambda) : \lambda \text{ eigenvalue of } B_i^\pm\}\) for any state \(i \in E^0\).

- Note \(\psi_i\) has analytic extension to \(\{u \in \mathbb{C} : \Im(u) \in (-\alpha_i^+, \alpha_i^-)\}\).
- If the chain \(Z\) is irreducible, the quantities \(q_{\pm}\) are:

\[
q_+ = \min \{\alpha_i^+ - 1 : i \in E^0, \ p_i \lambda_i > 0\}, \quad q_- = \min \{\alpha_i^- : i \in E^0, \ (1-p_i) \lambda_i > 0\}.
\]

\[
\lim_{K \to \infty} \frac{T \sigma_x,i(K,T)^2}{\log(K/F_T)} = 2 - 4 \left(\sqrt{q_+^2 + q_+ - q_+}\right),
\]

\[
\lim_{K \to 0} \frac{T \sigma_x,i(K,T)^2}{|\log(K/F_T)|} = 2 - 4 \left(\sqrt{q_-^2 + q_- - q_-}\right).
\]
Forward starting options

A payoff of T_1-forward starting call option with maturity $T_2 > T_1$ is

$$(S_{T_2} - \kappa S_{T_1})^+, \quad \kappa \in \mathbb{R}_+.$$

- The Fourier transform in the forward log-strike of $F_{T_1,T_2} (\kappa) = \mathbb{E}_{x,i} \left[(B_{T_2}^D)^{-1} (S_{T_2} - \kappa S_{T_1})^+ \right]$ is defined by

 $$F_{T_1,T_2}^* (\xi) = \int_{\mathbb{R}} e^{i\xi k} F_{T_1,T_2}(e^k) dk, \quad \text{where} \quad \Im(\xi) < 0.$$

- For $x = \log S_0$, $Z_0 = j$ and ξ with $\Im(\xi) < 0$ it holds that

 $$F_{T_1,T_2}^* (\xi) = \frac{e^{(1+i\xi)x}}{i\xi - \xi^2} \left[\exp(T_1(Q - \Lambda_F)) \exp \left\{ (T_2 - T_1)(K(1 + i\xi) - \Lambda_D) \right\} 1 \right](j).$$
Forward starting options

Proof.

\[
F_{T_1,T_2}(\kappa) = \mathbb{E}_{x,i} \left[(B_{T_2}^D)^{-1} (S_{T_2} - \kappa S_{T_1})^+ \right]
\]

\[
= \mathbb{E}_{x,i} \left[\frac{S_{T_1}}{B_{T_1}^D} \mathbb{E}_{0,Z_{T_1}} \left[(B_{T_2-T_1}^D)^{-1} (S_{T_2-T_1} - \kappa)^+ \right] \right]
\]

\[
= \sum_{j \in E^0} \mathbb{E}_{x,i} \left[\frac{S_{T_1}}{B_{T_1}^D} I\{Z_{T_1} = j\} \right] \mathbb{E}_{0,j} \left[(B_{T_2-T_1}^D)^{-1} (S_{T_2-T_1} - \kappa)^+ \right]
\]

\[
= S_0 \sum_{j \in E^0} e'_i \exp(T(K(-i) - \Lambda_D)) e_j \mathbb{E}_{0,j} \left[(B_{T_2-T_1}^D)^{-1} (S_{T_2-T_1} - \kappa)^+ \right]
\]

\[
= S_0 e'_i \exp(T(K(-i) - \Lambda_D)) C_{T_2-T_1}(\kappa; 1),
\]

\(j\)-th entry of vector \(C_{T_2-T_1}(\kappa; 1)\) is \(\mathbb{E}_{0,j} \left[(B_{T_2-T_1}^D)^{-1} (S_{T_2-T_1} - \kappa)^+ \right].\)
The forward smile

The \textit{forward implied volatility} $\sigma_{x,i}^{fw}(S_T, \kappa, T)$ at a future time T: \[
C^{BS}(S_{T_1}, \kappa S_{T_1}, T_2 - T_1, \sigma_{x,i}^{fw}(S_{T_1}, \kappa, T_1)) = \mathbb{E}_{x,i} \left[\frac{B_{T_1}^D}{B_{T_2}^D} (S_{T_2} - \kappa S_{T_1})^+ \right| S_{T_1} \right],
\]

where C^{BS} the Black-Scholes formula with strike κS_{T_1} and spot S_{T_1}. \[
\mathbb{E}_{x,i} \left[\frac{B_{T_1}^D}{B_{T_2}^D} (S_{T_2} - \kappa S_{T_1})^+ \right| S_{T_1} \right] = S_{T_1} f_{x,i}^{x,i}(X_{T_1}, T_1)' C_{T_2-T_1}(\kappa, 1),
\]

where \[
f_{x,i}^{x,i}(y, T) := \mathbb{P}_{x,i} \left[Z_T = j \big| X_T = y \right] = \frac{q_{x,i}^{x,i}(y, j)}{q_{x,i}^{x,i}(y)} \quad \text{and ...}
\]
The forward smile

... the joint distribution \(q^{x,i}_{T}(y,j) = \frac{d}{dy} \mathbb{P}_{x,i}[X_T \leq y, Z_T = j] \) at time \(T \) of \((X_T, Z_T)\) is given by

\[
q^{x,i}_{T}(y,j) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\xi(x-y)} \exp(K(\xi) T)(i,j) \, d\xi, \quad y \in \mathbb{R}, i, j \in E^0.
\]

\(X_T \) is a continuous random variable with probability density function \(q^{x,i}_{T}(y) = \frac{\mathbb{P}_{x,i}[X_T \in dy]}{dy} \) given by

\[
q^{x,i}_{T}(y) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{i\xi(x-y)} \left[\exp(K(\xi) T) \mathbf{1}\right](i) \, d\xi, \quad y \in \mathbb{R}, i \in E^0.
\]

Proof. The characteristic function is in \(L^1(\mathbb{R}) \).
Volatility derivatives

Refining sequence of partitions \((\Pi_n)_{n \in \mathbb{N}}\) of \([0, T]\): \(\Pi_n \subset \Pi_{n+1}\), \(\Pi_n = \{t^n_0 \leq \ldots \leq t^n_n\}\) s.t. \(\lim_{n \to \infty} \max\{|t^n_i - t^n_{i-1}| : 1 \leq i \leq n\} = 0\).

- **Quadratic variation** \(\Sigma_T\) of \(X = \log S\):

\[
\Sigma_T := \lim_{n \to \infty} \sum_{t^n_i \in \Pi_n, i \geq 1} \log \left(\frac{S_{t^n_i}}{S_{t^n_{i-1}}} \right)^2.
\]

- The sequence converges in probability, uniformly on \([0, T]\).

- The limit is given by

\[
\Sigma_T = \int_0^T \sigma(Z_t)^2 \, dt + \sum_{i \in E^0} \sum_{t \leq T} I_{\{Z_t = i\}} (\Delta X^i_t)^2,
\]

where \(\Delta X^i_t := X^i_t - X^i_{t-}\).
Volatility derivatives

\((\Sigma_t)_{t \geq 0}\) is the \textit{quadratic variation (realized variance) process} of \(X\).

- A buyer of a swap on the realized variance pays a premium (the swap rate) to receive at maturity \(T\) a pay-off \(\phi(\Sigma_T)\), where \(\phi : \mathbb{R}_+ \to \mathbb{R}_+\) is a measurable payoff function.

- Most common examples of \(\phi\) are
 (i) variance swap: \(\phi(x) = x/T\).
 (ii) volatility swap: \(\phi(x) = \sqrt{x/T}\).
 (iii) option on variance: \(\phi(x) = (x - \kappa)^+,\) where \(\kappa \in \mathbb{R}_+\).

- The swap rate for the payoff \(\phi\) is \(\mathbb{E}_i \left[\phi(\Sigma_T)/B^D_T \right] \).
(\(\Sigma_t\))\(\text{t} \geq 0\) is a regime-switching Lévy process with

\[\Sigma_t = \int_0^t \sigma(Z_s)^2 ds + \sum_{i \in E^0} \int_0^t I\{Z_s = i\} d\tilde{X}^i_s, \]

where \(\tilde{X}^i, i \in E^0\), is a pure-jump subordinator with

\[\nu^{\Sigma}(dx) = I_{(0,\infty)}(x)[-d\overline{\nu}(\sqrt{x}) + d\nu(-\sqrt{x})] \quad \text{(Lévy measure)} \]

\[\psi^\Sigma_i(u) = u\sigma^2_i + \int_{\mathbb{R}^+} (1 - e^{-ux})\nu^\Sigma_i(dx) \]

\[= u\sigma^2_i + \int_{\mathbb{R}} (1 - e^{-uy^2})\nu_i(dy) \quad \text{(characteristic exponent of } \tilde{X}^i). \]

Recall: \(\psi^\Sigma_i(u) = -\log\mathbb{E}[e^{-u\tilde{X}^i_1}], \overline{\nu}(x) = \nu([x, \infty)), \nu(x) = \nu(-\infty, x)]. \)
Volatility derivatives

The Laplace transform of Σ_t is given by

$$\mathbb{E}_i [\exp(-u\Sigma_t)] = \exp(tK_\Sigma(u)) \mathbf{1}(i), \quad u > 0,$$

where

- the characteristic matrix $K_\Sigma(u)$ is given by

$$K_\Sigma(u) := Q + \Lambda_\Sigma(u) \quad \text{and}$$

- $\Lambda_\Sigma(u)$ is an $N_0 \times N_0$ diagonal matrix with

$$\Lambda_\Sigma(u)(i, i) = \psi_\Sigma^i(u) = -\log \mathbb{E}[e^{-u\tilde{X}_i}], \quad i \in E^0.$$
Volatility derivatives

X^i jump-diffusion with double phase-type jumps. Then

- \tilde{X}^i is a compound Poisson process with intensity λ_i
- with positive jump sizes K_i with probability density

$$g_i(x) = \frac{1}{2\sqrt{x}} \left[p_i \beta_i^+ e^{\sqrt{x}B_i^+} (-B_i^+) 1 + (1-p_i) \beta_i^- e^{\sqrt{x}B_i^-} (-B_i^-) 1 \right] I_{(0,\infty)}(x).$$

- $\Phi(x) := \exp(x^2/2)\mathcal{N}(x)$, \mathcal{N} normal cdf. Then $\mathbb{E} [\exp(-uK_i)]$ is

$$\sqrt{\frac{\pi}{u}} \left[p_i \beta_i^+ \Phi \left(\frac{1}{\sqrt{2u}} B_i^+ \right) (-B_i^+) + (1-p_i) \beta_i^- \Phi \left(\frac{1}{\sqrt{2u}} B_i^- \right) (-B_i^-) \right] 1$$

- and the characteristic exponent of \tilde{X}^i equals

$$\psi_i^\Sigma(u) := u\sigma_i^2 + \lambda_i (1 - \mathbb{E} [\exp(-uK_i)]).$$
Volatility derivatives - the pricing formulae

Assume $R_D \equiv \text{const}$ (to simplify the formulae) and $Z_0 = i$.

- $\varsigma_{\text{var}}(T, j) = \mathbb{E}_i \left[\Sigma T / T \right]$ and $\varsigma_{\text{vol}}(T, j) = \mathbb{E}_i \left[\sqrt{\Sigma T / T} \right]$ are

$$
\varsigma_{\text{var}}(T, j) = \frac{1}{T} \left[\int_0^T e^{Q t} V dt \right] (j),
$$

$$
\varsigma_{\text{vol}}(T, j) = \frac{1}{2 \sqrt{\pi T}} \int_0^\infty \left\{ \left[I - \exp(TK_\Sigma(u)) \right] 1 \right\} (j) \frac{du}{u^{3/2}},
$$

where $V \in \mathbb{R}^{N_0}$ with $V(i) = (\psi_i^\Sigma)'(0) = \sigma_i^2 + \int_{\mathbb{R}} y^2 \nu_i(dy)$.

- $\phi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ and $\exists a > 0$ s.t the Fourier transform ϕ^*_a of $\phi_a(x) = e^{ax} \phi(x)$ is in $L^1(\mathbb{R})$. Then the ϕ-swap rate is

$$
\varsigma_{\phi}(T, j) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \phi^*_a(\xi) \left[\exp(T(K_\Sigma(a - i\xi) - \Lambda_D)) 1 \right] (j) d\xi.
$$
Volatility derivatives - remarks

- X^i phase-type Lévy model:

$$V(i) = \sigma^2_i + 2\lambda_i \left(p_i(\beta^+_i)'(B^+_i)^{-2} + (1 - p_i)(\beta^-_i)'(B^-_i)^{-2}\right) \mathbf{1}.$$

- Since $Q = U^{-1} \Delta U$ for diagonal Δ with $\Delta(i, i) = \lambda_i$ and $\lambda_1 = 0$, $\varsigma_{var}(T, j)$ is given by

$$\varsigma_{var}(T, j) = \frac{1}{T} \left[U^{-1} \begin{pmatrix} T \\ \lambda_2^{-1}(e^{\lambda_2 T} - 1) \\ \vdots \\ \lambda_N^{-1}(e^{\lambda_N T} - 1) \end{pmatrix} UV \right] (j).$$

- The integral in $\varsigma_{vol}(T, j)$ converges at the rate proportional to $1/\sqrt{M}$ for upper bound M (follows from definition of $K_\Sigma(u)$).
Variance swap formula – proof

Condition on the sigma algebra $\mathcal{F}^Z_T = \sigma(\{Z_t : t \in [0, T]\})$:

$$
\mathbb{E}_{x,i} \left[\int_0^t \sigma(Z_s)^2 ds + \sum_{j \in E^0} \int_0^t I\{Z_s = j\} d\tilde{X}^j_s \right] = \sum_{j \in E^0} \mathbb{E}_{x,i} \left[\int_0^T I\{Z_s = j\} ds \right] w(j),
$$

where $w(j) := \sigma^2(j) + \mathbb{E}[\tilde{X}_1^j] = (\psi^\Sigma)'(0)$, $j \in E^0$, and note that

$$
\mathbb{E}_{x,i} \left[\int_0^T I\{Z_s = j\} ds \right] = \left[\int_0^T \exp(sQ) ds \right] (i, j)
$$

by Fubini’s theorem.
Volatility derivatives - proofs

Elementary integral

\[
\sqrt{x} = \frac{1}{2\sqrt{\pi}} \int_0^{\infty} [1 - \exp(-ux)] \frac{du}{u^{3/2}}, \quad \text{for any} \quad x \geq 0,
\]

and Fubini’s theorem yield

\[
\mathbb{E}_i \left[\sqrt{\frac{\Sigma T}{T}} \right] = \frac{1}{2\sqrt{\pi T}} \int_0^{\infty} \left[(\exp(TQ) - \exp(T(K\Sigma(u)))) 1 \right] (i) \frac{du}{u^{3/2}}.
\]

Similarly for \(\phi \)-swap the Fourier inversion formula yields

\[
\phi(S) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \phi_a^*(\xi) e^{-(a + i\xi)S} d\xi \quad \text{and hence}
\]

\[
\mathbb{E}_j [\phi(\Sigma_T)] = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \phi_a^*(\xi) [\exp(TK\Sigma(a + i\xi)1)] (j) d\xi, \quad a > 0.
\]
Part III

Fluctuation Theory and Barrier Options
Barrier contracts

A barrier contract with expiry $T > 0$ pays the random cash flow

$$g(S_T)I_{\{\tau_A > T\}} + h(S_{\tau_A})I_{\{\tau_A \leq T\}}, \quad \text{where} \quad \tau_A = \inf\{t \geq 0 : S_t \in A\},$$

- knock-out set $A = (0, \ell] \cup [u, \infty)$, $0 \leq \ell < u \leq \infty$;
- $g, h : (0, \infty) \to \mathbb{R}_+$ payoff and rebate functions respectively.

Examples:
- knock-out double barrier $(0 < \ell, u < \infty, h \equiv 0)$;
- down-and-out $(u = \infty, h \equiv 0)$, up-and-out $(\ell = 0, h \equiv 0)$;
- rebate $(g \equiv 0)$, European $(0 = \ell, u = \infty)$.

Stochastic Volatility Models with Jumps – p. 50
Double-no-touch options

Double-no-touch (or range bet) pays one unit of domestic currency at T if FX rate S stays in (ℓ, u) during $[0, T]$ and zero else.

- DNTs are the most liquid exotic options in financial markets.
- Hence DNTs should be used for calibration of the model S.
- The arbitrage-free price in a model S of a double-no-touch:

$$D_{S_0}(T) = \mathbb{E}_S \left[\frac{I_{\{\tau_{\ell u} > T\}}}{B_T^D} \right], \quad \text{where}$$

$$\tau_{\ell u} := \inf \{ t : S_t \notin (\ell, u) \}.$$

Warning: price of DNT involves joint law of max and min of S.
Wiener-Hopf factorisation for Brownian motion X

Let e_q be exponential rv, $\mathbb{E}[e_q] = 1/q$, independent of X.

$$\frac{q}{q - u^2/2} = \frac{\rho_+(q)}{\rho_+(q) + u} \cdot \frac{\rho_-(q)}{\rho_-(q) - u}, \quad \text{where} \quad \rho_\pm(q) = \pm \sqrt{2q}$$

are the largest and smallest root of the characteristic equation

$$q - \frac{u^2}{2} = 0.$$

Define $\overline{X}_t = \max\{X_s : s \in [0, t]\}$, $\underline{X}_t = \min\{X_s : s \in [0, t]\}$.
Moment generating function of \overline{X}_{eq}, \underline{X}_{eq} are

$$\mathbb{E} \left[\exp(-u\overline{X}_{eq}) \right] = \frac{\rho_+(q)}{\rho_+(q) - u}, \quad \mathbb{E} \left[\exp(u\underline{X}_{eq}) \right] = \frac{\rho_-(q)}{u + \rho_-(q)}, \quad u \geq 0.$$
Wiener-Hopf factorisation for Brownian motion X

Therefore $X_{e_q}, -X_{e_q}$ are geometric rvs with params $\rho_+(q), -\rho_-(q)$.

Let $\tau_u := \min\{t \geq 0 : X_t \geq u\}$ and $\tau_\ell := \min\{t \geq 0 : X_t \leq \ell\}$.

$$\{\tau_u < t\} = \{X_t > u\}, \quad \{\tau_\ell < t\} = \{X_t < \ell\} \quad \forall t \in \mathbb{R}_+.$$

Hence

$$\mathbb{E}[e^{-q\tau_u}] = \mathbb{E} \left[\int_{0}^{\infty} I_{\{\tau_u < t\}} q e^{-qt} dt \right] = \mathbb{P}(\tau_u < e_q) = e^{-u\rho_+(q)}$$

$$\mathbb{E}[e^{-q\tau_\ell}] = e^{\ell \rho_-(q)}.$$

An application of Doob’s optional stopping theorem yields a closed form for the Laplace transform for the two-sided first passage time

$$\tau_{\ell u} := \inf\{t : X_t \notin (\ell, u)\}.$$
Matrix Wiener-Hopf factorisation

In the general case of the Markov additive process the steps are similar (but the details are very different):

- Fluid-embedding: embed the jumps to get a continuous Markov additive process (phase-type distribution of jumps is used in this step).
- The characteristic equation becomes a quadratic matrix equation.
- The Wiener-Hopf factors can be inverted analytically.
- Closed-form formula for Laplace transform of the one-sided first passage time can be obtained.
- Doob’s optional stopping theorem gives a closed-form formula for the Laplace transform of the two-sided first passage time.
Thank you for your attention!!

Corse notes and problem sheets available at
http://www.warwick.ac.uk/go/amilajatovic